Abstract
With the increasing shortage of water resources and the improvement in people's awareness regarding environmental protection, the traditional water pollution control technology cannot meet the needs of the development of environmental protection. In recent years, the rapid development of nanotechnology and nanomaterials has provided a good opportunity for the innovation of water treatment technology and has attracted the extensive attention of many environmental researchers. In particular, new functional magnetic nanomaterials with good adsorption properties, good chemical stability, easy regeneration, and easy solid-liquid separation have become hot topics in the field of water pollution control. This paper aims to provide the present research progress of magnetic nanomaterials in water pollution control, including the striking characteristics and preparation methods of the most well-known magnetic nanomaterials, as well as their applications in the water pollution control field. Concluding remarks and future trends have also been pointed out.
Keywords: Magnetic nanomaterials, water pollution control, water treatment, magnetic separation, nanotechnology, nanomaterials.
Graphical Abstract
[http://dx.doi.org/10.3390/pr9040589]
[http://dx.doi.org/10.1016/j.envres.2020.110247 ] [PMID: 32980304]
[http://dx.doi.org/10.1016/j.jes.2021.05.033 ] [PMID: 34955214]
[http://dx.doi.org/10.1016/j.cej.2014.07.115]
[http://dx.doi.org/10.1016/j.jenvman.2020.111469 ] [PMID: 33049615]
[http://dx.doi.org/10.33263/BRIAC114.1238012402]
[http://dx.doi.org/10.1016/j.apsusc.2021.150069]
[http://dx.doi.org/10.1016/j.jece.2021.105663]
[http://dx.doi.org/10.3390/polym13111742 ] [PMID: 34073555]
[http://dx.doi.org/10.1016/j.msec.2021.112143 ] [PMID: 34082954]
[http://dx.doi.org/10.1007/s11705-020-2032-8]
[http://dx.doi.org/10.1016/j.jece.2020.104893]
[http://dx.doi.org/10.1016/j.jcis.2021.01.078 ] [PMID: 33561593]
[http://dx.doi.org/10.3390/ma12121987 ] [PMID: 31226816]
[http://dx.doi.org/10.1016/j.jcis.2019.10.084 ] [PMID: 31708258]
[http://dx.doi.org/10.1016/j.cej.2020.127369]
[http://dx.doi.org/10.1039/D1TA02475B]
[http://dx.doi.org/10.1016/j.jmst.2020.10.012]
[http://dx.doi.org/10.1002/app.50261]
[http://dx.doi.org/10.1016/j.biortech.2019.121856 ] [PMID: 31357040]
[http://dx.doi.org/10.1016/j.jclepro.2019.01.157]
[http://dx.doi.org/10.1016/j.jece.2019.102892]
[http://dx.doi.org/10.1002/jctb.5984]
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.096 ] [PMID: 31203125]
[http://dx.doi.org/10.1016/j.scitotenv.2020.139213 ] [PMID: 32534278]
[http://dx.doi.org/10.1002/jssc.202000108 ] [PMID: 32449830]
[http://dx.doi.org/10.1016/j.cej.2019.123706]
[http://dx.doi.org/10.1016/j.molliq.2020.114161]
[http://dx.doi.org/10.1016/j.jallcom.2021.160153]
[http://dx.doi.org/10.1016/j.materresbull.2021.111337]
[http://dx.doi.org/10.1016/j.foodchem.2021.129782 ] [PMID: 33894570]
[http://dx.doi.org/10.1016/j.jmst.2021.01.014]
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104911]
[http://dx.doi.org/10.1016/j.cej.2021.129783]
[http://dx.doi.org/10.1016/j.jclepro.2021.127372]
[http://dx.doi.org/10.1016/j.talanta.2021.122258 ] [PMID: 33838769]
[http://dx.doi.org/10.1016/j.carbon.2021.04.024]
[http://dx.doi.org/10.1016/j.jes.2021.02.020 ] [PMID: 34465432]
[http://dx.doi.org/10.1016/j.fuel.2021.120996]
[http://dx.doi.org/10.1016/j.chemosphere.2021.130400 ] [PMID: 33819882]
[http://dx.doi.org/10.1016/j.cej.2021.129705]
[http://dx.doi.org/10.1016/j.chemosphere.2021.130305 ] [PMID: 33773319]
[http://dx.doi.org/10.1016/j.apsusc.2021.149730]
[http://dx.doi.org/10.1016/j.jwpe.2021.102113]
[http://dx.doi.org/10.1016/j.talanta.2021.122288 ] [PMID: 33934761]
[http://dx.doi.org/10.1016/j.jenvman.2021.112626 ] [PMID: 33878630]
[http://dx.doi.org/10.1016/j.chemosphere.2020.129518 ] [PMID: 33540313]
[http://dx.doi.org/10.3390/pr9040576]
[http://dx.doi.org/10.1016/j.talanta.2021.122448 ] [PMID: 34074432]
[http://dx.doi.org/10.1007/s11356-020-12253-2 ] [PMID: 33415638]
[http://dx.doi.org/10.1016/j.cej.2017.06.162]