Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Overcoming Skin Damage from Pollution via Novel Skincare Strategies

Author(s): Alexandros Charitakis, Sulaf Assi, Sakib Yousaf and Iftikhar Khan*

Volume 28, Issue 15, 2022

Published on: 22 April, 2022

Page: [1250 - 1257] Pages: 8

DOI: 10.2174/1381612828666220331124025

Price: $65

Abstract

Urban pollution is one of the main problems encountered worldwide, with a major impact on public health as well as the environment. The health impact of urban pollution is not limited to respiratory conditions but also encompasses major skin problems, including irritation, skin ageing, and skin cancer. Toxic gases and particulate matter are the main pollutants that exhibit extensive local variability. The aforementioned pollutants are small particles that attach to the skin or penetrate it, enhancing free radicals’ production inside the inner skin layers. This urges the need to propose cosmetic products that help prevent and/or minimise pollutants’ effects on the skin, whether irritation, ageing, and cancer. Furthermore, intrinsic and extrinsic factors contribute to skin irritation and ageing. Intrinsic factors are within skin factors and include genetic and physiological characteristics of individuals. Moreover, extrinsic factors comprise environmental factors such as humidity, temperature, and smoke. Subsequently, active ingredients with anti pollutant properties addressed the intrinsic and extrinsic factors by four mechanisms: free radical neutralisation, film-forming ability, skin barrier enhancement, and fortification. Such ingredients include vitamin A derivatives, vitamin C derivatives, carbohydrates, and plantbased products. Yet, very limited studies have evaluated the effectiveness of the aforementioned active ingredients against irritation or ageing, which should be considered in future work.

Keywords: Skincare, pollutant, skin damage, skin barrier, penetration, particulate matter.

[1]
Krutmann J, Liu W, Li L, et al. Pollution and skin: From epidemiological and mechanistic studies to clinical implications. J Dermatol Sci 2014; 76(3): 163-8.
[http://dx.doi.org/10.1016/j.jdermsci.2014.08.008] [PMID: 25278222]
[2]
Kumar S, Tiku AB. Immunomodulatory potential of acemannan (polysaccharide from Aloe vera) against radiation induced mortality in Swiss albino mice. Food Agric Immunol 2016; 27(1): 72-86.
[http://dx.doi.org/10.1080/09540105.2015.1079594]
[3]
Samek L. Overall human mortality and morbidity due to exposure to air pollution. Int J Occup Med Environ Health 2016; 29(3): 417-26.
[http://dx.doi.org/10.13075/ijomeh.1896.00560] [PMID: 26988881]
[4]
Vierkötter A, Schikowski T, Ranft U, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 2010; 130(12): 2719-26.
[http://dx.doi.org/10.1038/jid.2010.204] [PMID: 20664556]
[5]
Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut 2008; 151(2): 362-7.
[http://dx.doi.org/10.1016/j.envpol.2007.06.012] [PMID: 17646040]
[6]
Rembiesa J, Ruzgas T, Engblom J, Holefors A. The impact of pollution on skin and proper efficacy testing for anti-pollution claims. Cosmetics 2018; 5(1): 4.
[http://dx.doi.org/10.3390/cosmetics5010004]
[7]
Mistry N. Guidelines for formulating anti-pollution products. Cosmetics 2017; 4(4): 57.
[http://dx.doi.org/10.3390/cosmetics4040057]
[8]
Donaldson K, Tran L, Jimenez LA, et al. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2(1): 10.
[http://dx.doi.org/10.1186/1743-8977-2-10] [PMID: 16242040]
[9]
Aleksic V, Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res 2014; 169(4): 240-54.
[http://dx.doi.org/10.1016/j.micres.2013.10.003] [PMID: 24291016]
[10]
Thring TS, Hili P, Naughton DP. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. J Inflamm (Lond) 2011; 8(1): 27.
[http://dx.doi.org/10.1186/1476-9255-8-27] [PMID: 21995704]
[11]
Clarins. Pioneer in anti-pollution care for the purest skin. 2020. Available from: . https://www.clarins.com.sg/pioneer-in-anti-pollution-care-singapore/
[12]
Camargo Junior FB, Gaspar LR, Campos PMBGM. Camargo Junior FBd. Immediate and long-term effects of polysaccharides-based formulations on human skin. Braz J Pharm Sci 2012; 48(3): 547-55.
[http://dx.doi.org/10.1590/S1984-82502012000300022]
[13]
Gupta MA, Gilchrest BA. Psychosocial aspects of aging skin. Dermatol Clin 2005; 23(4): 643-8.
[http://dx.doi.org/10.1016/j.det.2005.05.012] [PMID: 16112440]
[14]
Ansam M, Yousaf S, Bnyan R, Khan I. Anti-aging liposomal formulation: Mini review. Novel Approaches in Drug Designing and Development 2018; 3(3): 66-8.
[15]
Hollmerus S, Yousaf S, Islam Y, Khan I. Isoflavones-based liposome formulations as anti-aging for skincare. Novel Approaches in Drug Designing and Development 2018; 3: 28-37.
[16]
Martin P. Wound healing-aiming for perfect skin regeneration. Science 1997; 276(5309): 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[17]
Lee CM, Watson REB, Kleyn CE. The impact of perceived stress on skin ageing. J Eur Acad Dermatol Venereol 2020; 34(1): 54-8.
[http://dx.doi.org/10.1111/jdv.15865] [PMID: 31407395]
[18]
Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci 2017; 85(3): 152-61.
[http://dx.doi.org/10.1016/j.jdermsci.2016.09.015] [PMID: 27720464]
[19]
Curtis L, Rea W, Smith-Willis P, Fenyves E, Pan Y. Adverse health effects of outdoor air pollutants. Environ Int 2006; 32(6): 815-30.
[http://dx.doi.org/10.1016/j.envint.2006.03.012] [PMID: 16730796]
[20]
Drakaki E, Dessinioti C, Antoniou CV. Air pollution and the skin. Front Environ Sci 2014; 2: 11.
[http://dx.doi.org/10.3389/fenvs.2014.00011]
[21]
Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol 2014; 134(5): 993-9.
[http://dx.doi.org/10.1016/j.jaci.2014.09.023] [PMID: 25439225]
[22]
Packer L, Valacchi G. Antioxidants and the response of skin to oxidative stress: Vitamin E as a key indicator. Skin Pharmacol Appl Skin Physiol 2002; 15(5): 282-90.
[http://dx.doi.org/10.1159/000064531] [PMID: 12239421]
[23]
Eberlein-König B, Przybilla B, Kühnl P, et al. Influence of airborne nitrogen dioxide or formaldehyde on parameters of skin function and cellular activation in patients with atopic eczema and control subjects. J Allergy Clin Immunol 1998; 101(1 Pt 1): 141-3.
[http://dx.doi.org/10.1016/S0091-6749(98)70212-X] [PMID: 9449520]
[24]
Davidson CI, Phalen RF, Solomon PA. Airborne particulate matter and human health: A review. Aerosol Sci Technol 2005; 39(8): 737-49.
[http://dx.doi.org/10.1080/02786820500191348]
[25]
Portugal-Cohen M, Oron M, Cohen D, Ma’or Z. Antipollution skin protection - a new paradigm and its demonstration on two active compounds. Clin Cosmet Investig Dermatol 2017; 10: 185-93.
[http://dx.doi.org/10.2147/CCID.S129437] [PMID: 28553131]
[26]
Marrot L. Pollution and sun exposure: A deleterious synergy. Mechanisms and opportunities for skin protection. Curr Med Chem 2018; 25(40): 5469-86.
[http://dx.doi.org/10.2174/0929867324666170918123907] [PMID: 28925870]
[27]
Juliano C, Magrini GA. Cosmetic functional ingredients from botanical sources for anti-pollution skincare products. Cosmetics 2018; 5(1): 19.
[http://dx.doi.org/10.3390/cosmetics5010019]
[28]
Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. Cutaneous responses to environmental stressors. Ann N Y Acad Sci 2012; 1271(1): 75-81.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06724.x] [PMID: 23050967]
[29]
Tanaka K, Asamitsu K, Uranishi H, et al. Protecting skin photoaging by NF-kappaB inhibitor. Curr Drug Metab 2010; 11(5): 431-5.
[http://dx.doi.org/10.2174/138920010791526051] [PMID: 20540695]
[30]
Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew Chem Int Ed 2005; 44(46): 7520-40.
[http://dx.doi.org/10.1002/anie.200501122] [PMID: 16302183]
[31]
Lazaridis M, Latos M, Aleksandropoulou V, Hov Ø, Papayannis A, Tørseth K. Contribution of forest fire emissions to atmospheric pollution in Greece. Air Qual Atmos Health 2008; 1(3): 143-58.
[http://dx.doi.org/10.1007/s11869-008-0020-0]
[32]
Dagouassat M, Lanone S, Boczkowski J. Interaction of matrix metalloproteinases with pulmonary pollutants. Eur Respiratory J 2012; 39(4): 1021-32.
[http://dx.doi.org/10.1183/09031936.00195811]
[33]
Burke KE, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health 2009; 25(4-5): 219-24.
[http://dx.doi.org/10.1177/0748233709106067] [PMID: 19651790]
[34]
Menichini E. Urban air pollution by polycyclic aromatic hydrocarbons: Levels and sources of variability. Sci Total Environ 1992; 116(1-2): 109-35.
[http://dx.doi.org/10.1016/0048-9697(92)90368-3] [PMID: 1411492]
[35]
Penning TM, Burczynski ME, Hung C-F, McCoull KD, Palackal NT, Tsuruda LS. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chem Res Toxicol 1999; 12(1): 1-18.
[http://dx.doi.org/10.1021/tx980143n] [PMID: 9894013]
[36]
Lademann J, Schaefer H, Otberg N, Teichmann A, Blume-Peytavi U, Sterry W. Penetration of microparticles into human skin. Hautarzt 2004; 55: 1117-9.
[37]
Baudouin C, Charveron M, Tarroux R, Gall Y. Environmental pollutants and skin cancer. Cell Biol Toxicol 2002; 18(5): 341-8.
[http://dx.doi.org/10.1023/A:1019540316060] [PMID: 12240965]
[38]
Lintner K, Sederma SA. Cosmetic or dermopharmaceutical use of peptides for healing, hydrating and improving skin appearance during natural or induced ageing (heliodermia, pollution). US Patent 6,620,419, . 2003.
[39]
Nihart T. Anti-aging dermal composition comprising herbal extracts. US Patent 9,597,279, . 2017.
[40]
Binic I, Lazarevic V, Ljubenovic M, Mojsa J, Sokolovic D. Skin ageing: Natural weapons and strategies. Evid Based Complement Alternat Med 2013; 2013, 827248.
[http://dx.doi.org/10.1155/2013/827248] [PMID: 23431351]
[41]
Siegert W. Boosting the antimicrobial efficiency of multifunctional additives by chelating agents. Int J Appl Sci 2014; 140: 1-6.
[42]
Velasco MVR, Sauce R. , Oliveira CAd, et al. Active ingredients, mechanisms of action and efficacy tests of antipollution cosmetic and personal care products. Braz J Pharm Sci 2018; 54.
[43]
Biatry B. Use of phytanetriol as an anti-pollution agent, in particular in a cosmetic composition. US Patent 09/875,994,. 2002.
[44]
Duche D, Cotovio J, Catroux P. Use of ellagic acid as an antipollution cosmetic agent. US Patent 10/276,540,. 2004.
[45]
Peterson G, Rapaka S, Koski N, Kearney M, Ortblad K, Tadlock L. A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin. Int J Cosmet Sci 2017; 39(3): 351-4.
[http://dx.doi.org/10.1111/ics.12378] [PMID: 27797421]
[46]
de Oliveira F, de Menezes L, Tavares M. Film-forming systems in topically administered pharmaceutical formulations. Mater Sci Appl 2020; 11(8): 576-90.
[http://dx.doi.org/10.4236/msa.2020.118038]
[47]
Park KY, Kim DH, Jeong MS, Li K, Seo SJ. Changes of antimicrobial peptides and transepidermal water loss after topical application of tacrolimus and ceramide-dominant emollient in patients with atopic dermatitis. J Korean Med Sci 2010; 25(5): 766-71.
[http://dx.doi.org/10.3346/jkms.2010.25.5.766] [PMID: 20436715]
[48]
Chamlin SL, Kao J, Frieden IJ, et al. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol 2002; 47(2): 198-208.
[http://dx.doi.org/10.1067/mjd.2002.124617] [PMID: 12140465]
[49]
Gruber JV. Polysaccharide-based polymers. Principles of polymer science and technology in cosmetics and personal care. 1999; pp. 325..
[50]
Batelaan J, Van Ginkel C, Balk F. Carboxymethylcellulose (cmc) Detergents. Springer 1992; pp. 329-36.
[http://dx.doi.org/10.1007/978-3-540-47108-0_11]
[51]
Peter G. Alginates . Carbohydr Polym 1988; 8: 161-82.
[http://dx.doi.org/10.1016/0144-8617(88)90001-X]
[52]
TRI-K. PhytoVie® Defense 2020. Available from:. https://www.tri-k.com/product/phytovie-defense/
[53]
Guillerme J-B, Couteau C, Coiffard L. Applications for marine resources in cosmetics. Cosmetics 2017; 4(3): 35.
[http://dx.doi.org/10.3390/cosmetics4030035]
[54]
Kabara JJ. Chelating agents as preservative Preservative-free and self-preserving cosmetics and drugs: Principles and practices. CRC Press 1997; p. 286.
[55]
Varvaresou A, Papageorgiou S, Tsirivas E, et al. Self-preserving cosmetics. Int J Cosmet Sci 2009; 31(3): 163-75.
[http://dx.doi.org/10.1111/j.1468-2494.2009.00492.x] [PMID: 19302511]
[56]
Silab. DETOXYL® An antipollution kit. In: Silab. 2021. Available from: . https://www.silab.fr/produit-21-detoxyl_usa.html
[57]
Omya-Kinetik. Natural Chelating Agents for Cosmetics. 2019. Available from:. https://omyakinetik.com/blog/natural-chelating-agents-for-cosmetics/
[58]
Zadák Z, Hyspler R, Tichá A, et al. Antioxidants and vitamins in clinical conditions. Physiol Res 2009; 58(Suppl. 1): S13-7.
[http://dx.doi.org/10.33549/physiolres.931861] [PMID: 19857031]
[59]
Górnicka M. Drywień M, Frąckiewicz J, Dębski B, Wawrzyniak A. Alpha-tocopherol may protect hepatocytes against oxidative damage induced by endurance training in growing organisms. Adv Clin Exp Med 2016; 25: 673-9.
[http://dx.doi.org/10.17219/acem/62922]
[60]
Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J Am Coll Nutr 2003; 22(1): 18-35.
[http://dx.doi.org/10.1080/07315724.2003.10719272] [PMID: 12569111]
[61]
Pullar J, Carr A, Vissers M. The roles of vitamin C in skin health. Nutrients 2017; 9(8): 866.
[http://dx.doi.org/10.3390/nu9080866]
[62]
Murielle EC, Guichon A, Lennon P. Cosmetic composition comprising a meteorite extract, and use of the extract as cosmetic agent suitable for stimulating the differentiation of human keratinocytes. US Patent12/418,854,. 2010.
[63]
Qu D, Saito LL. Chia seed extract and related method of manufacture. US Patent 8,846,117,. 2014.
[64]
Martins MR, Arantes S, Candeias F, Tinoco MT, Cruz-Morais J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J Ethnopharmacol 2014; 151(1): 485-92.
[http://dx.doi.org/10.1016/j.jep.2013.10.063] [PMID: 24231069]
[66]
Amri B, Martino E, Vitulo F, et al. Marrubium vulgare L. leave extract: Phytochemical composition, antioxidant and wound healing properties. Molecules 2017; 22(11): 1851.
[http://dx.doi.org/10.3390/molecules22111851] [PMID: 29143793]
[67]
PCI. Croda Personal Care . 2020. Available from:. https://www.crodapersonalcare.com/en-gb
[68]
Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 2001; 79(7): 1324-35.
[http://dx.doi.org/10.1002/1097-4628(20010214)79:7<1324::AIDAPP210>3.0.CO;2-L]
[69]
Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999; 182(1): 21-32.
[http://dx.doi.org/10.1016/S0378-5173(99)00030-7] [PMID: 10332071]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy