Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review

Author(s): Li Li, Zhaorui Qi, Shasha Han, Xurui Li, Bingmi Liu and Yu Liu*

Volume 22, Issue 20, 2022

Published on: 15 July, 2022

Page: [2564 - 2580] Pages: 17

DOI: 10.2174/1389557522666220330152145

Price: $65

Abstract

Oral administration is a commonly used, safe, and patient-compliant method of drug delivery. However, due to the multiple absorption barriers in the gastrointestinal tract (GIT), the oral bioavailability of many drugs is low, resulting in a limited range of applications for oral drug delivery. Nanodrug delivery systems have unique advantages in overcoming the multiple barriers to oral absorption and improving the oral bioavailability of encapsulated drugs. Metal-organic frameworks (MOFs) are composed of metal ions and organic linkers assembled by coordination chemistry. Unlike other nanomaterials, nanoscale metal-organic frameworks (nano-MOFs, NMOFs) are increasingly popular for drug delivery systems (DDSs) due to their tunable pore size and easily modified surfaces. This paper summarizes the literature on MOFs in pharmaceutics included in SCI for the past ten years. Then, the GIT structure and oral drug delivery systems are reviewed, and the advantages, challenges, and solution strategies possessed by oral drug delivery systems are discussed. Importantly, two major classes of MOFs suitable for oral drug delivery systems are summarized, and various representative MOFs as oral drug carriers are evaluated in the context of oral drug delivery systems. Finally, the challenges faced by DDSs in the development of MOFs, such as biostability, biosafety, and toxicity, are examined.

Keywords: Metal-organic frameworks, oral administration, drug delivery, nanocarriers, nanoparticles, medical application of MOFs.

Graphical Abstract

[1]
Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery - a review. Pharm. Sci. Technol. Today, 2000, 3(4), 138-145.
[http://dx.doi.org/10.1016/S1461-5347(00)00247-9] [PMID: 10754543]
[2]
Aungst, B.J. Optimizing oral bioavailability in drug discovery: An overview of design and testing strategies and formulation options. J. Pharm. Sci., 2017, 106(4), 921-929.
[http://dx.doi.org/10.1016/j.xphs.2016.12.002] [PMID: 27986598]
[3]
Pinnamaneni, S.; Das, N.G.; Das, S.K. Formulation approaches for orally administered poorly soluble drugs. Pharmazie, 2002, 57(5), 291-300.
[http://dx.doi.org/10.1093/jxb/erl061] [PMID: 12061250]
[4]
Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Termino-logy of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl. Chem., 2013, 85(8), 1715-1724.
[http://dx.doi.org/10.1351/PAC-REC-12-11-20]
[5]
Sculley, J.; Yuan, D.Q.; Zhou, H.C. The current status of hydrogen storage in metal-organic frameworks-updated. Energy Environ. Sci., 2011, 4(8), 2721-2735.
[http://dx.doi.org/10.1039/c1ee01240a]
[6]
He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane storage in metal-organic frameworks. Chem. Soc. Rev., 2014, 43(16), 5657-5678.
[http://dx.doi.org/10.1039/C4CS00032C] [PMID: 24658531]
[7]
Li, J.R.; Sculley, J.; Zhou, H.C. Metal-organic frameworks for separations. Chem. Rev., 2012, 112(2), 869-932.
[http://dx.doi.org/10.1021/cr200190s] [PMID: 21978134]
[8]
Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in heterogeneous supramolecular ca-talysis. Chem. Soc. Rev., 2014, 43(16), 6011-6061.
[http://dx.doi.org/10.1039/C4CS00094C] [PMID: 24871268]
[9]
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev., 2012, 112(2), 1126-1162.
[http://dx.doi.org/10.1021/cr200101d] [PMID: 21688849]
[10]
Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 2014, 43(16), 5815-5840.
[http://dx.doi.org/10.1039/C4CS00010B] [PMID: 24577142]
[11]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[12]
Keskin, S.; Kizilel, S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res., 2011, 50(4), 1799-1812.
[http://dx.doi.org/10.1021/ie101312k]
[13]
Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]
[14]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[15]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h] [PMID: 25407895]
[16]
Zhang, L.; Lei, J.; Ma, F.; Ling, P.; Liu, J.; Ju, H. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and cas-pase responsive theranostics. Chem. Commun. (Camb.), 2015, 51(54), 10831-10834.
[http://dx.doi.org/10.1039/C5CC03028E] [PMID: 26051476]
[17]
Rizwanullah, M.; Ahmad, J.; Amin, S.; Mishra, A.; Ain, M.R.; Rahman, M. Polymer-lipid hybrid systems: Scope of intravenous-to-oral switch in cancer chemotherapy. Curr. Nanomed., 2020, 10(2), 164-177.
[http://dx.doi.org/10.2174/2468187309666190514083508]
[18]
Choi, H.J.; Kim, M.C.; Kang, S.M.; Montemagno, C.D. The osmotic stress response of split influenza vaccine particles in an acidic envi-ronment. Arch. Pharm. Res., 2014, 37(12), 1607-1616.
[http://dx.doi.org/10.1007/s12272-013-0257-5] [PMID: 24101412]
[19]
Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release, 2016, 238, 176-185.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.051] [PMID: 27480450]
[20]
Araujo, F. das Neves, J.; Martins, J.P.; Granja, P.L.; Santos, H.A.; Sarmento, B. Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Prog. Mater. Sci., 2017, 89, 306-344.
[http://dx.doi.org/10.1016/j.pmatsci.2017.05.001]
[21]
Hu, Q.; Luo, Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol., 2018, 120(Pt A), 775-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.152] [PMID: 30170057]
[22]
Choi, H.J.; Ebersbacher, C.F.; Kim, M.C.; Kang, S.M.; Montemagno, C.D. A mechanistic study on the destabilization of whole inactivated influenza virus vaccine in gastric environment. PLoS One, 2013, 8(6)e66316
[http://dx.doi.org/10.1371/journal.pone.0066316] [PMID: 23776657]
[23]
Soni, K.; Rizwanullah, M.; Kohli, K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the boxbehnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artif. Cells, Nanomed. Biotechnol., 2018, 46(sup1), 15-31.
[http://dx.doi.org/10.1080/21691401.2017.1408124]
[24]
Schenk, M.; Mueller, C. The mucosal immune system at the gastrointestinal barrier. Best Pract. Res. Clin. Gastroenterol., 2008, 22(3), 391-409.
[http://dx.doi.org/10.1016/j.bpg.2007.11.002] [PMID: 18492562]
[25]
Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev., 2012, 64(6), 557-570.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[26]
Leal, J.; Smyth, H.D.C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm., 2017, 532(1), 555-572.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.018] [PMID: 28917986]
[27]
des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y-J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release, 2006, 116(1), 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[28]
Brayden, D.J.; Jepson, M.A.; Baird, A.W. Keynote review: Intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov. Today, 2005, 10(17), 1145-1157.
[http://dx.doi.org/10.1016/S1359-6446(05)03536-1] [PMID: 16182207]
[29]
Kwon, K.C.; Daniell, H. Oral delivery of protein drugs bioencapsulated in plant cells. Mol. Ther., 2016, 24(8), 1342-1350.
[http://dx.doi.org/10.1038/mt.2016.115] [PMID: 27378236]
[30]
Ma, S.; Wang, L.; Huang, X.; Wang, X.; Chen, S.; Shi, W.; Qiao, X.; Jiang, Y.; Tang, L.; Xu, Y.; Li, Y. Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb. Cell Fact., 2018, 17(1), 20.
[http://dx.doi.org/10.1186/s12934-018-0861-7] [PMID: 29426335]
[31]
Maharjan, S.; Singh, B.; Jiang, T.; Yoon, S.Y.; Li, H.S.; Kim, G.; Gu, M.J.; Kim, S.J.; Park, O.J.; Han, S.H.; Kang, S.K.; Yun, C.H.; Choi, Y.J.; Cho, C.S. Systemic administration of RANKL overcomes the bottleneck of oral vaccine delivery through microfold cells in ileum. Biomaterials, 2016, 84, 286-300.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.043] [PMID: 26851393]
[32]
Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Zafar, A.; Alsaidan, O.A.; Alruwaili, N.K.; Gilani, S.J.; Rizwanullah, M. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. 2021, 13(22), 4036.
[33]
Zhang, Y.; Benet, L.Z. The gut as a barrier to drug absorption: Combined role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet., 2001, 40(3), 159-168.
[http://dx.doi.org/10.2165/00003088-200140030-00002] [PMID: 11327196]
[34]
Rouge, N.; Buri, P.; Doelker, E. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm., 1996, 136(1), 117-139.
[http://dx.doi.org/10.1016/0378-5173(96)85200-8]
[35]
Date, A.A.; Hanes, J.; Ensign, L.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J. Control. Release, 2016, 240, 504-526.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[36]
Pinto, J.F. Site-specific drug delivery systems within the gastro-intestinal tract: From the mouth to the colon. Int. J. Pharm., 2010, 395(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.003] [PMID: 20546856]
[37]
Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; van der Valk, M.A.; Robanus-Maandag, E.C.; te Riele, H.P.; Berns, A.J.M.; Borst, P. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994, 77(4), 491-502.
[http://dx.doi.org/10.1016/0092-8674(94)90212-7] [PMID: 7910522]
[38]
Taipalensuu, J.; Törnblom, H.; Lindberg, G.; Einarsson, C.; Sjöqvist, F.; Melhus, H.; Garberg, P.; Sjöström, B.; Lundgren, B.; Artursson, P. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 2001, 299(1), 164-170.
[http://dx.doi.org/10.1023/A:1012299115260] [PMID: 11561076]
[39]
Makhey, V.D.; Guo, A.; Norris, D.A.; Hu, P.; Yan, J.; Sinko, P.J. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res., 1998, 15(8), 1160-1167.
[http://dx.doi.org/10.1023/A:1011971303880] [PMID: 9706044]
[40]
Stephens, R.H.; O'Neill, C.A.; Warhurst, A.; Carlson, G.L.; Rowland, M.; Warhurst, G. Kinetic profiling of p-glycoproteinmediated drug efflux in rat and human intestinal epithelia. J. Pharmacol. Exp. Ther, 2001, ' 296(2), 584-591.
[41]
Rizwanullah, M.; Amin, S.; Ahmad, J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. Drug Target., 2017, 25(1), 58-74.
[http://dx.doi.org/10.1080/1061186X.2016.1191080] [PMID: 27186665]
[42]
Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater., 2018, 30(37)e1707365
[http://dx.doi.org/10.1002/adma.201707365] [PMID: 29876985]
[43]
Lan, G.; Ni, K.; Lin, W. Nanoscale metal-organic frameworks for phototherapy of cancer. Coord. Chem. Rev., 2019, 379, 65-81.
[http://dx.doi.org/10.1016/j.ccr.2017.09.007] [PMID: 30739946]
[44]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[45]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[46]
Hu, F.; Zhang, Y.; Chen, G.; Li, C.; Wang, Q. Double-walled Au nanocage/SiO2 nanorattles: Integrating SERS imaging, drug delivery and photothermal therapy. Small, 2015, 11(8), 985-993.
[http://dx.doi.org/10.1002/smll.201401360] [PMID: 25348096]
[47]
Yang, G.; Gong, H.; Liu, T.; Sun, X.; Cheng, L.; Liu, Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials, 2015, 60, 62-71.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.053] [PMID: 25985153]
[48]
Wen, J.; Yang, K.; Liu, F.; Li, H.; Xu, Y.; Sun, S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev., 2017, 46(19), 6024-6045.
[http://dx.doi.org/10.1039/C7CS00219J] [PMID: 28848978]
[49]
Farha, O.K.; Yazaydın, A.O.; Eryazici, I.; Malliakas, C.D.; Hauser, B.G.; Kanatzidis, M.G.; Nguyen, S.T.; Snurr, R.Q.; Hupp, J.T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem., 2010, 2(11), 944-948.
[http://dx.doi.org/10.1038/nchem.834] [PMID: 20966950]
[50]
Wang, T.C.; Hod, I.; Audu, C.O.; Vermeulen, N.A.; Nguyen, S.T.; Farha, O.K.; Hupp, J.T. Rendering high surface area, mesoporous metal-organic frameworks electronically conductive. ACS Appl. Mater. Interfaces, 2017, 9(14), 12584-12591.
[http://dx.doi.org/10.1021/acsami.6b16834] [PMID: 28319365]
[51]
Sheberla, D.; Bachman, J.C.; Elias, J.S.; Sun, C.J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater., 2017, 16(2), 220-224.
[http://dx.doi.org/10.1038/nmat4766] [PMID: 27723738]
[52]
Feng, D.W.; Lei, T.; Lukatskaya, M.R.; Park, J.; Huang, Z.H.; Lee, M.; Shaw, L.; Chen, S.C.; Yakovenko, A.A.; Kulkarni, A.; Xiao, J.P.; Fredrickson, K.; Tok, J.B.; Zou, X.D.; Cui, Y.; Bao, Z.A. Robust and conductive two-dimensional metal-organic frameworks with excep-tionally high volumetric and areal capacitance. Nat. Energy, 2018, 3(1), 30-36.
[http://dx.doi.org/10.1038/s41560-017-0044-5]
[53]
Jalilov, A.S.; Li, Y.L.; Tian, J.; Tour, J.M. Ultra-high surface area activated porous asphalt for CO2 capture through competitive adsorption at high pressures. Adv. Energy Mater., 2017, 7(1), 7.
[http://dx.doi.org/10.1002/aenm.201600693]
[54]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 974.
[http://dx.doi.org/10.1126/science.1230444]
[55]
Wang, D.; Wu, H.; Zhou, J.; Xu, P.; Wang, C.; Shi, R.; Wang, H.; Wang, H.; Guo, Z.; Chen, Q. In situ one-pot synthesis of mof-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Adv. Sci. (Weinh.), 2018, 5(6)1800287
[http://dx.doi.org/10.1002/advs.201800287] [PMID: 29938191]
[56]
Kong, X.J.; He, T.; Zhang, Y.Z.; Wu, X.Q.; Wang, S.N.; Xu, M.M.; Si, G.R.; Li, J.R. Constructing new metal-organic frameworks with complicated ligands from “One-Pot” in situ reactions. Chem. Sci. (Camb.), 2019, 10(14), 3949-3955.
[http://dx.doi.org/10.1039/C9SC00178F] [PMID: 31015934]
[57]
Hu, X.; Liu, X.; Zhang, X.; Chai, H.; Huang, Y. One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens. Bioelectron., 2018, 105, 65-70.
[http://dx.doi.org/10.1016/j.bios.2018.01.019] [PMID: 29355780]
[58]
Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Lafont, U.; Gascon, J.; Kapteijn, F. Building mof bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J. Catal., 2010, 269(1), 229-241.
[http://dx.doi.org/10.1016/j.jcat.2009.11.011]
[59]
Yang, Y.; Xu, L.; Zhu, W.; Feng, L.; Liu, J.; Chen, Q.; Dong, Z.; Zhao, J.; Liu, Z.; Chen, M. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials, 2018, 156, 121-133.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.038] [PMID: 29195181]
[60]
Liu, S.; Hu, C.; Liu, Y.; Zhao, X.; Pang, M.; Lin, J. One-pot synthesis of DOX@covalent organic framework with enhanced chemothera-peutic efficacy. Chemistry, 2019, 25(17), 4315-4319.
[http://dx.doi.org/10.1002/chem.201806242] [PMID: 30735271]
[61]
Ma, Y.; Xu, G.; Wei, F.; Cen, Y.; Xu, X.; Shi, M.; Cheng, X.; Chai, Y.; Sohail, M.; Hu, Q. One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine b modified carbon dots in metal-organic framework for enhanced HCLO sensing. ACS Appl. Mater. Interfaces, 2018, 10(24), 20801-20805.
[http://dx.doi.org/10.1021/acsami.8b05643] [PMID: 29856924]
[62]
Li, Z.Q.; Wang, A.; Guo, C.Y.; Tai, Y.F.; Qiu, L.G. One-pot synthesis of metal-organic framework@SiO2 core-shell nanoparticles with enhanced visible-light photoactivity. Dalton Trans., 2013, 42(38), 13948-13954.
[http://dx.doi.org/10.1039/c3dt50845e] [PMID: 23925563]
[63]
Zheng, M.; Liu, S.; Guan, X.; Xie, Z. One-step synthesis of nanoscale zeolitic imidazolate frameworks with high curcumin loading for treatment of cervical cancer. ACS Appl. Mater. Interfaces, 2015, 7(40), 22181-22187.
[http://dx.doi.org/10.1021/acsami.5b04315] [PMID: 26403308]
[64]
Sun, C.Y.; Qin, C.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Su, Z.M.; Huang, P.; Wang, C.G.; Wang, E.B. Zeolitic Imidazolate fra-mework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans., 2012, 41(23), 6906-6909.
[http://dx.doi.org/10.1039/c2dt30357d] [PMID: 22580798]
[65]
Bag, P.P.; Wang, D.; Chen, Z.; Cao, R. Outstanding drug loading capacity by water stable microporous MOF: A potential drug carrier. Chem. Commun. (Camb.), 2016, 52(18), 3669-3672.
[http://dx.doi.org/10.1039/C5CC09925K] [PMID: 26853858]
[66]
Gao, X.; Hai, X.; Baigude, H.; Guan, W.; Liu, Z. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport. Sci. Rep., 2016, 6(1), 37705.
[http://dx.doi.org/10.1038/srep37705] [PMID: 27876876]
[67]
Jiang, K.; Zhang, L.; Hu, Q.; Zhao, D.; Xia, T.; Lin, W.; Yang, Y.; Cui, Y.; Yang, Y.; Qian, G. Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(39), 6398-6401.
[http://dx.doi.org/10.1039/C6TB01756H] [PMID: 32263448]
[68]
Ren, F.; Yang, B.; Cai, J.; Jiang, Y.; Xu, J.; Wang, S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. J. Hazard. Mater., 2014, 271, 283-291.
[http://dx.doi.org/10.1016/j.jhazmat.2014.02.026] [PMID: 24637453]
[69]
Wang, J.; Chen, D.; Li, B.; He, J.; Duan, D.; Shao, D.; Nie, M. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP. Sci. Rep., 2016, 6(1), 26126.
[http://dx.doi.org/10.1038/srep26126] [PMID: 27188337]
[70]
Xiao, J.; Chen, S.; Yi, J.; Zhang, H.; Ameer, G.A. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater., 2017, 27(1), 10.
[http://dx.doi.org/10.1002/adfm.201604872] [PMID: 28729818]
[71]
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled me-tal-organic frameworks. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(3), 262-271.
[http://dx.doi.org/10.1039/C3TB20832J] [PMID: 32261505]
[72]
Abánades Lázaro, I.; Abánades Lázaro, S.; Forgan, R.S. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem. Commun. (Camb.), 2018, 54(22), 2792-2795.
[http://dx.doi.org/10.1039/C7CC09739E] [PMID: 29485148]
[73]
Orellana-Tavra, C.; Baxter, E.F.; Tian, T.; Bennett, T.D.; Slater, N.K.H.; Cheetham, A.K.; Fairen-Jimenez, D. Amorphous metal-organic frameworks for drug delivery. Chem. Commun. (Camb.), 2015, 51(73), 13878-13881.
[http://dx.doi.org/10.1039/C5CC05237H] [PMID: 26213904]
[74]
Sun, C.Y.; Qin, C.; Wang, X.L.; Su, Z.M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv., 2013, 10(1), 89-101.
[http://dx.doi.org/10.1517/17425247.2013.741583] [PMID: 23140545]
[75]
Tamames-Tabar, C.; García-Márquez, A.; Blanco-Prieto, M.J.; Serre, C.; Horcajada, P. MOFs in pharmaceutical technology.Bio and bioinspired nanomaterials; , 2014, pp. 83-112.
[http://dx.doi.org/10.1002/9783527675821.ch04]
[76]
Wang, Y.; Lin, W.X.; Yu, S.J.; Huang, X.J.; Lang, X.R.; He, Q.; Gao, L.H.; Zhu, H.L.; Chen, J.J. A biocompatible Zr-based metal-organic framework UiO-66-PDC as an oral drug carrier for pH-response release. J. Solid State Chem., 2021, 293, 5.
[http://dx.doi.org/10.1016/j.jssc.2020.121805]
[77]
Jiang, K.; Zhang, L.; Hu, Q.; Zhang, X.; Zhang, J.; Cui, Y.J.; Yang, Y.; Li, B.; Qian, G.D. A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous Mesoporous Mater., 2019, 275, 229-234.
[http://dx.doi.org/10.1016/j.micromeso.2018.08.030]
[78]
Lin, W.X.; Hu, Q.; Jiang, K.; Yang, Y.Y.; Yang, Y.; Cui, Y.J.; Qian, G.D. A porphyrin-based metal-organic framework as a pH-responsive drug carrier. J. Solid State Chem., 2016, 237, 307-312.
[http://dx.doi.org/10.1016/j.jssc.2016.02.040]
[79]
Chen, Y.; Li, P.; Modica, J.A.; Drout, R.J.; Farha, O.K. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: Protein encapsulation, protection, and release. J. Am. Chem. Soc., 2018, 140(17), 5678-5681.
[http://dx.doi.org/10.1021/jacs.8b02089] [PMID: 29641892]
[80]
Unamuno, X.; Imbuluzqueta, E.; Salles, F.; Horcajada, P.; Blanco-Prieto, M.J. Biocompatible porous metal-organic framework nanoparti-cles based on Fe or Zr for gentamicin vectorization. Eur. J. Pharm. Biopharm., 2018, 132, 11-18.
[http://dx.doi.org/10.1016/j.ejpb.2018.08.013] [PMID: 30179739]
[81]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[82]
Hidalgo, T.; Giménez-Marqués, M.; Bellido, E.; Avila, J.; Asensio, M.C.; Salles, F.; Lozano, M.V.; Guillevic, M.; Simón-Vázquez, R.; González-Fernández, A.; Serre, C.; Alonso, M.J.; Horcajada, P. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep., 2017, 7(1), 43099.
[http://dx.doi.org/10.1038/srep43099] [PMID: 28256600]
[83]
Javanbakht, S.; Shadi, M.; Mohammadian, R.; Shaabani, A.; Amini, M.M.; Pooresmaeil, M.; Salehi, R. Facile preparation of pH-responsive k-carrageenan/tramadol loaded UiO-66 bio-nanocomposite hydrogel beads as a nontoxic oral delivery vehicle. J. Drug Deliv. Sci. Technol., 2019, 54, 7.
[http://dx.doi.org/10.1016/j.jddst.2019.101311]
[84]
Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int. J. Biol. Macromol., 2020, 155, 876-882.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.007] [PMID: 31805324]
[85]
Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012, 41(6), 2193-2221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[86]
Javanbakht, S.; Nezhad-Mokhtari, P.; Shaabani, A.; Arsalani, N.; Ghorbani, M. Incorporating Cu-based metal-organic framework/drug nanohybrids into gelatin microsphere for ibuprofen oral delivery. Mater. Sci. Eng. C, 2019, 96, 302-309.
[http://dx.doi.org/10.1016/j.msec.2018.11.028] [PMID: 30606537]
[87]
Foox, M.; Zilberman, M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv., 2015, 12(9), 1547-1563.
[http://dx.doi.org/10.1517/17425247.2015.1037272] [PMID: 25943722]
[88]
Mironova, M.M.; Kovaleva, E.L. Comparative analysis of quality assessment requirements for gelatin used in drug production. Pharm. Chem. J., 2017, 50(12), 820-825.
[http://dx.doi.org/10.1007/s11094-017-1540-4]
[89]
Del Gaudio, C.; Crognale, V.; Serino, G.; Galloni, P.; Audenino, A.; Ribatti, D.; Morbiducci, U. Natural polymeric microspheres for modu-lated drug delivery. Mater. Sci. Eng. C, 2017, 75, 408-417.
[http://dx.doi.org/10.1016/j.msec.2017.02.051] [PMID: 28415479]
[90]
Miao, Y.B.; Pan, W.Y.; Chen, K.H.; Wei, H.J.; Mi, F.L.; Lu, M.Y.; Chang, Y.; Sung, H.W. Engineering a nanoscale Al-MOF-armored anti-gen carried by a “trojan horse”-like platform for oral vaccination to induce potent and long-lasting immunity. Adv. Funct. Mater., 2019, 29(43), 10.
[http://dx.doi.org/10.1002/adfm.201904828]
[91]
Wang, J.; Gusti, V.; Saraswati, A.; Lo, D.D. Convergent and divergent development among M cell lineages in mouse mucosal epithelium. J. Immunol., 2011, 187(10), 5277-5285.
[http://dx.doi.org/10.4049/jimmunol.1102077] [PMID: 21984701]
[92]
Aouadi, M.; Tesz, G.J.; Nicoloro, S.M.; Wang, M.; Chouinard, M.; Soto, E.; Ostroff, G.R.; Czech, M.P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature, 2009, 458(7242), 1180-1184.
[http://dx.doi.org/10.1038/nature07774] [PMID: 19407801]
[93]
Fransen, F.; Zagato, E.; Mazzini, E.; Fosso, B.; Manzari, C.; El Aidy, S.; Chiavelli, A.; D’Erchia, A.M.; Sethi, M.K.; Pabst, O.; Marzano, M.; Moretti, S.; Romani, L.; Penna, G.; Pesole, G.; Rescigno, M. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity, 2015, 43(3), 527-540.
[http://dx.doi.org/10.1016/j.immuni.2015.08.011] [PMID: 26362264]
[94]
Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’Keeffe, M.; Yaghi, O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res., 2010, 43(1), 58-67.
[http://dx.doi.org/10.1021/ar900116g] [PMID: 19877580]
[95]
An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc., 2009, 131(24), 8376-8377.
[http://dx.doi.org/10.1021/ja902972w] [PMID: 19489551]
[96]
Zornoza, B.; Martinez-Joaristi, A.; Serra-Crespo, P.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. (Camb.), 2011, 47(33), 9522-9524.
[http://dx.doi.org/10.1039/c1cc13431k] [PMID: 21769350]
[97]
Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5), 1450-1459.
[http://dx.doi.org/10.1039/b807080f] [PMID: 19384447]
[98]
Vahed, T.A.; Naimi-Jamal, M.R.; Panahi, L. Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for contro-lled drug release. J. Drug Deliv. Sci. Technol., 2019, 49, 570-576.
[http://dx.doi.org/10.1016/j.jddst.2018.12.022]
[99]
Zhao, H.; Ye, H.; Zhou, J.; Tang, G.; Hou, Z.; Bai, H. Montmorillonite-enveloped zeolitic imidazolate framework as a nourishing oral nano-platform for gastrointestinal drug delivery. ACS Appl. Mater. Interfaces, 2020, 12(44), 49431-49441.
[http://dx.doi.org/10.1021/acsami.0c15494] [PMID: 33089977]
[100]
Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater., 2016, 1(15018), 1-15.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy