Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Research Progress on the Application of Magnetic Nanomaterials in Water Pollution Control

Author(s): Xiang Li*, Shiyu Xie, Guoming Zeng and Sarfaraz Khan

Volume 20, Issue 3, 2023

Published on: 15 July, 2022

Page: [240 - 249] Pages: 10

DOI: 10.2174/1570193X19666220328162619

Price: $65

Abstract

With the increasing shortage of water resources and the improvement in people's awareness regarding environmental protection, the traditional water pollution control technology cannot meet the needs of the development of environmental protection. In recent years, the rapid development of nanotechnology and nanomaterials has provided a good opportunity for the innovation of water treatment technology and has attracted the extensive attention of many environmental researchers. In particular, new functional magnetic nanomaterials with good adsorption properties, good chemical stability, easy regeneration, and easy solid-liquid separation have become hot topics in the field of water pollution control. This paper aims to provide the present research progress of magnetic nanomaterials in water pollution control, including the striking characteristics and preparation methods of the most well-known magnetic nanomaterials, as well as their applications in the water pollution control field. Concluding remarks and future trends have also been pointed out.

Keywords: Magnetic nanomaterials, water pollution control, water treatment, magnetic separation, nanotechnology, nanomaterials.

Graphical Abstract

[1]
Khadijah, M.M.K.; Norah, S.A.; Fatimah, M.A.; Saifeldin, M.S.; Mohamed, A.T. Synthesis of manganese ferrite/graphene oxide magnetic nanocomposite for pollutants removal from water. Processes (Basel), 2021, 9(4), 589.
[http://dx.doi.org/10.3390/pr9040589]
[2]
Sivarama, K.L.; Soontarapa, K.; Nabel, K.A.; Salehie, O.; Vinay, K.; Karthik, K.; Katta, V.; Ali, Y.; Wan, Z.W.Y. Indonesian Kaolin supported nZVI (IK-nZVI) used for the an efficient removal of Pb(II) from aqueous solutions: Kinetics, thermodynamics and mechanism. J. Environ. Chem. Eng., 2021, 9(6), 106483.
[3]
Sugumari, V.; Karthikeyan, R.; Sivarama, K.L.; Khantong, S.; Remya, R.R.; Vipin, K.S.; Vinay, K.; Katta, V.; Janardhan, R.K. Recent developments in magnetic nanoparticles and nano-composites for wastewater treatment. J. Environ. Chem. Eng., 2021, 9(6), 106553.
[4]
Katta, V. Ashes from organic waste as reagents in synthetic chemistry: A review. Environ. Chem. Lett., 2021, 12, 3887-3950.
[5]
Maryam, N.; Shamila, R.; Shohreh, A.; Malik, M.; Titus, A.M.M.; Sadegh, R.; Mehdi, H.; Samad, K.; Elham, Z.; Ho, W.J.; Mohammadreza, S. Magnetic nanocomposite of crosslinked chitosan with 4,6-diacetylresorcinol for gold immobilization (Fe3O4@CS/DAR-Au) as a catalyst for an efficient one-pot synthesis of propargylamine. Mater. Today Commun., 2021, 29, 102798,, 29.
[6]
Hassan, A.; Nader, N.P.; Robabeh, M.; Sadegh, R.; Mohammadreza, S. Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite. J. Environ. Chem. Eng., 2021, 9, 105486.
[7]
Barraqué, F.; Montes, M.L.; Fernández, M.A.; Candal, R.; Torres Sánchez, R.M.; Marco-Brown, J.L.; Marco, B. Arsenate removal from aqueous solution by montmorillonite and organo-montmorillonite magnetic materials. Environ. Res., 2021, 192, 110247.
[http://dx.doi.org/10.1016/j.envres.2020.110247 ] [PMID: 32980304]
[8]
Guo, W.; Cao, Y.; Zhang, Y.; Wang, L.; Kong, L. Synthesis of porous iron hydroxy phosphate from phosphate residue and its application as a Fenton-like catalyst for dye degradation. J. Environ. Sci. (China), 2022, 112, 307-319.
[http://dx.doi.org/10.1016/j.jes.2021.05.033 ] [PMID: 34955214]
[9]
Asadollah, H.; Behnam, G.; Sadegh, R.; Elham, Z.; Nasrin, N.; Taras, K.; Rovshan, K.; Mohammadreza, S. Sustainable design and novel synthesis of highly recyclable magnetic carbon containing aromatic sulfonic acid: Fe3O4@C/Ph-SO3H as green solid acid promoted regioselective synthesis of tetrazoloquinazolines. Appl. Organomet. Chem., 2021, 35, e6346.
[10]
Zohreh, B.; Shamila, R.; Ziba, K.; Sadegh, R.; Titus, A.M.M.; Dokyoon, K.; Ho, W.J.; Seeram, R.; Rajender, S.V.; Mohammadreza, S. Hydrothermal self - sacrificing growth of polymorphous MnO2 on magnetic porous - carbon (Fe3O4@Cg/MnO2): A sustainable nanostructured catalyst for activation of molecular oxygen. Mol. Catal., 2021, 509, 111603.
[11]
Khadijeh, O.A.; Hassan, A.; Nader, N.P.; Samad, K.; Sadegh, R. Gold nanoparticle stabilized dithiocarbamate functionalized magnetite carbon as promise clean nanocatalyst for A3-coupling organic transformation. Mol. Catal, 2021, 499, 111252.
[12]
Zeng, G.M.; Liu, Y.Y.; Tang, L.; Yang, G.D.; Pang, Y.; Zhang, Y.; Zhou, Y.Y.; Li, Z.; Li, M.Y.; Lai, M.Y.; He, X.X.; He, Y.B. Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem. Eng. J., 2015, 259, 153-160.
[http://dx.doi.org/10.1016/j.cej.2014.07.115]
[13]
Goyal, P.; Tiwary, C.S.; Misra, S.K. Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid. J. Environ. Manage., 2021, 277, 111469.
[http://dx.doi.org/10.1016/j.jenvman.2020.111469 ] [PMID: 33049615]
[14]
El-Zawahry, M.M.; Hassabo, A.G.; Abdelghaffar, F.; Abdelghaffar, R.A.; Hakeim, O.A. Preparation and use of aqueous solutions magnetic chitosan / nanocellulose aerogels for the sorption of reactive black 5. Biointerface Res. Appl. Chem., 2021, 11(4), 12380-12402.
[http://dx.doi.org/10.33263/BRIAC114.1238012402]
[15]
Khah, M.H.; Jamshidi, P.; Shemirani, F. Applying Fe3O4-MoS2-chitosan nanocomposite to preconcentrate heavy metals from dairy products prior quantifying by FAAS. Res. Chem. Intermediat., 2021, 47(9), 3867-3881.
[16]
Morshedy, A.S.; Galhoum, A.A.; Aleem, A.A.H.A.; El-din, M.T.S.; Okaba, D.M.; Mostafa, M.S.; Mira, H.I.; Yang, Z.; El-Sayed, I.E.T. Functionalized aminophosphonate chitosan-magnetic nanocomposites for Cd(II) removal from aqueous solutions: Performance and mechanisms of sorption. Appl. Surf. Sci., 2021, 561.
[http://dx.doi.org/10.1016/j.apsusc.2021.150069]
[17]
Xu, Z.; Zhu, Q.; Bian, J. Preparation of a recyclable demulsifier for the treatment of emulsified oil wastewater by chitosan modification and sodium oleate grafting Fe3O4. J. Environ. Chem. Eng., 2021, 9(4), 105663.
[http://dx.doi.org/10.1016/j.jece.2021.105663]
[18]
Alzahrani, F.M.; Alsaiari, N.S.; Katubi, K.M.; Amari, A.; Ben Rebah, F.; Tahoon, M.A. Synthesis of polymer-based magnetic nanocomposite for multi-pollutants removal from water. Polymers (Basel), 2021, 13(11), 1742.
[http://dx.doi.org/10.3390/polym13111742 ] [PMID: 34073555]
[19]
Guo, N.; Cang, F.; Wang, Z.; Zhao, T.T.; Song, X.R.; Farris, S.; Li, Y.Y.; Fu, Y.J. Magnetism and NIR dual-response polypyrrole-coated Fe3O4 nanoparticles for bacteria removal and inactivation. Mater. Sci. Eng. C, 2021, 126, 112143.
[http://dx.doi.org/10.1016/j.msec.2021.112143 ] [PMID: 34082954]
[20]
Liu, W.; Liu, X.; Chang, J.; Jiang, F.; Pang, S.; Gao, H.; Liao, Y.; Yu, S. Efficient removal of Cr(VI) and Pb(II) from aqueous solution by magnetic nitrogen-doped carbon. Front. Chem. Sci. Eng., 2021, 15(5), 1185-1196.
[http://dx.doi.org/10.1007/s11705-020-2032-8]
[21]
Reis, E.S.; Gorza, F.D.S.; Pedro, G.C.; Maciel, B.G.; Silva, R.; Ratkovski, G.P.; Melo, C.P. (Maghemite/Chitosan/Polypyrrole) nanocomposites for the efficient removal of Cr (VI) from aqueous media. J. Environ. Chem. Eng., 2021, 9(1), 104893.
[http://dx.doi.org/10.1016/j.jece.2020.104893]
[22]
Feng, Y.; Hu, H.; Wang, Z.; Du, Y.; Zhong, L.; Zhang, C.; Jiang, Y.; Jia, S.; Cui, J. Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization. J. Colloid Interface Sci., 2021, 590, 436-445.
[http://dx.doi.org/10.1016/j.jcis.2021.01.078 ] [PMID: 33561593]
[23]
Mehdinia, A.; Salamat, M.; Jabbari, A. Preparation of a magnetic polystyrene nanocomposite for dispersive solid-phase extraction of copper ions in environmental samples. Sci. Rep-uk, 2020, 10(1), 3279.
[24]
Rekos, K.; Kampouraki, Z.C.; Sarafidis, C.; Samanidou, V.; Deliyanni, E. Graphene oxide based magnetic nanocomposites with polymers as effective bisphenol-A nanoadsorbents. Materials (Basel), 2019, 12(12), E1987.
[http://dx.doi.org/10.3390/ma12121987 ] [PMID: 31226816]
[25]
Ushijima, E.; Fujimoto, S.; Nakazato, K. Local reaction fields on a CMOS sensor array utilizing a magneto-Archimedes levitation-based magnetic particle-arrangement method. Sensor. Actuat. a-Phys, 2021, 323, 112655.
[26]
Gu, H.; Zhou, X.; Lyu, S.; Pan, D.; Dong, M.; Wu, S.; Ding, T.; Wei, X.; Seok, I.; Wei, S.; Guo, Z. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J. Colloid Interface Sci., 2020, 560, 849-856.
[http://dx.doi.org/10.1016/j.jcis.2019.10.084 ] [PMID: 31708258]
[27]
Khalilifard, M.; Javadian, S. Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water. Chem. Eng. J., 2021, 408, 408.
[http://dx.doi.org/10.1016/j.cej.2020.127369]
[28]
Yang, Q.; Wang, H.; Li, F.; Dang, Z.; Zhang, L. Rapid and efficient removal of Cr(VI) by a core-shell magnetic mesoporous polydopamine nanocomposite: Roles of the mesoporous structure and redox-active functional groups. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(22), 13306-13319.
[http://dx.doi.org/10.1039/D1TA02475B]
[29]
Yang, W.; Wang, Y.; Wang, Q.; Wu, J.; Duan, G.; Xu, W.; Jian, S. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by & nbsp;l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum, 2021, 189, 69-77.
[30]
Yang, Z.; Yang, K.; Cui, Y.; Shah, T.; Ahmad, M.; Zhang, Q.; Zhang, B. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA. J. Mater. Sci. Technol., 2021, 74, 203-215.
[http://dx.doi.org/10.1016/j.jmst.2020.10.012]
[31]
Pereda, C.; Actis, D.G.; Mendoza, Z.P.; Alvarez, V.A.; Sanchez, L.M. Tillandsia Aeranthos flower-like magnetic nanostructures confined into polyvinyl alcohol beads. J. Appl. Polym. Sci., 2021, 138(16), 50261.
[http://dx.doi.org/10.1002/app.50261]
[32]
Ren, J.; Zhang, G.; Wang, D.; Cai, D.; Wu, Z. Honeycomb-like magnetic cornstalk for Cr(VI) removal and ammonium release. Bioresour. Technol., 2019, 291, 121856.
[http://dx.doi.org/10.1016/j.biortech.2019.121856 ] [PMID: 31357040]
[33]
Okoli, C.P.; Ofomaja, A.E. Development of sustainable magnetic polyurethane polymer nanocomposite for abatement of tetracycline antibiotics aqueous pollution: Response surface methodology and adsorption dynamics. J. Clean. Prod., 2019, 217, 42-55.
[http://dx.doi.org/10.1016/j.jclepro.2019.01.157]
[34]
Perez, T.; Pasquini, D.; Lima, A.F.; Rosa, E.V.; Sousa, M.H.; Cerqueira, D.A.; Morais, L.C. Efficient removal of lead ions from water by magnetic nanosorbents based on manganese ferrite nanoparticles capped with thin layers of modified biopolymers. J. Environ. Chem. Eng., 2019, 7(1), 102892.
[http://dx.doi.org/10.1016/j.jece.2019.102892]
[35]
Somu, P.; Kannan, U.; Paul, S. Biomolecule functionalized magnetite nanoparticles efficiently adsorb and remove heavy metals from contaminated water. J. Chem. Technol. Biotechnol., 2019, 94(6), 2009-2022.
[http://dx.doi.org/10.1002/jctb.5984]
[36]
El-Maghrabi, H.H.; Younes, A.A.; Salem, A.R.; Rabie, K.; El-Shereafy, E.S. Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): Preparation, characterization and adsorption optimization. J. Hazard. Mater., 2019, 378, 120703.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.096 ] [PMID: 31203125]
[37]
Ul-Ain, Q.; Zhang, H.; Yaseen, M.; Rasheed, U.; Liu, K.; Subhan, S.; Tong, Z. Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(II), Cd(II), and crystal violet from aqueous solution. J. Clean. Prod., 2020, 247, 119088.
[38]
Ventura, K.; Arrieta, R.A.; Marcos-Hernández, M.; Jabbari, V.; Powell, C.D.; Turley, R.; Lounsbury, A.W.; Zimmerman, J.B.; Gardea-Torresdey, J.; Wong, M.S.; Villagrán, D. Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents. Sci. Total Environ., 2020, 738, 139213.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139213 ] [PMID: 32534278]
[39]
Wei, D.; Guo, M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples. J. Sep. Sci., 2020, 43(15), 3093-3102.
[http://dx.doi.org/10.1002/jssc.202000108 ] [PMID: 32449830]
[40]
Zheng, X.; Zheng, H.; Xiong, Z.; Zhao, R.; Liu, Y.; Zhao, C.; Zheng, C. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions. Chem. Eng. J., 2020, 392, 392.
[http://dx.doi.org/10.1016/j.cej.2019.123706]
[41]
Zheng, X.; Zheng, H.; Zhao, R.; Xiong, Z.; Wang, Y.; Sun, Y.; Ding, W. Sulfonic acid-modified polyacrylamide magnetic composite with wide pH applicability for efficient removal of cationic dyes. J. Mol. Liq., 2020, 319, 319.
[http://dx.doi.org/10.1016/j.molliq.2020.114161]
[42]
Lu, J.; Zhou, Y. A, Y.Z. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem. Eng. J., 2021, 422, 130126.
[43]
Chen, T.; Geng, Y.; Wan, H.; Xu, Y.; Zhou, Y.; Kong, X.; Wang, J.; Qi, Y.; Yao, B.; Gao, Z. Facile preparation of Fe3O4/Ag/RGO reusable ternary nanocomposite and its versatile application as catalyst and antibacterial agent. J. Alloys Compd., 2021, 876, 160153.
[http://dx.doi.org/10.1016/j.jallcom.2021.160153]
[44]
Muthukumar, P.; Alex, V.; Pannipara, M.; Al-Sehemi, A.G.; Anthony, S.P. Fabricating highly efficient Ag3PO4-Fe3O4-GO ternary nanocomposite photocatalyst: Effect of Fe3O4-GO preparation methods on photocatalytic activity. Mater. Res. Bull., 2021, 141, 141.
[http://dx.doi.org/10.1016/j.materresbull.2021.111337]
[45]
Hatamluyi, B.; Sadeghian, R.; Malek, F.; Boroushaki, M.T. Improved solid phase extraction for selective and efficient quantification of sunset yellow in different food samples using a novel molecularly imprinted polymer reinforced by Fe3O4@UiO-66-NH2. Food Chem., 2021, 357, 129782.
[http://dx.doi.org/10.1016/j.foodchem.2021.129782 ] [PMID: 33894570]
[46]
Rong, H.; Gao, T.; Zheng, Y.; Li, L.; Xu, D.; Zhang, X.; Hou, Y.; Yan, M. Fe3O4@silica nanoparticles for reliable identification and magnetic separation of Listeria monocytogenes based on molecular-scale physiochemical interactions. J. Mater. Sci. Technol., 2021, 84, 116-123.
[http://dx.doi.org/10.1016/j.jmst.2021.01.014]
[47]
Wang, Z.; Zhang, Z.; Yan, R.; Fu, X.; Wang, G.; Wang, Y.; Li, Z.; Zhang, X.; Hou, J. Facile fabrication of snowman-like magnetic molecularly imprinted polymer microspheres for bisphenol A via one-step Pickering emulsion polymerization. React. Funct. Polym., 2021, 164, 164.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104911]
[48]
Chu, Y.; Zhang, X.; Yu, X.; Yan, C.; Yang, Y.; Shen, G.; Wang, X.; Tao, S.; Wang, X. Antimony removal by a magnetic TiO2/SiO2/ Fe3O4 nanosphere and influence of model dissolved organic matter. Chem. Eng. J., 2021, 420, 420.
[http://dx.doi.org/10.1016/j.cej.2021.129783]
[49]
Gangwar, A.; Singh, A.; Pal, S.; Sinha, I.; Meena, S.S.; Prasad, N.K. Magnetic nanocomposites of Fe3C or Ni-substituted (Fe3C/Fe3O4) with carbon for degradation of methylene orange and p-nitrophenol. J. Clean. Prod., 2021, 309, 309.
[http://dx.doi.org/10.1016/j.jclepro.2021.127372]
[50]
Garcia, S.M.; Wong, A.; Khan, S.; Sotomayor, M.D.P.T. A simple, sensitive and efficient electrochemical platform based on carbon paste electrode modified with Fe3O4@MIP and graphene oxide for folic acid determination in different matrices. Talanta, 2021, 229, 122258.
[http://dx.doi.org/10.1016/j.talanta.2021.122258 ] [PMID: 33838769]
[51]
Wang, L.; Liu, F.; Pal, A.; Ning, Y.; Wang, Z.; Zhao, B.; Bradley, R.; Wu, W. Ultra-small Fe3O4 nanoparticles encapsulated in hollow porous carbon nanocapsules for high performance supercapacitors. Carbon, 2021, 179, 327-336.
[http://dx.doi.org/10.1016/j.carbon.2021.04.024]
[52]
Li, T.; Du, X.; Deng, J.; Qi, K.; Zhang, J.; Gao, L.; Yue, X. Efficient degradation of Rhodamine B by magnetically recoverable Fe3O4-modified ternary CoFeCu-layered double hydroxides via activating peroxymonosulfate. J. Environ. Sci. (China), 2021, 108, 188-200.
[http://dx.doi.org/10.1016/j.jes.2021.02.020 ] [PMID: 34465432]
[53]
Gao, X.; Yu, X.; Peng, L.; He, L.; Zhang, F. Magnetic Fe3O4 nanoparticles and ZrO2-doped mesoporous MCM-41 as a monolithic multifunctional catalyst for γ-valerolactone production directly from furfural. Fuel, 2021, 300, 300.
[http://dx.doi.org/10.1016/j.fuel.2021.120996]
[54]
Li, L.; Liu, C.; Ma, R.; Yu, Y.; Chang, Z.; Zhang, X.; Yang, C.; Chen, D.; Yu, Y.; Li, W.; Liu, Y. Enhanced oxidative and adsorptive removal of thallium(I) using Fe3O4@TiO2 decorated RGO nanosheets as persulfate activator and adsorbent. Sep. Purif. Technol., 2021, 271, 118827.
[55]
Sarojini, G.; Venkateshbabu, S.; Rajasimman, M. Facile synthesis and characterization of polypyrrole - iron oxide - seaweed (PPy-Fe3O4-SW) nanocomposite and its exploration for adsorptive removal of Pb(II) from heavy metal bearing water. Chemosphere, 2021, 278, 130400.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130400 ] [PMID: 33819882]
[56]
Zhu, B.; Jiang, G.; Lv, Y.; Liu, F.; Sun, J. Photocatalytic degradation of polyacrylamide by rGO@ Fe3O4/Cu2O@ZnO magnetic recyclable composites. Mat. Sci. Semicon. Proc, 2021, 131, 105841.
[57]
Xie, X.; Li, S.; Qi, K.; Wang, Z. Photoinduced synthesis of green photocatalyst Fe3O4 /BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure. Chem. Eng. J., 2021, 420, 420.
[http://dx.doi.org/10.1016/j.cej.2021.129705]
[58]
Liu, Y.; Zhang, X.; Deng, J.; Liu, Y. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides. Chemosphere, 2021, 277, 130305.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130305 ] [PMID: 33773319]
[59]
Li, W.; Zhou, G.; Zhu, X.; Song, M.; Wang, P.; Ma, C.; Liu, X.; Han, S.; Huang, Y.; Lu, Z. Magnetic assembly synthesis of high-efficiency recyclable flower-like MoS2@Fe3O4@Cu2O like-Z-scheme heterojunction towards efficient photodegradation of tetracycline. Appl. Surf. Sci., 2021, 555, 555.
[http://dx.doi.org/10.1016/j.apsusc.2021.149730]
[60]
Li, R.; Liu, Y.; Lan, G.; Qiu, H.; Zhang, L. Pb(II) adsorption characteristics of magnetic GO-hydroxyapatite and the contribution of GO to enhance its acid resistance. J. Environ. Chem. Eng., 2021, 9, 105310.
[61]
Afshin, S.; Rashtbari, Y.; Vosough, M.; Dargahi, A.; Fazlzadeh, M.; Behzad, A.; Yousefi, M. Application of box–behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study. J. Water Process Eng., 2021, 42, 42.
[http://dx.doi.org/10.1016/j.jwpe.2021.102113]
[62]
Lei, C.; Wang, C.W.; Chen, W.Q.; He, M.H.; Huang, B.B. Polyaniline@magnetic chitosan nanomaterials for highly ef ficient simultaneous adsorption and in situ chemical reduction of hexavalent chromium: Removal ef ficacy and mechanisms. Sci. Total Environ., 2020, 733, 139316.
[63]
Omer, A.; El-Monaem, E.M.A.; El-Latif, M.M.A.; El-Subruiti, G.; Eltaweil, A. Facile fabrication of novel magnetic ZIF-67 [emailprotected] chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohyd. Polym, 2021, 265, 118084.
[64]
Nodehi, M.; Baghayeri, M.; Veisi, H. Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta, 2021, 230, 122288.
[http://dx.doi.org/10.1016/j.talanta.2021.122288 ] [PMID: 33934761]
[65]
Wu, Q.; Wang, D.; Chen, C.; Peng, C.; Cai, D.; Wu, Z. Fabrication of Fe3O4/ZIF-8 nanocomposite for simultaneous removal of copper and arsenic from water/soil/swine urine. J. Environ. Manage., 2021, 290, 112626.
[http://dx.doi.org/10.1016/j.jenvman.2021.112626 ] [PMID: 33878630]
[66]
Pu, Y. wu, Y.; Yu, Z.; Lu, L.; Wang, X. Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4 nanocomposites - ScienceDirect. Talanta Open, 2021, 3, 100024.
[67]
Yao, S.; Sun, S.; Wang, S.; Shi, Z. Adsorptive removal of lead ion from aqueous solution by activated carbon/iron oxide magnetic composite. Indian J. Chem. Technol., 2016, 23, 146-152.
[68]
Saha, A.; Neogy, S. P, M.S.P.; Prajapat, C.L.; Deb, S.B.; Saxena, M.K. Rapid and selective magnetic separation of uranium in seawater and groundwater using novel phosphoramidate functionalized citrate-Fe3O4@Ag nanoparticles. Talanta, 2021, 231, 122372.
[69]
Bayantong, A.R.B.; Shih, Y.J.; Ong, D.C.; Abarca, R.R.M.; Dong, C.D.; de Luna, M.D.G. Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere, 2021, 274, 129518.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129518 ] [PMID: 33540313]
[70]
Thuan, V.T.; Tri-Quang, T.P.; Duyen, T.C.N.; Thuong, T.N.; Dai, H.N.; Dai-Viet, N.V.; Long, G.B.; Trinh, D.N. Recyclable Fe3O4@C nanocomposite as potential adsorbent for a wide range of organic dyes and simulated hospital effluents. Environ. Technol. Inno, 2020, 20, 101122.
[71]
Alsaiari, N.S.; Amari, A.; Katubi, K.M.; Alzahrani, F.M.; Ben, R.F.; Tahoon, M.A. Innovative magnetite based polymeric nanocomposite for simultaneous removal of methyl orange and hexavalent chromium from water. Processes (Basel), 2021, 9(4), 576.
[http://dx.doi.org/10.3390/pr9040576]
[72]
Peyman, K.; Ahmad, R.; Hadi, S. Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization. Environ. Technol. Inno, 2021, 23, 101559.
[73]
Zhang, H.; Yao, S.; Song, X.; Xu, K.; Wang, J.; Li, J.; Zhao, C.; Jin, M. One-step colorimetric detection of Staphylococcus aureus based on target-induced shielding against the peroxidase mimicking activity of aptamer-functionalized gold-coated iron oxide nanocomposites. Talanta, 2021, 232, 122448.
[http://dx.doi.org/10.1016/j.talanta.2021.122448 ] [PMID: 34074432]
[74]
Chen, L.; Peng, J.; Wang, F.; Liu, D.; Ma, W.; Zhang, J.; Hu, W.; Li, N.; Dramou, P.; He, H. ZnO nanorods/Fe3O4-graphene oxide/metal-organic framework nanocomposite: Recyclable and robust photocatalyst for degradation of pharmaceutical pollutants. Environ. Sci. Pollut. Res. Int., 2021, 28(17), 21799-21811.
[http://dx.doi.org/10.1007/s11356-020-12253-2 ] [PMID: 33415638]
[75]
Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chem. Eng. J., 2017, 327, 694-704.
[http://dx.doi.org/10.1016/j.cej.2017.06.162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy