[1]
Kwak GH, Ling L, Hui P. Deep reinforcement learning approaches for global public health strategies for COVID-19 pandemic. PLoS One 2021; 16(5)e0251550
[http://dx.doi.org/10.1371/journal.pone.0251550] [PMID: 33984043]
[http://dx.doi.org/10.1371/journal.pone.0251550] [PMID: 33984043]
[2]
Imran A, Posokhova I, Qureshi HN, et al. AI4COVID-19: Ai enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform Med Unlock 2020; 20100378
[http://dx.doi.org/10.1016/j.imu.2020.100378] [PMID: 32839734]
[http://dx.doi.org/10.1016/j.imu.2020.100378] [PMID: 32839734]
[3]
Richard SS, Andrew GB. Reinforcement learning: An introduction (A Bradford Book). Cambridge, MA: MIT Press 2018.
[4]
Zheng H, Zhu J, Xie W, Zhong J. Reinforcement learning assisted oxygen therapy for COVID-19 patients under intensive care. BMC Med Inform Decis Mak 2021; 21(1): 350.
[PMID: 34031644]
[PMID: 34031644]
[5]
An C, Oh HC, Chang JH, et al. Development and validation of a prognostic model for early triage of patients diagnosed with COVID-19. Sci Rep 2021; 11(1): 21923.
[http://dx.doi.org/10.1038/s41598-021-01452-7] [PMID: 34754036]
[http://dx.doi.org/10.1038/s41598-021-01452-7] [PMID: 34754036]
[6]
Sankaranarayanan S, Balan J, Walsh JR, et al. COVID-19 mortality prediction from deep learning in a large multistate electronic health record and laboratory information system data set: Algorithm development and validation. J Med Internet Res 2021; 23(9)e30157
[http://dx.doi.org/10.2196/30157] [PMID: 34449401]
[http://dx.doi.org/10.2196/30157] [PMID: 34449401]
[7]
Kumar R. Recurrent neural network and reinforcement learning model for covid-19 prediction, frontiers in public health. Front Public Health 2021; 9744100
[http://dx.doi.org/10.3389/fpubh.2021.744100]
[http://dx.doi.org/10.3389/fpubh.2021.744100]
[8]
Banoei MM, Dinparastisaleh R, Zadeh AV, Mirsaeidi M. Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying. Crit Care 2021; 25(1): 328.
[http://dx.doi.org/10.1186/s13054-021-03749-5] [PMID: 34496940]
[http://dx.doi.org/10.1186/s13054-021-03749-5] [PMID: 34496940]
[9]
Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med 2021; 27(10): 1735-43.
[http://dx.doi.org/10.1038/s41591-021-01506-3] [PMID: 34526699]
[http://dx.doi.org/10.1038/s41591-021-01506-3] [PMID: 34526699]
[10]
Wang L, Zhang Y, Wang D, et al. Artificial intelligence for covid-19: A systematic review. Front Med (Lausanne) 2021; 8704256
[http://dx.doi.org/10.3389/fmed.2021.704256] [PMID: 34660623]
[http://dx.doi.org/10.3389/fmed.2021.704256] [PMID: 34660623]
[11]
Malone B, Simovski B, Moliné C, et al. Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs. Sci Rep 2020; 10(1): 22375.
[http://dx.doi.org/10.1038/s41598-020-78758-5] [PMID: 33361777]
[http://dx.doi.org/10.1038/s41598-020-78758-5] [PMID: 33361777]
[12]
Zhao Z, Ma Y, Mushtaq A, et al. Applications of robotics, artificial intelligence, and digital technologies during COVID-19: A review. Disaster Med Public Health Prep 2021. Epub ahead of print
[http://dx.doi.org/10.1017/dmp.2021.9] [PMID: 33413717]
[http://dx.doi.org/10.1017/dmp.2021.9] [PMID: 33413717]
[13]
Abdulla A, Wang B, Qian F, et al. Project identif.ai: Harnessing artificial intelligence to rapidly optimize combination therapy development for infectious disease intervention. Adv Ther (Weinh) 2020; 2000034(7)2000034
[http://dx.doi.org/10.1002/adtp.202000034] [PMID: 32838027]
[http://dx.doi.org/10.1002/adtp.202000034] [PMID: 32838027]
[14]
Liu S, Zheng Q, Wang Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics 2020; 36(11): 3295-8.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[15]
Arora P, Kumar H, Panigrahi BK. Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos Solitons Fractals 2020; 139110017
[http://dx.doi.org/10.1016/j.chaos.2020.110017] [PMID: 32572310]
[http://dx.doi.org/10.1016/j.chaos.2020.110017] [PMID: 32572310]