Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Optical Tree Net (OTN) Logic Circuits Using Mechanical Movable Mirrors

Author(s): Tanay Chattopadhyay and Dilip Kumar Gayen*

Volume 14, Issue 4, 2022

Published on: 17 May, 2022

Page: [369 - 374] Pages: 6

DOI: 10.2174/1876402914666220330125417

Price: $65

Abstract

Background: Utilizing mirror movement precisely, one can undoubtedly make a diverse way for light. The movable mirror can be placed in the path of an optical tree net to perform different operations.

Objective: In this paper, we have performed different logic, arithmetic, and one-bit data comparison operations using mechanical movable mirrors.

Methods: Using two controls with three movable mirrors and two fixed mirrors, we can perform four basic logic operations. Then using these four basic operations, we can design sixteen different logic operations, a half adder, and one-bit data comparison operations.

Results: Because of an adaptable mirror arranging and course component, expansion incidents can be decreased to an incredibly low level. The necessary voltage is under 0.5 V. The power utilization is about 3.5 mW for an exchanging component.

Conclusion: Moreover, this plan is extremely straightforward in a sense and designed using linear optical materials. The principle of operation of this circuit is based on the reflection of light from MEMS-based optical switches.

Keywords: Optical tree net, optical logic, optical arithmetic, movable mirrors, voltage, optical switches.

Graphical Abstract

[1]
Ceyssens, F.; Sadeghpour, S.; Fujita, H.; Puers, R. Actuators: Accomplishments, opportunities and challenges. Sens. Actuators A Phys., 2019, 295, 604-611.
[http://dx.doi.org/10.1016/j.sna.2019.05.048]
[2]
Lin, L.Y.; Goldstein, E. Opportunities and challenges for MEMS in lightwave communications. IEEE J. Sel. Top. Quantum Electron., 2002, 8(1), 163-172.
[http://dx.doi.org/10.1109/2944.991412]
[3]
Neukermans, A.; Ramaswami, R. MEMS technology for optical networking applications. IEEE Commun. Mag., 2001, 39(1), 62-69.
[http://dx.doi.org/10.1109/35.894378]
[4]
Ma, X.; Kuo, G. Optical switching technology comparison: Optical MEMS versus other technologies. IEEE Commun. Mag., 2003, 41(11), S16-S23.
[5]
Lin, L.Y.; Goldstein, E.L.; Tkach, R.W. On the expandability of free-space micromachined optical cross connects. J. Lightwave Technol., 2000, 18(4), 482-489.
[http://dx.doi.org/10.1109/50.838122]
[6]
Lee, S.S.; Huang, L.S.; Kim, C.J.; Wu, M.C. Free-space fiber optic switches based on MEMS vertical torsion mirrors. J. Lightwave Technol., 1999, 17, 7-13.
[http://dx.doi.org/10.1109/50.737414]
[7]
Marxer, C.; de Rooij, N.F. Micro-opto-mechanical 2×2 switch for single-mode fibers based on plasma-etched silicon mirror and electro-static actuation. J. Lightwave Technol., 1999, 17, 2-6.
[http://dx.doi.org/10.1109/50.737413]
[8]
Lin, L.Y.; Goldstein, E.L.; Tkach, R.W. Free-space micromachined optical switches for optical networking. IEEE J. Select. Topics Quan-tum Electron., 1999, 5(1), 4-9.
[9]
Tan, M.; Xu, X.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.; Chu, S.; Little, B.; Morandotti, R.; Mitchell, A.; Moss, D.J. Microcombs for ultrahigh bandwidth optical data transmission and neural networks. SPIE 11775. Integrated Optics: Design, Devices Systems and Applica-tions VI, 2021, 11775, 1177504.
[10]
Cheng, Q.; Glick, M.; Bergman, K. Optical interconnection networks for high-performance systems. Opt. Fiber Telecomm., 2020, 8, 785-825.
[http://dx.doi.org/10.1016/B978-0-12-816502-7.00020-8]
[11]
Sorger, V.J. Massively parallel Fourier-optics based processor. Proc. SPIE 11469; Emerging Topics in Artificial Intelligence, 2020, p. 114690K.
[http://dx.doi.org/10.1117/12.2568260]
[12]
Rumley, S.; Bahadori, M.; Polster, R.; Hammond, S.D.; Calhoun, D.M.; Wen, K.; Rodrigues, A.; Bergman, K. Optical interconnects for extreme scale computing systems. Parallel Comput., 2017, 64, 65-80.
[http://dx.doi.org/10.1016/j.parco.2017.02.001]
[13]
Wang, R.; Wang, Y.; Jin, C.; Yin, X.; Wang, S.; Yang, C.; Cao, Z.; Mu, Q.; Gao, S.; Xuan, L. Demonstration of horizontal free-space laser communication with the effect of the bandwidth of adaptive optics system. Opt. Commun., 2019, 431, 167-173.
[http://dx.doi.org/10.1016/j.optcom.2018.09.038]
[14]
Jiang, L.; Chen, X.; Kim, K. Valicourt, G.-de.; Huang, Z.R.; Dong, P. Electro-optic crosstalk in parallel silicon photonic mach-zehnder modulators. J. Lightwave Technol., 2018, 36(9), 1713-1720.
[http://dx.doi.org/10.1109/JLT.2018.2789582]
[15]
Huang, Y.; Cheng, Q.; Bergman, K. Advanced control for crosstalk minimization in MZI-based silicon photonic switches. In: 2018 IEEE Optical Interconnects Conference; , 2018, pp. 17-18.
[http://dx.doi.org/10.1109/OIC.2018.8422032]
[16]
Cheng, Q.; Bahadori, M.; Rumley, S.; Bergman, K. Highly-scalable, low-crosstalk architecture for ring-based optical space switch fabrics. In: 2017 IEEE Optical Interconnects Conference; , 2017, pp. 41-42.
[http://dx.doi.org/10.1109/OIC.2017.7965521]
[17]
Chattopadhyay, T.; Gayen, D.K. Optical XOR-XNOR logic circuits using mechanical movable mirrors. Devices for Integrated Circuit (DevIC);, 2021, pp. 65-70.
[http://dx.doi.org/10.1109/DevIC50843.2021.9455909]
[18]
Choudhary, K.; Kaushik, A.; Semwal, A.; Mishra, S.; Kumar, S. Implementation of an optical universal one-bit arithmetic logical circuit for high-speed processing combinational circuits. Opt. Quantum Electron., 2020, 52, 432.
[http://dx.doi.org/10.1007/s11082-020-02549-5]
[19]
Singh, K.; Kaur, G.; Singh, M.L. Performance analysis of an all-optical half-subtracter based on XGM in SOA at 20 Gbps. Optoelectron. Adv. Mater. Rapid Commun., 2017, 11(3-4), 189-196.
[20]
Sharma, S.; Roy, S. Design of all-optical parallel multipliers using semiconductor optical amplifier-based Mach–Zehnder interferometers. J. Supercomput., 2021, 77, 7315-7350.
[http://dx.doi.org/10.1007/s11227-020-03543-0]
[21]
Yao, Z.; Zega, V.; Su, Y.; Zhou, Y.; Ren, J.; Zhang, J.; Corigliano, A. Design, fabrication and experimental validation of a metaplate for vibration isolation in MEMS. J. Microelectromech. Syst., 2020, 29(5), 1401-1410.
[http://dx.doi.org/10.1109/JMEMS.2020.3016179]
[22]
Jia, S.; Peng, J.; Bian, J.; Zhang, S.; Xu, S.; Zhang, B. Design and fabrication of a MEMS electromagnetic swing-type actuator for optical switch. Micromachines (Basel), 2021, 12(2), 221.
[http://dx.doi.org/10.3390/mi12020221] [PMID: 33671536]
[23]
Tella, S.A.; Younis, M.I. Toward cascadable MEMS logic device based on mode localization. Sens. Actuators A Phys., 2020, 315, 112367.
[http://dx.doi.org/10.1016/j.sna.2020.112367]
[24]
Attar, M.; Moghadam, R.A.; Rezaee, A. Design and simulation of OR logic gate using RF MEMS resonators. In: 26th International Computer Conference, Computer Society of Iran (CSICC), 2021, pp. 1-6.
[http://dx.doi.org/10.1109/CSICC52343.2021.9420607]
[25]
Roy, J.N.; Gayen, D.K. Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device-alternative approach. Appl. Opt., 2007, 46(22), 5304-5310.
[http://dx.doi.org/10.1364/AO.46.005304] [PMID: 17676144]
[26]
Hsieh, H.T.; Chiu, C.W.; Tsao, T.; Jiang, F.; Su, G.D.J. Low-actuation-volatge MEMS for 2-D optical switches. J. Lightwave Technol., 2006, 24(11), 4372-4379.
[http://dx.doi.org/10.1109/JLT.2006.883674]
[27]
Hsieh, H.T.; Su, G.J. Reliability of a MEMS actuator improved by spring corner designs and reshaped driving waveforms. Sensors (Basel), 2007, 7(9), 1720-1730.
[http://dx.doi.org/10.3390/s7091720] [PMID: 28903193]
[28]
Hsieh, H.T.; Su, G.D.J. Compact 1x2 MEMS optical switches with low-actuation voltage. Proc. of SPIE Photonics: Design, Technology, and Packaging II, 2006, pp. 60381W-9.
[29]
Brunner, D.; Albert, S.; Hennecke, M.; Darrer, F.; Schitter, G. Self-sensing control of resonant MEMS scanner by comb-drive current feedback. Mechatronics, 2021, 78, 102631-102638.
[http://dx.doi.org/10.1016/j.mechatronics.2021.102631]
[30]
Schroedter, R.; Yoo, H.W.; Brunner, D.; Schitter, G. Charge-based capacitive self-sensing with continuous state observation for resonant electrostatic MEMS mirrors. J. Microelectromech. Syst., 2021, 30(6), 897-906.
[http://dx.doi.org/10.1109/JMEMS.2021.3107797]
[31]
Haber, A.; Bifano, T. General approach to precise deformable mirror control. Opt. Express, 2021, 29(21), 33741-33759.
[http://dx.doi.org/10.1364/OE.439306] [PMID: 34809180]
[32]
Yoo, H.W.; Albert, S.; Schitter, G. Accurate analytic model of a parametrically driven resonant MEMS mirror with a Fourier series-based torque approximation. J. Microelectromech. Syst., 2020, 29(6), 1431-1442.
[http://dx.doi.org/10.1109/JMEMS.2020.3024752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy