Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Research Progress of Organic Carbon Nanotubes-Modified Metal- Composite Photocatalytic Materials in Water Treatment

Author(s): Shiyu Xie*, Xiang Li, Hengwei Zheng, Li Feng and Sarfaraz Khan

Volume 19, Issue 8, 2022

Published on: 31 May, 2022

Page: [898 - 905] Pages: 8

DOI: 10.2174/1570193X19666220329154805

Price: $65

Abstract

In recent years, organic Carbon Nanotubes (CNTs) have attracted wide attention because of their excellent and unique properties in electrical, optical, mechanical, and other fields, as well as their potential application in the water treatment field. Metal-composite photocatalysts generally have the problems of electron-hole recombination, which seriously affect their photo-catalytic performance. It was found that the surface modification of metal-composite photocatalyst using organic carbon nanotubes could effectively improve the photo-catalytic activity and stability of metalcomposite photocatalyst materials. This paper aims to provide the current research progress of organic carbon nanotubes-modified metal-composite photo-catalytic materials in water pollution control, including the preparation methods of organic carbon nanotubes and their modified metal-composite photocatalysis materials, as well as the applications of organic carbon nanotubes-modified metalcomposite photocatalytic materials in water pollution control field. Concluding remarks and future trends are also pointed out. This paper can provide guidance for designing high-performance carbon nanotube metal-composite photo-catalytic materials.

Keywords: Organic carbon nanotubes, composite material, photocatalytic, water treatment, surface modification, metalcomposite, nanomaterials.

Graphical Abstract

[1]
Nezhad, E.Z.; Qu, X.; Musharavati, F.; Jaber, F.; Appleford, M.R.; Bae, S.; Uzun, K.; Struthers, M.; Chowdhury, M.E.H.; Khandakar, A. Effects of titanium and carbon nanotubes on nano/micromechanical pro-perties of HA/TNT/CNT nanocomposites. Appl. Surf. Sci., 2021, 538, 148123.
[2]
Ren, X.; Wei, Q.; Wu, F.; Wang, Y.; Zhao, L. CNT/VS2-MoS2 with multi-interface structure for improved hydrogen evolution reaction. Chem. Commun. (Camb.), 2021, 57(20), 2531-2534.
[http://dx.doi.org/10.1039/D0CC07351B] [PMID: 33564799]
[3]
Atif, M.; Afzaal, I.; Naseer, H.; Abrar, M.; Bongiovanni, R. Review-surface modification of carbon nanotubes: A tool to control electro-chemical performance. Ecs J. Solid State SC., 2020, 9(4), 041009.
[4]
Chen, X.; Bao, R.; Yi, J.; Fang, D.; Tao, J.; Li, F. Enhancing mechanical properties of pure copper-based materials with CrxOy nanoparticles and CNT hybrid reinforcement. J. Mater. Sci., 2021, 56(4), 3062-3077.
[http://dx.doi.org/10.1007/s10853-020-05440-6]
[5]
Cao, P.; So, K.P.; Yang, Y.; Park, J.G.; Li, M.; Yan, L.; Hu, J.; Kirk, M.; Li, M.; Lee, Y.H.; Short, M.P.; Li, J. Carbon nanotube (CNT) metal composites exhibit greatly reduced radiation damage. Acta Mater., 2021, 203, 203.
[http://dx.doi.org/10.1016/j.actamat.2020.116483]
[6]
Hu, C. Anh, Thi. L.; Pung, S.Y.; Stevens, L.; Neate, N.; Hou, X.; Grant, D.; Xu, F. Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocom-posites. Mater. Chem. Phys., 2021, 260.
[7]
Saleh, T.A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydro-desulfurization of thiophenes. Chem. Eng. J., 2021, 404.
[8]
Guo, H.; Mei, P.; Xiao, J.; Huang, X.; Ishag, A.; Sun, Y. Carbon materials for extraction of uranium from seawater. Chemosphere, 2021, 278, 130411.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130411] [PMID: 33831686]
[9]
Gutiérrez, M.; Grillini, V. Mutavdžić Pavlović D.; Verlicchi, P. Activated carbon coupled with advanced biological wastewater treatment: A review of the enhancement in micropollutant removal. Sci. Total Environ., 2021, 790, 148050-148050.
[http://dx.doi.org/10.1016/j.scitotenv.2021.148050] [PMID: 34091341]
[10]
Li, Y.; Pu, Z.; Sun, Q.; Pan, N. A review on novel activation strategy on carbonaceous materials with special morphology/texture for elec-trochemical storage. J. Energy Chem., 2021, 60, 572-590.
[http://dx.doi.org/10.1016/j.jechem.2021.01.017]
[11]
Prasankumar, T.; Jose, S.; Ajayan, P.M.; Ashokkumar, M. Functional carbons for energy applications. Mater. Res. Bull., 2021, 142, 111425.
[12]
Vaya, D.; Kaushik, B.; Surolia, P.K. Recent advances in graphitic carbon nitride semiconductor: Structure, syn-thesis and applications. Mater. Sci. Semicond. Process., 2020, (1), 23-35.
[13]
Alshammari, B.A.; Alsuhybani, M.S.; Almushaikeh, A.M.; Alotaibi, B.M.; Alenad, A.M.; Alqahtani, N.B.; Alharbi, A.G. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers (Basel), 2021, 13(15), 2474.
[http://dx.doi.org/10.3390/polym13152474] [PMID: 34372077]
[14]
Gunwant, D.; Vedrtnam, A. Microwave absorbing pro-perties of carbon fiber based materials: A review and prospective. J. Alloys Compd., 2021, 881, 160572.
[15]
Gul, A.; Khaligh, N.G.; Julkapli, N.M. Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment. J. Mol. Struct., 2021, 1235, 1235.
[http://dx.doi.org/10.1016/j.molstruc.2021.130148]
[16]
Januário, E.F.D.; Vidovix, T.B.; Beluci, N.C.L.; Paixão, R.M.; Silva, L.H.B.R.D.; Homem, N.C.; Bergamasco, R.; Vieira, A.M.S. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Sci. Total Environ., 2021, 789, 147957.
[http://dx.doi.org/10.1016/j.scitotenv.2021.147957] [PMID: 34052486]
[17]
Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater., 2021, 415, 125690.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125690] [PMID: 33773257]
[18]
Qu, H.; Huang, L.; Han, Z.; Wang, Y.; Zhang, Z.; Wang, Y.; Chang, Q.; Wei, N.; Kipper, M.J.; Tang, J. A review of graphene-oxide/metal-organic framework composites materials: characteristics, preparation and applications. J. Porous Mater., 2021, 28(6), 1837-1865.
[http://dx.doi.org/10.1007/s10934-021-01125-w]
[19]
Zhou, Q.; Jin, B.; Zhao, P.; Chu, S.; Peng, R. rGO/CNQ-Ds/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater. Chem. Eng. J., 2021, 419, 129622.
[20]
Saputri, D.D.; Jan’ah, A.M.; Saraswati, T.E. Synthesis of carbon nanotubes (CNT) by chemical vapor de-position (CVD) using a biogas-based carbon precursor: A review. 15th Joint Conference on Chemistry, 2020.
[21]
Zhang, S.C.; Zhang, N.; Zhang, J. Controlled synthesis of carbon nanotubes: Past, present and future. Wuli Huaxue Xuebao, 2020, 36(1), 1907021.
[http://dx.doi.org/10.3866/PKU.WHXB201907021]
[22]
Fang, X.; Shashurin, A.; Teel, G.; Keidar, M. Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon, 2016, 107, 273-280.
[http://dx.doi.org/10.1016/j.carbon.2016.05.061]
[23]
Kamyshny, A.; Magdassi, S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev., 2019, 48(6), 1712-1740.
[http://dx.doi.org/10.1039/C8CS00738A] [PMID: 30569917]
[24]
Zhao, X.; Zhao, T.; Peng, X.; Hu, J.; Yang, W. Catalyst effect on the preparation of single-walled carbon nano-tubes by a modified arc dis-charge. Fuller. Nanotub. Carbon Nanostruct., 2019, 27(1), 52-57.
[http://dx.doi.org/10.1080/1536383X.2018.1492560]
[25]
Dong, Q.; Zhang, F.; Ji, S.; Wang, X.; Wang, H.; Linkov, V.; Wang, R. Fe3C-inserted “tube plugging into porous network” nanohybrids as advanced sulfur hosts for lithium-sulfur batteries. J. Alloys Compd., 2021, 877, 877.
[http://dx.doi.org/10.1016/j.jallcom.2021.160286]
[26]
Hao, Y.; Xue, H.; Lv, L.; Sun, J.; Guo, N.; Song, T.; Dong, H.; Zhang, J.; Wang, Q. Unraveling the synergistic effect of defects and interfa-cial electronic structure modulation of pealike CoFe@Fe3N to achieve superior oxygen reduction performance. Appl. Catal. B, 2021, 295, 295.
[http://dx.doi.org/10.1016/j.apcatb.2021.120314]
[27]
Novikov, I.V.; Khabushev, E.M.; Krasnikov, D.V.; Bubis, A.V.; Goldt, A.E.; Shandakov, S.D.; Nasibulin, A.G. Residence time effect on single-walled carbon nanotube synthesis in an aerosol CVD reactor. Chem. Eng. J., 2021, 420, 420.
[http://dx.doi.org/10.1016/j.cej.2021.129869]
[28]
Kang, S.; Han, H.; Mhin, S.; Chae, H.R.; Kim, W.R.; Kim, K.M. Ni-doped carbon nanotubes fabricated by pulsed laser ablation in liquid as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci., 2021, 547, 547.
[http://dx.doi.org/10.1016/j.apsusc.2021.149197]
[29]
Kowthaman, C.N.; Selvan, A.M.V. Synthesis and chara-cterization of carbon nanotubes from engine soot and its application as an additive in Schizochytrium biodiesel fuelled DICI engine. Energy Rep., 2020, 6, 2126-2139.
[http://dx.doi.org/10.1016/j.egyr.2020.08.003]
[30]
Okada, S.; Sugime, H.; Hasegawa, K.; Osawa, T.; Katao-ka, S.; Sugiura, H.; Noda, S. Flame-assisted chemical vapor deposition for continu-ous gas-phase synthesis of 1-nm-diameter single-wall carbon nano-tubes. Carbon, 2018, 138, 1-7.
[http://dx.doi.org/10.1016/j.carbon.2018.05.060]
[31]
Liu, Z. Bottom-up synthesis of conjugated polymeric segment of single-walled carbon nanotubes: New de-sign strategy towards carbon nanotubes with con-trolled chirality. Wuli Huaxue Xuebao, 2020, 36(7), 1912019.
[http://dx.doi.org/10.3866/PKU.WHXB201912019]
[32]
Feng, M.; Qu, R.; Zhang, X.; Sun, P.; Sui, Y.; Wang, L.; Wang, Z. Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Res., 2015, 85, 1-10.
[http://dx.doi.org/10.1016/j.watres.2015.08.011] [PMID: 26281959]
[33]
Gao, P.; Lu, Y.; Deng, S.; Cui, X.; Zhang, Q.; Yang, Y. Simultaneous polymerization enabled the confine-ment of size-adjustable TiO2 nanocrystals in S-doped carbons for high-rate anode materials. Energy Tech-nol-Ger, 2019, 7(9), 1900249.
[34]
Yuan, Y.; Chen, F.; Cai, G.; Yin, S.; Zhu, M.; Wang, L.; Yang, J.; Guo, S. Ultrafine TiO2 nanocrystalline an-chored on nitrogen-doped amorphous mesoporous hollow carbon nanospheres as advanced anode for lithium ion batteries. Electrochim. Acta, 2019, 296, 669-675.
[http://dx.doi.org/10.1016/j.electacta.2018.11.098]
[35]
Wang, Y.; Li, F.; Wang, Y.; Wu, S.; He, X.; Wang, K.A. TiO2/CNTs Nanocomposites enhanced luminol electrochemiluminescence assay for glucose detection. Chin. J. Anal. Chem., 2015, 43(11), 1682-1686.
[http://dx.doi.org/10.1016/S1872-2040(15)60877-5]
[36]
Koli, V.B.; Dhodamani, A.G.; Delekar, S.D.; Pawar, S.H. In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their pho-tocatalytic applications. J. Photochem. Photobiol. Chem., 2017, 333, 40-48.
[http://dx.doi.org/10.1016/j.jphotochem.2016.10.008]
[37]
Barmala, M.; Behnood, M.; Omidkhah, M.R. Photo oxidation of DBT using carbon nanotube titania com-posite as visible light active photo catalyst. J. Cent. South Univ., 2018, 25(7), 1642-1650.
[http://dx.doi.org/10.1007/s11771-018-3856-y]
[38]
Zhang, J.; Yuan, P.; Wang, J.; Shen, B.; Zhang, Y.; Zhang, Y. Preparation of Ce doped CNTs-TiO2 photo-catalyst and its NO oxidation per-formance. Chin. J. Environ. Eng., 2020, 14(7), 1852-1861.
[39]
Pan, H.; Yi, H.; Xiao, W.; Shuai, H.; Zhang, H. Preparation,characterization and photocatalytic pr-perties of ZnO/CNTs composites. Mater. Rev., 2018, 32(24), 4224-4229.
[40]
Bargozideh, S.; Tasviri, M.; Ghabraei, M. Effect of carbon nanotubes loading on the photocatalytic activity of BiSI/BiOI as a novel photo-catalyst. Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36754-36764.
[http://dx.doi.org/10.1007/s11356-020-09759-0] [PMID: 32564326]
[41]
Frontera, P.; Malara, A.; Stelitano, S.; Fazio, E.; Neri, F.; Scarpino, L.; Antonucci, P.L.; Santangelo, S. A new approach to the synthesis of titania nano-powders en-riched with very high contents of carbon nanotubes by electro-spinning. Mater. Chem. Phys., 2015, 153, 338-345.
[http://dx.doi.org/10.1016/j.matchemphys.2015.01.023]
[42]
Li, Q.; Dong, M.; Li, R.; Cui, Y.; Xie, G.; Wang, X.; Long, Y. Enhancement of Cr(VI) removal efficiency via ad-sor-ption/photocatalysis synergy using electrospun chi-tosan/g-C3N4/TiO2 nanofibers. Carbohydr. Polym., 2021, 253, 117200.
[43]
Alsawat, M.; Altalhi, T.; Gulati, K.; Santos, A.; Losic, D. Synthesis of carbon nanotube-nanotubular titania composites by catalyst-free CVD Process: Insights into the formation mechanism and photocatalytic properties. ACS Appl. Mater. Interfaces, 2015, 7(51), 28361-28368.
[http://dx.doi.org/10.1021/acsami.5b08956] [PMID: 26587676]
[44]
Zhang, Y.; Xing, Z.; Zou, J.; Li, Z.; Wu, Z.; Shen, L.; Zhu, Q.; Yang, S.; Zhou, W. 3D urchin-like black TiO 2x/carbon nanotube hetero-structures as efficient visible-light-driven photocatalysts. RSC Advances, 2017, 7(1), 453-460.
[http://dx.doi.org/10.1039/C6RA25611B]
[45]
Yue, W.; Ya, L.; Yue, W.; Peng, Y.; Feng, Z. Research on the preparation and catalytic properties of multi-wall carbon nanotube/(Ag/AgCl) composite materials. Chem. Eng., 2020, 34(8), 1-3, 10.
[46]
Asadpoor, M.; Arjmand, M.; Farhadian, M.; Omidkhah, M.R.; Zinatizadeh, A.A. Optimization and modeling of the photocatalytic activities of a novel visible driven CNT/TiO2/BiOBr/Bi2S3 nanocomposite. Desalination Water Treat., 2021, 209, 219-229.
[http://dx.doi.org/10.5004/dwt.2021.26367]
[47]
Hussien, M.S.A.; Yahia, I.S. Hybrid multifunctional core/shell g-C3N4@TiO2 heterojunction nano-catalytic for photodegradation of organic dye and pharmaceutical compounds. Environ. Sci. Pollut. Res. Int., 2021, 28(23), 29665-29680.
[http://dx.doi.org/10.1007/s11356-021-12680-9] [PMID: 33566295]
[48]
Rauwel, P.; Galeckas, A.; Rauwel, E. Enhancing the UV emission in ZnO-CNT hybrid nanostructures via the surface plasmon resonance of Ag nanoparticles. Nanomaterials (Basel), 2021, 11(2), 452.
[http://dx.doi.org/10.3390/nano11020452] [PMID: 33579049]
[49]
Su, L.; Li, G.; Lan, Z.; Yu, T.; Chu, H.; Han, S.; Qin, S. Preparation of molecularly imprinted CNT/ZnO and photocatalytic degradation of bisphenol A. Kexue Tongbao, 2020, 65(14), 1368-1375.
[http://dx.doi.org/10.1360/TB-2019-0617]
[50]
Jaafarzadeh, N.; Ghanbari, F.; Ahmadi, M. Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated per-oxymonosulfate: Influential factors and mechanism determination. Chemosphere, 2017, 169, 568-576.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.038] [PMID: 27898330]
[51]
Mohamed, A.; Yousef, S.; Ali, S.; Sriubas, M.; Varnagiris, S.; Tuckute, S.; Abdelnaby, M.A.; Kamel, B.M. Highly efficient visible light pho-todegradation of Cr(VI) using electrospun MWCNTs-Fe3O4@PES nanofibers. Catalysts, 2021, 11(7), 868.
[http://dx.doi.org/10.3390/catal11070868]
[52]
Chinonso, U.; Ibukun, O.; Jeong, H.K. Air plasma treated TiO2/MWCNT composite for enhanced photo-catalytic activity. Chem. Phys. Lett., 2020, 757.
[53]
Dehnavi, A.; Soleymanpour, A. Titanium dioxide/multi-walled carbon nanotubes composite modified pencil graphite sensor for sensitive voltammetric determination of propranolol in real samples. Electroanalysis, 2021, 33(2), 355-364.
[http://dx.doi.org/10.1002/elan.202060132]
[54]
Fernandez, J.; Berenguer, A.; Cazorla, D. Study of MWCNT dispersion effect in TiO2-MWCNT com-posites for gas-phase propene photoox-idation. Mater. Res. Bull., 2021, 134, 111089.
[http://dx.doi.org/10.1016/j.materresbull.2020.111089]
[55]
Fernandez, J.; Navlani, M.; Verma, P.; Berenguer, A.; Mori, K.; Kuwahara, Y.; Yamashita, H.; Cazorla, D. Photocatalytically-driven H-2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes. Catal. Today, 2021, 364, 182-189.
[http://dx.doi.org/10.1016/j.cattod.2020.05.032]
[56]
Kalaivani, G.J.; Suja, S.K. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb. Technol., 2020, 140, 109631.
[57]
Fu, S.; Chen, X.; Liu, P. Preparation of CNTs/Cu com-posites with good electrical conductivity and excellent mechanical properties. Mat. Sci. Mater. Sci. Eng. A, 2020, 771, 138656.
[http://dx.doi.org/10.1016/j.msea.2019.138656]
[58]
Liu, E.; Li, Z.; Li, F.; Wang, B. The network structure formation of Cu-CNTs composites during multi-di-rectional forging process and its mechanical properties. Nano, 2021, 16(06), 2150070-2150071.
[http://dx.doi.org/10.1142/S1793292021500703]
[59]
Alkahlawy, A.A.F.; El-Salamony, R.A.; Gobara, H.M. Photocatalytic degradation of congo red dye via multi-walled carbon nanotubes mod-ified CuO and ZnO nanoparticles under visible light irradiation. Egypt. J. Chem., 2021, 64(3), 1481-1494.
[60]
Zhang, C.; Xie, Y.; Ma, J.; Hu, J.; Zhang, C. A composite catalyst of reduced black TiO2-x/CNT: A highly efficient counter electrode for ZnO-based dye-sensitized solar cells. Chem. Commun. (Camb.), 2015, 51(98), 17459-17462.
[http://dx.doi.org/10.1039/C5CC07284K] [PMID: 26473174]
[61]
Udrescu, A.; Florica, S.; Chivu, M.; Mercioniu, I.; Matei, E.; Baibarac, M.; Rhodamine, B. Rhodamine B photodegradation in aqueous solu-tions containing nitrogen doped TiO2 and carbon nanotubes composites. Molecules, 2021, 26(23), 7237.
[http://dx.doi.org/10.3390/molecules26237237] [PMID: 34885826]
[62]
Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M. High-ly efficient visible light driven photocatalytic activity of graphene and CNTs based Mg doped ZnO photocata-lysts: A comparative study. Separ. Purif. Tech., 2020, 245, 116892.
[63]
Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M.; Naz, M.Y. Lu modified ZnO/CNTs composite: A promising photocatalyst for hydrogen evolution under visible light illumination. J. Colloid Interface Sci., 2021, 584, 182-192.
[http://dx.doi.org/10.1016/j.jcis.2020.09.116] [PMID: 33070071]
[64]
Ahmad, I.; Shukrullah, S.; Ahmad, M.; Ahmed, E.; Naz, M.Y.; Akhtar, M.S.; Khalid, N.R.; Hussain, A.; Hussain, I. Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: Solvothermal synthesis and study of experimental pa-rameters; Mat. Sci. Semicon. Proc, 2021, p. 123.
[65]
Ahmad, I.; Shukrullah, S.; Naz, M.Y.; Rasheed, M.A.; Ahmad, M.; Ahmed, E.; Akhtar, M.S.; Khalid, N.R.; Hussain, A.; Khalid, S. Boosted hydrogen evolution activity from Sr doped ZnO/CNTs nanocomposite as visible light driven photocatalyst. Int. J. Hydrogen Energy, 2021, 46(53), 26711-26724.
[http://dx.doi.org/10.1016/j.ijhydene.2021.05.164]
[66]
Ahmad, M.; Ahmad, I.; Ahmed, E.; Akhtar, M.S.; Khalid, N.R. Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: Study on the efficient photocatalytic activity and photocatalytic mechanism. J. Mol. Liq., 2020, 311, 311.
[http://dx.doi.org/10.1016/j.molliq.2020.113326]
[67]
Oliveira, I.E.; Silva, R.M.; Girao, A.V.; Faria, J.L.; Silva, C.G.; Silva, R.F. Facile preparation of ZnO/CNTs nanocomposites via ALD for photocatalysis applications. Eur. J. Inorg. Chem., 2020, 2020(18), 1743-1750.
[http://dx.doi.org/10.1002/ejic.202000032]
[68]
Tang, Y.; Tian, J.; Malkoske, T.; Le, W.; Chen, B. Facile ultrasonic synthesis of novel zinc sulfide/carbon nanotube coaxial nanocables for enhanced photo-degradation of methyl orange. J. Mater. Sci., 2017, 52(3), 1581-1589.
[http://dx.doi.org/10.1007/s10853-016-0452-0]
[69]
Li, S.J.; Hu, S.W.; Xu, K.B.; Jiang, W.; Liu, J.S.; Wang, Z.H. A novel heterostructure of BiOI nanosheets an-chored onto MWCNTs with excellent visible-light photocatalytic activity. Nanomaterials (Basel), 2017, 7(1), 22.
[http://dx.doi.org/10.3390/nano7010022]
[70]
Mgha, B.; Pys, A.; Amm, C.; Sk, C. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sul-fonic acid doped polyaniline-WO3-MWCNT ternary nanocomposite. J. Mater. Sci. Technol., 2020, 38, 7-18.
[http://dx.doi.org/10.1016/j.jmst.2019.08.020]
[71]
Kai, X.; Yang, S.; Shen, C.; Fang, L.; Chunyan, M.A.; Jiang, C.; Liu, Y. Continuous-flow photocatalysis with Ag/AgCl modified carbon nanotubes filter towards methylene blue removal from water. Chin. J. Environ. Eng., 2019, 13(6), 1305-1313.
[72]
Wu, X.Q.; Shen, J.S.; Zhao, F.; Shao, Z.D.; Zhong, L.B.; Zheng, Y.M. Flexible electrospun MWCNTs/Ag3PO4/PAN ternary composite fiber membranes with en-hanced photocatalytic activity and stability under visible-light irradiation. J. Mater. Sci., 2018, 53(14), 10147-10159.
[http://dx.doi.org/10.1007/s10853-018-2334-0]
[73]
Jin, J.; Liu, M.; Feng, L.; Wang, H.; Wang, Y.; Nguyen, T.A.H.; Wang, Y.; Lu, J.; Li, Y.; Bao, M. 3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation. Sci. Total Environ., 2019, 695, 133694.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133694] [PMID: 31421331]
[74]
Hayati, F.; Isari, A.A.; Anvaripour, B.; Fattahi, M.; Kakavandi, B. Ultrasound-assisted photocatalytic deg-radation of sulfadiazine using MgO@CNT heter-ojunction composite: Effective factors, pathway and biodegradability studies. Chem. Eng. J., 2020, 381, 122636.
[75]
Nawaz, M.; Shahzad, A.; Tahir, K.; Kim, J.; Moztahida, M.; Jang, J.; Alam, M.B.; Lee, S.; Jung, H.; Lee, D.S. Photo-Fenton reaction for the degradation of sulfame-thoxazole using a multi-walled carbon nanotube NiFe2O4 composite. Chem. Eng. J., 2020, 382, 123053.
[76]
Zhao, D.; Li, A.; Wu, M.; Du, M. Ag3PO4/carbon nanotubes/Ni film electrodes: Photoelectrocatalytic properties and mechanism of rhoda-mine B degradation under an applied negative bias. React. Kinet. Mech. Catal., 2018, 124(1), 347-362.
[http://dx.doi.org/10.1007/s11144-017-1310-z]
[77]
Aichang, L.; Yanhong, L.; Qing, L.; Ran, C.; Di, Z. Photoelectrocatalytic property and reaction mechanism of plasma photocatalyst Ag@AgBr/CNT/Ni film ele-ctrode at negative bias. Zhongguo Youse Jinshu Xuebao, 2020, 30(02), 163-172.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy