Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

FANCI沉默促进DNA损伤并使卵巢癌细胞对卡铂敏感

卷 22, 期 7, 2022

发表于: 23 May, 2022

页: [591 - 602] 页: 12

弟呕挨: 10.2174/1568009622666220331091709

价格: $65

conference banner
摘要

背景: 卵巢癌(OVCA)在同源重组(HR)中具有独特的表观遗传学改变和缺陷。尽管最初对铂类化疗敏感,HR功能失调的肿瘤最终获得耐药性。范科尼贫血(FA)的特征是骨髓衰竭(BMF)和消除DNA链间交联(ICL)的能力降低。然而,在OVCA中FANCI介导的耐药机制尚不清楚。 摘要: 我们探索确定FANCI是否参与OVCA中的化疗耐药 方法:使用TIMER和cBioPortal分别分析FANCI表达和表观遗传学改变。使用Kaplan-Meier绘图仪、GSE63885和TCGA-OVCA数据集分析FANCI表达与OVCA患者生存率之间的相关性。免疫组化检测OVCA中FANCI的表达。通过CCK-8和Transwell评估FANCI抑制细胞中的细胞增殖、迁移和侵袭。流式细胞术和免疫荧光法检测细胞凋亡和DNA损伤。同时,用caspase GloR 3/7试剂盒检测caspase 3/7的活性。此外,通过Western blot检测FANCI、γH2AX和凋亡效应子的表达。 结果: FANCI在OVCA中有拷贝数变异(CNV)。OVCA患者FANCI的高表达与低生存率相关。此外,FANCI表达与OVCA的化疗反应相关。卡铂以时间依赖性方式诱导OVCA细胞中FANCI的表达。FANCI的沉默对细胞增殖没有影响,但阻碍OVCA细胞迁移和侵袭。机械地,FANCI的敲除通过CHK1/2-P53-P21途径增强DNA损伤诱导的凋亡。 结论: FANCI可能是OVCA患者的潜在治疗靶点。

关键词: FANCI, FANCD2, 卵巢癌,化疗耐药,DNA损伤, P53.

图形摘要

[1]
Vaughan, S.; Coward, J.I.; Bast, R.C., Jr; Berchuck, A.; Berek, J.S.; Brenton, J.D.; Coukos, G.; Crum, C.C.; Drapkin, R.; Etemadmoghadam, D.; Friedlander, M.; Gabra, H.; Kaye, S.B.; Lord, C.J.; Lengyel, E.; Levine, D.A.; McNeish, I.A.; Menon, U.; Mills, G.B.; Nephew, K.P.; Oza, A.M.; Sood, A.K.; Stronach, E.A.; Walczak, H.; Bowtell, D.D.; Balkwill, F.R. Rethinking ovarian cancer: Recommendations for improving outcomes. Nat. Rev. Cancer, 2011, 11(10), 719-725.
[http://dx.doi.org/10.1038/nrc3144] [PMID: 21941283]
[2]
González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; Baumann, K.; Jardon, K.; Redondo, A.; Moore, R.G.; Vulsteke, C.; O’Cearbhaill, R.E.; Lund, B.; Backes, F.; Barretina-Ginesta, P.; Haggerty, A.F.; Rubio-Pérez, M.J.; Shahin, M.S.; Mangili, G.; Bradley, W.H.; Bruchim, I.; Sun, K.; Malinowska, I.A.; Li, Y.; Gupta, D.; Monk, B.J. PRIMA/ENGOTOV26/ GOG-3012 Investigators. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med., 2019, 381(25), 2391-2402.
[http://dx.doi.org/10.1056/NEJMoa1910962] [PMID: 31562799]
[3]
Ledermann, J.A.; Raja, F.A.; Fotopoulou, C.; Gonzalez-Martin, A.; Colombo, N.; Sessa, C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2018, 29(Suppl. 4), iv259.
[http://dx.doi.org/10.1093/annonc/mdy157]
[4]
Coleman, R.L.; Monk, B.J.; Sood, A.K.; Herzog, T.J. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat. Rev. Clin. Oncol., 2013, 10(4), 211-224.
[http://dx.doi.org/10.1038/nrclinonc.2013.5] [PMID: 23381004]
[5]
Mei, L.; Chen, H.; Wei, D.M.; Fang, F.; Liu, G.J.; Xie, H.Y.; Wang, X.; Zou, J.; Han, X.; Feng, D. Maintenance chemotherapy for ovarian cancer. Cochrane Database Syst. Rev., 2013, 2013(6), CD007414.
[PMID: 23813336]
[6]
Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[7]
Pilié, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 2019, 16(2), 81-104.
[http://dx.doi.org/10.1038/s41571-018-0114-z] [PMID: 30356138]
[8]
McMullen, M.; Karakasis, K.; Madariaga, A.; Oza, A.M. Overcoming platinum and PARP-inhibitor resistance in ovarian cancer. Cancers (Basel), 2020, 12(6), E1607.
[http://dx.doi.org/10.3390/cancers12061607] [PMID: 32560564]
[9]
Nalepa, G.; Clapp, D.W. Fanconi anaemia and cancer: An intricate relationship. Nat. Rev. Cancer, 2018, 18(3), 168-185.
[http://dx.doi.org/10.1038/nrc.2017.116] [PMID: 29376519]
[10]
Ceccaldi, R.; Sarangi, P.; D’Andrea, A.D. The Fanconi anaemia pathway: New players and new functions. Nat. Rev. Mol. Cell Biol., 2016, 17(6), 337-349.
[http://dx.doi.org/10.1038/nrm.2016.48] [PMID: 27145721]
[11]
Kottemann, M.C.; Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 2013, 493(7432), 356-363.
[http://dx.doi.org/10.1038/nature11863] [PMID: 23325218]
[12]
Longerich, S.; Kwon, Y.; Tsai, M-S.; Hlaing, A.S.; Kupfer, G.M.; Sung, P. Regulation of FANCD2 and FANCI monoubiquitination by their interaction and by DNA. Nucleic Acids Res., 2014, 42(9), 5657-5670.
[http://dx.doi.org/10.1093/nar/gku198] [PMID: 24623813]
[13]
Liang, Z.; Liang, F.; Teng, Y.; Chen, X.; Liu, J.; Longerich, S.; Rao, T.; Green, A.M.; Collins, N.B.; Xiong, Y.; Lan, L.; Sung, P.; Kupfer, G.M. Binding of FANCI-FANCD2 Complex to RNA and R-Loops Stimulates Robust FANCD2 Monoubiquitination. Cell Rep., 2019, 26(3), 564-572.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.12.084] [PMID: 30650351]
[14]
Rennie, M.L.; Lemonidis, K.; Arkinson, C.; Chaugule, V.K.; Clarke, M.; Streetley, J.; Spagnolo, L.; Walden, H. Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO Rep., 2020, 21(7), e50133.
[http://dx.doi.org/10.15252/embr.202050133] [PMID: 32510829]
[15]
Li, L.; Tan, W.; Deans, A.J. Structural insight into FANCI-FANCD2 monoubiquitination. Essays Biochem., 2020, 64(5), 807-817.
[http://dx.doi.org/10.1042/EBC20200001] [PMID: 32725171]
[16]
Tan, W.; van Twest, S.; Murphy, V.J.; Deans, A.J. ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2. Front. Cell Dev. Biol., 2020, 8, 2.
[http://dx.doi.org/10.3389/fcell.2020.00002] [PMID: 32117957]
[17]
Lemonidis, K.; Arkinson, C.; Rennie, M.L.; Walden, H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J., 2021, 16077.
[http://dx.doi.org/10.1111/febs.16077] [PMID: 34137174]
[18]
van Twest, S.; Murphy, V.J.; Hodson, C.; Tan, W.; Swuec, P.; O’Rourke, J.J.; Heierhorst, J.; Crismani, W.; Deans, A.J. Mechanism of ubiquitination and deubiquitination in the fanconi anemia pathway. Mol. Cell, 2017, 65(2), 247-259.
[http://dx.doi.org/10.1016/j.molcel.2016.11.005] [PMID: 27986371]
[19]
Yang, Y.; Guo, T.; Liu, R.; Ke, H.; Xu, W.; Zhao, S.; Qin, Y. FANCL gene mutations in premature ovarian insufficiency. Hum. Mutat., 2020, 41(5), 1033-1041.
[http://dx.doi.org/10.1002/humu.23997] [PMID: 32048394]
[20]
Frost, M.G.; Mazloumi Aboukheili, A.M.; Toth, R.; Walden, H. Characterization of FANCL variants observed in patient cancer cells. Biosci. Rep., 2020, 40(6), BSR20191304.
[http://dx.doi.org/10.1042/BSR20191304] [PMID: 32420600]
[21]
Nijman, S.M.B.; Huang, T.T.; Dirac, A.M.G.; Brummelkamp, T.R.; Kerkhoven, R.M.; D’Andrea, A.D.; Bernards, R. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell, 2005, 17(3), 331-339.
[http://dx.doi.org/10.1016/j.molcel.2005.01.008] [PMID: 15694335]
[22]
Ishiai, M.; Kitao, H.; Smogorzewska, A.; Tomida, J.; Kinomura, A.; Uchida, E.; Saberi, A.; Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T.; Tashiro, S.; Elledge, S.J.; Takata, M. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol., 2008, 15(11), 1138-1146.
[http://dx.doi.org/10.1038/nsmb.1504] [PMID: 18931676]
[23]
Chen, Y-H.; Jones, M.J.K.; Yin, Y.; Crist, S.B.; Colnaghi, L.; Sims, R.J., III; Rothenberg, E.; Jallepalli, P.V.; Huang, T.T. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell, 2015, 58(2), 323-338.
[http://dx.doi.org/10.1016/j.molcel.2015.02.031] [PMID: 25843623]
[24]
Shah, R.B.; Kernan, J.L.; van Hoogstraten, A.; Ando, K.; Li, Y.; Belcher, A.L.; Mininger, I.; Bussenault, A.M.; Raman, R.; Ramanagoudr-Bhojappa, R.; Huang, T.T.; D’Andrea, A.D.; Chandrasekharappa, S.C.; Aggarwal, A.K.; Thompson, R.; Sidi, S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev. Cell, 2021, 56(15), 2207-2222.e7.
[http://dx.doi.org/10.1016/j.devcel.2021.06.010] [PMID: 34256011]
[25]
Luo, Q.; Wu, X.; Chang, W.; Zhao, P.; Zhu, X.; Chen, H.; Nan, Y.; Luo, A.; Zhou, X.; Su, D.; Jiao, W.; Liu, Z. ARID1A Hypermethylation disrupts transcriptional homeostasis to promote squamous cell carcinoma progression. Cancer Res., 2020, 80(3), 406-417.
[PMID: 32015157]
[26]
Luo, Q.; Wu, X.; Chang, W.; Zhao, P.; Nan, Y.; Zhu, X.; Katz, J.P.; Su, D.; Liu, Z. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ., 2020, 27(6), 1981-1997.
[http://dx.doi.org/10.1038/s41418-019-0475-6] [PMID: 31831874]
[27]
Ben Ayed-Guerfali, D.; Ben Kridis-Rejab, W.; Ammous-Boukhris, N.; Ayadi, W.; Charfi, S.; Khanfir, A.; Sellami-Boudawara, T.; Frikha, M.; Daoud, J.; Mokdad-Gargouri, R. Novel and recurrent BRCA1/BRCA2 germline mutations in patients with breast/ovarian cancer: A series from the south of Tunisia. J. Transl. Med., 2021, 19(1), 108.
[http://dx.doi.org/10.1186/s12967-021-02772-y] [PMID: 33726785]
[28]
Christie, E.L.; Fereday, S.; Doig, K.; Pattnaik, S.; Dawson, S-J.; Bowtell, D.D.L. Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with high-grade serous ovarian cancer. J. Clin. Oncol., 2017, 35(12), 1274-1280.
[http://dx.doi.org/10.1200/JCO.2016.70.4627] [PMID: 28414925]
[29]
Thompson, E.L.; Yeo, J.E.; Lee, E-A.; Kan, Y.; Raghunandan, M.; Wiek, C.; Hanenberg, H.; Schärer, O.D.; Hendrickson, E.A.; Sobeck, A. FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response. Nucleic Acids Res., 2017, 45(20), 11837-11857.
[http://dx.doi.org/10.1093/nar/gkx847] [PMID: 29059323]
[30]
Sondalle, S.B.; Longerich, S.; Ogawa, L.M.; Sung, P.; Baserga, S.J. Fanconi anemia protein FANCI functions in ribosome biogenesis. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2561-2570.
[http://dx.doi.org/10.1073/pnas.1811557116] [PMID: 30692263]
[31]
Dubois, E.L.; Guitton-Sert, L.; Béliveau, M.; Parmar, K.; Chagraoui, J.; Vignard, J.; Pauty, J.; Caron, M-C.; Coulombe, Y.; Buisson, R.; Jacquet, K.; Gamblin, C.; Gao, Y.; Laprise, P.; Lebel, M.; Sauvageau, G. D d’Andrea, A.; Masson, J.Y. A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2. Nucleic Acids Res., 2019, 47(14), 7532-7547.
[http://dx.doi.org/10.1093/nar/gkz514] [PMID: 31219578]
[32]
Colnaghi, L.; Jones, M.J.K.; Cotto-Rios, X.M.; Schindler, D.; Hanenberg, H.; Huang, T.T. Patient-derived C-terminal mutation of FANCI causes protein mislocalization and reveals putative EDGE motif function in DNA repair. Blood, 2011, 117(7), 2247-2256.
[http://dx.doi.org/10.1182/blood-2010-07-295758] [PMID: 20971953]
[33]
Han, B.; Yang, X.; Zhang, P.; Zhang, Y.; Tu, Y.; He, Z.; Li, Y.; Yuan, J.; Dong, Y.; Hosseini, D.K.; Zhou, T.; Sun, H. DNA methylation biomarkers for nasopharyngeal carcinoma. PLoS One, 2020, 15(4), e0230524.
[http://dx.doi.org/10.1371/journal.pone.0230524] [PMID: 32271791]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy