Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

A Mini-review on Nanodelivery Systems as Therapeutics in Cancer

Author(s): Deepika Sharma and Gopal Singh Bisht*

Volume 18, Issue 2, 2022

Published on: 24 June, 2022

Page: [80 - 86] Pages: 7

DOI: 10.2174/1573394718666220329184532

Price: $65

Abstract

This review article gives a brief account of advances in the treatment of cancer via nanodelivery systems. We have discussed benefits of different nanocarriers that have the potential to deal with the problem of non-selectivity of conventional anticancer drugs. Targeted drug delivery not only spares healthy cells from harmful effects of anticancer drugs but also reduces the amount of drug to be administered; various drug delivery systems have been fabricated using appropriate nanocarriers. In fact, some carrier systems are biodegradable and degrade in the body into nontoxic moieties, thereby adding safety characteristics to the formulation. Selectivity towards cancer cells makes nanodelivery system a choice for the treatment of cancer as compared to conventional drug delivery. This review discusses various targeting strategies, different nanodelivery systems, characteristics required to be an ideal drug delivery system, advantages of these systems, and future prospects of such systems.

Keywords: Nanoparticles, cancer targeting, biodegradable polymer, chemotherapy, nanodelivery, EPR.

Graphical Abstract

[1]
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[2]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[3]
Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine 2007; 3(1): 20-31.
[http://dx.doi.org/10.1016/j.nano.2006.11.008] [PMID: 17379166]
[4]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of mod-ern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[5]
Bailar JC III, Gornik HL. Cancer undefeated. N Engl J Med 1997; 336(22): 1569-74.
[http://dx.doi.org/10.1056/NEJM199705293362206] [PMID: 9164814]
[6]
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6(1): 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[7]
Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4(1): 2.
[http://dx.doi.org/10.1186/1477-3155-4-2] [PMID: 16476163]
[8]
Destito G, Schneemann A, Manchester M. Biomedical nanotechnology using virus-based nanoparticles. Curr Top Microbiol Immunol 2009; 327: 95-122.
[http://dx.doi.org/10.1007/978-3-540-69379-6_5] [PMID: 19198572]
[9]
Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 2007; 7(6): 833-7.
[http://dx.doi.org/10.1586/14737140.7.6.833] [PMID: 17555393]
[10]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[11]
Manchester M, Singh P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv Drug Deliv Rev 2006; 58(14): 1505-22.
[http://dx.doi.org/10.1016/j.addr.2006.09.014] [PMID: 17118484]
[12]
Iversen TG, Skotlanda T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011; 6(2): 176-85.
[http://dx.doi.org/10.1016/j.nantod.2011.02.003]
[13]
Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303(5665): 1818-22.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[14]
Silva R, Ferreira H, Cavaco-Paulo A. Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules 2011; 12(10): 3353-68.
[http://dx.doi.org/10.1021/bm200658b] [PMID: 21905662]
[15]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside transla-tion. Acc Chem Res 2011; 44(10): 1123-34.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[16]
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007; 2(8): 469-78.
[http://dx.doi.org/10.1038/nnano.2007.223] [PMID: 18654343]
[17]
Dickson PV, Nathwani AC, Davidoff AM. Delivery of antiangiogenic agents for cancer gene therapy. Technol Cancer Res Treat 2005; 4(4): 331-41.
[http://dx.doi.org/10.1177/153303460500400403] [PMID: 16029054]
[18]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407(6801): 249-57.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[19]
Fukumura D, Jain RK. Tumor microenvironment abnormalities: Causes, consequences, and strategies to normalize. J Cell Biochem 2007; 101(4): 937-49.
[http://dx.doi.org/10.1002/jcb.21187] [PMID: 17171643]
[20]
a)Madan J, Gundala SR, Kasetti Y, et al. Enhanced noscapine delivery using estrogen-receptor-targeted nanoparticles for breast can-cer therapy 2014; 25(6): 704-16.
[http://dx.doi.org/10.1097/CAD.0000000000000098] ; b)Zhang M, Xiao B, Wang H, et al. Edible ginger-derived nano-lipids loaded with Doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther 2016; 24(10): 1783-96.
[http://dx.doi.org/10.1038/mt.2016.159] [PMID: 27491931] ; c)Hijaz M, Das S, Mert I, et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer 2016; 16(1): 220.
[http://dx.doi.org/10.1186/s12885-016-2206-4] [PMID: 26979107] ; d)Wang W, Liang H, Sun B, et al. Pharmacokinetics and tissue distribution of folate-decorated human serum albumin loaded with nano-hydroxycamptothecin for tumor targeting. J Pharm Sci 2016; 105(6): 1874-80.
[http://dx.doi.org/10.1016/j.xphs.2016.03.016] [PMID: 27129905] ; e)Sonali SRP, Singh N, et al. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv 2016; 23(4): 1261-71.; f)Pawar S, Shevalkar G, Vavia P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: Pharmacokinetic, toxicity and pharmacodynamic evaluation. J Drug Target 2016; 24(8): 730-43.
[http://dx.doi.org/10.3109/1061186X.2016.1154560] [PMID: 26878084] ; g)Heidarian Sh, Derakhshandeh K, Adibi H, Hosseinzadeh L. Active targeted nanoparticles: Preparation, physicochemical characterization and in vitro cytotoxicity effect. Res Pharm Sci 2015; 10(3): 241-51.
[PMID: 26600851] ; h)Kesharwani P, Banerjee S, Padhye S, Sarkar FH, Iyer AK. Hyaluronic acid engineered nanomicelles loaded with 3,4-Difluorobenzylidene Curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. Biomacromolecules 2015; 16(9): 3042-53.
[http://dx.doi.org/10.1021/acs.biomac.5b00941] [PMID: 26302089] ; i)Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[21]
Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 2003; 519: 29-49.
[http://dx.doi.org/10.1007/0-306-47932-X_2] [PMID: 12675206]
[22]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A re-view. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[23]
Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750-63.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[24]
Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9(1): 257-88.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[25]
Dunne M, Corrigan I, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 2000; 21(16): 1659-68.
[http://dx.doi.org/10.1016/S0142-9612(00)00040-5] [PMID: 10905407]
[26]
Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007; 2(4): 249-55.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[27]
Lee NS, Lin LY, Neumann WL, et al. Influence of nanostructure morphology on host capacity and kinetics of guest release. Small 2011; 7(14): 1998-2003.
[http://dx.doi.org/10.1002/smll.201100567] [PMID: 21678552]
[28]
Barratt GM. Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 2000; 3(5): 163-71.
[http://dx.doi.org/10.1016/S1461-5347(00)00255-8] [PMID: 10785658]
[29]
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64(5): 1020-37.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[30]
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J Control Release 2006; 116(1): 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[31]
Jain KK. Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 2005; 4(4): 407-16.
[http://dx.doi.org/10.1177/153303460500400408] [PMID: 16029059]
[32]
Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: Approaches to enhance brain drug delivery. CNS Drugs 2009; 23(1): 35-58.
[http://dx.doi.org/10.2165/0023210-200923010-00003] [PMID: 19062774]
[33]
Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 2002; 233(1-2): 51-9.
[http://dx.doi.org/10.1016/S0378-5173(01)00923-1] [PMID: 11897410]
[34]
Hu CMJ, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab 2009; 10(8): 836-41.
[http://dx.doi.org/10.2174/138920009790274540] [PMID: 20214578]
[35]
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[36]
Tran TT, Tran PH, Wang Y, Li P, Kong L. Nanoparticulate drug delivery to colorectal cancer: Formulation strategies and surface engineer-ing. Curr Pharm Des 2016; 22(19): 2904-12.
[http://dx.doi.org/10.2174/1381612822666160217140932] [PMID: 26898738]
[37]
Bilensoy E, Sarisozen C, Esendağli G, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mito-mycin C to bladder tumors. Int J Pharm 2009; 371(1-2): 170-6.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.015] [PMID: 19135514]
[38]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[39]
Tavano L, Muzzalupo R. Multi-functional vesicles for cancer therapy: The ultimate magic bullet. Colloids Surf B Biointerfaces 2016; 147: 161-71.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.060] [PMID: 27500359]
[40]
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111: 80-101.
[41]
Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 2006; 16(3): 175-83.
[http://dx.doi.org/10.1080/08982100600848769] [PMID: 16952872]
[42]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[43]
Kang KW, Chun MK, Kim O, et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine 2010; 6(2): 210-3.
[http://dx.doi.org/10.1016/j.nano.2009.12.006] [PMID: 20060074]
[44]
Tupal A, Sabzichi M, Ramezani F, Kouhsoltani M, Hamishehkar H. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J Microencapsul 2016; 33(4): 372-80.
[http://dx.doi.org/10.1080/02652048.2016.1200150] [PMID: 27338131]
[45]
Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: A review. Crit Rev Ther Drug Carrier Syst 2002; 19(2): 99-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10] [PMID: 12197610]
[46]
Alonso-Nocelo M, Abellan-Pose R, Vidal A, et al. Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node. J Nanobiotechnology 2016; 14(1): 51.
[http://dx.doi.org/10.1186/s12951-016-0207-8] [PMID: 27339609]
[47]
Lagarce F, Passirani C. Nucleic-acid delivery using lipid nanocapsules. Curr Pharm Biotechnol 2016; 17(8): 723-7.
[http://dx.doi.org/10.2174/1389201017666160401145206] [PMID: 27033510]
[48]
McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48(7): 1180-9.
[http://dx.doi.org/10.2967/jnumed.106.039131] [PMID: 17607040]
[49]
Shiba K, Yudasaka M, Iijima S. Carbon nanohorns as a novel drug carrier. Jpn J Clin Med 2006; 64(2): 239-46.
[PMID: 16454176]
[50]
Ajima K, Yudasaka M, Murakami T, Maigné A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Mol Pharm 2005; 2(6): 475-80.
[http://dx.doi.org/10.1021/mp0500566] [PMID: 16323954]
[51]
Ajima K, Murakami T, Mizoguchi Y, et al. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall car-bon nanohorns. ACS Nano 2008; 2(10): 2057-64.
[http://dx.doi.org/10.1021/nn800395t] [PMID: 19206452]
[52]
Amato G. Silica-encapsulated efficient and stable si quantum dots with high biocompatibility. Nanoscale Res Lett 2010; 5(7): 1156-60.
[http://dx.doi.org/10.1007/s11671-010-9619-9] [PMID: 20596494]
[53]
Radenkovic D, Kobayashi H, Remsey-Semmelweis E, Seifalian AM. Quantum dot nanoparticle for optimization of breast cancer diagnos-tics and therapy in a clinical setting. Nanomedicine 2016; 12(6): 1581-92.
[http://dx.doi.org/10.1016/j.nano.2016.02.014] [PMID: 27013132]
[54]
Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int 2014; 2014180549
[http://dx.doi.org/10.1155/2014/180549] [PMID: 24772414]
[55]
Jiang Y, Stenzel M. Drug delivery vehicles based on albumin-polymer conjugates. Macromol Biosci 2016; 16(6): 791-802.
[http://dx.doi.org/10.1002/mabi.201500453] [PMID: 26947019]
[56]
Pan UN, Khandelia R, Sanpui P, et al. Protein-based multifunctional nanocarriers for imaging, photothermal therapy, and anticancer drug delivery. ACS Appl Mater Interfaces 2017; 9: 19495-501.
[PMID: 27476323]
[57]
Cole AJ, Yang VC, David AE. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol 2011; 29(7): 323-32.
[http://dx.doi.org/10.1016/j.tibtech.2011.03.001] [PMID: 21489647]
[58]
Karponis D, Azzawi M, Seifalian A. An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer. Nanomedicine (Lond) 2016; 11(16): 2215-32.
[http://dx.doi.org/10.2217/nnm-2016-0113] [PMID: 27480599]
[59]
Yang H, Kao WJJ. Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 2006; 17(1-2): 3-19.
[http://dx.doi.org/10.1163/156856206774879171] [PMID: 16411595]
[60]
Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005; 57(15): 2177-202.
[http://dx.doi.org/10.1016/j.addr.2005.09.017] [PMID: 16310284]
[61]
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J Intern Med 2014; 276(6): 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[62]
Svenson S, Tomalia DA. Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev 2005; 57(15): 2106-29.
[http://dx.doi.org/10.1016/j.addr.2005.09.018] [PMID: 16305813]
[63]
Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008; 60(9): 1037-55.
[http://dx.doi.org/10.1016/j.addr.2008.02.012] [PMID: 18448187]
[64]
Grasso S, Santi L. Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches. Int J Physiol Pathophysiol Pharmacol 2010; 2(2): 161-78.
[PMID: 21383892]
[65]
Steinmetz NF. Viral nanoparticles in drug delivery and imaging. Mol Pharm 2013; 10(1): 1-2.
[http://dx.doi.org/10.1021/mp300658j] [PMID: 23294244]
[66]
Gaurav I, Wang X, Thakur A, et al. Peptide-conjugated nano delivery systems for therapy and diagnosis of cancer. Pharmaceutics 2021; 13(9): 1433.
[67]
Le Q-V, Choi J, Oh Y-KJJoPI. Nano delivery systems and cancer immunotherapy.2018; 48(5): 527-39.
[68]
Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJJNn. Selective organ targeting (SORT) nanoparticles for tissuespecific mRNA delivery and CRISPR–Cas gene editing. 2020; 15(4): 313-20.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy