Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Benzimidazoles Against Certain Breast Cancer Drug Targets: A Review

Author(s): Mehmet Murat Kisla and Zeynep Ates-Alagoz*

Volume 22, Issue 19, 2022

Published on: 23 May, 2022

Page: [2463 - 2477] Pages: 15

DOI: 10.2174/1389557522666220328161217

Price: $65

Abstract

Background: Benzimidazoles are widely used scaffolds against various types of cancer, including breast cancer. To this end, anticancer agents must be developed using the knowledge of the specific targets of BC.

Objective: In this study, we aim to review the compounds used against some of the biomolecular targets of breast cancer. To this end, we present information about the various targets, with their latest innovative studies.

Conclusion: Benzimidazole ring is an important building block that can target diverse cancer scenarios since it can structurally mimic biomolecules in the human body. Additionally, many studies imply the involvement of this moiety on a plethora of pathways and enzymes related to BC. Herein, our target- based collection of benzimidazole derivatives strongly suggests the utilization of benzimidazole derivatives against BC.

Keywords: Anticancer drugs, benzimidazoles, target-based biomolecules, pathways, plethora of pathways, breast cancer.

Graphical Abstract

[1]
World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancerAccessed on September 9, 2021.
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mor-tality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Chen, W.Y. Exogenous and endogenous hormones and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab., 2008, 22(4), 573-585.
[http://dx.doi.org/10.1016/j.beem.2008.08.001] [PMID: 18971119]
[4]
Dall, G.V.; Britt, K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol., 2017, 7, 110.
[http://dx.doi.org/10.3389/fonc.2017.00110] [PMID: 28603694]
[5]
MacMahon, B. Epidemiology and the causes of breast cancer. Int. J. Cancer, 2006, 118(10), 2373-2378.
[http://dx.doi.org/10.1002/ijc.21404] [PMID: 16358260]
[6]
Bai, Z.; Gust, R. Breast cancer, estrogen receptor and ligands. Arch. Pharm. (Weinheim), 2009, 342(3), 133-149.
[http://dx.doi.org/10.1002/ardp.200800174] [PMID: 19274700]
[7]
Baselga, J.; Gómez, P.; Greil, R.; Braga, S.; Climent, M.A.; Wardley, A.M.; Kaufman, B.; Stemmer, S.M.; Pêgo, A.; Chan, A.; Goeminne, J.C.; Graas, M.P.; Kennedy, M.J.; Ciruelos Gil, E.M.; Schneeweiss, A.; Zubel, A.; Groos, J.; Melezínková, H.; Awada, A. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2013, 31(20), 2586-2592.
[http://dx.doi.org/10.1200/JCO.2012.46.2408] [PMID: 23733761]
[8]
Jhaveri, K.; Modi, S. Ganetespib: Research and clinical development. OncoTargets Ther., 2015, 8, 1849-1858.
[PMID: 26244021]
[9]
Tomao, F.; Papa, A.; Zaccarelli, E.; Rossi, L.; Caruso, D.; Minozzi, M.; Vici, P.; Frati, L.; Tomao, S. Triple-negative breast cancer: New perspectives for targeted therapies. OncoTargets Ther., 2015, 8, 177-193.
[http://dx.doi.org/10.2147/OTT.S67673] [PMID: 25653541]
[10]
Cameron, D.; Brown, J.; Dent, R.; Jackisch, C.; Mackey, J.; Pivot, X.; Steger, G.G.; Suter, T.M.; Toi, M.; Parmar, M.; Laeufle, R. Im, Y.H.; Romieu, G.; Harvey, V.; Lipatov, O.; Pienkowski, T.; Cottu, P.; Chan, A.; Im, S.A.; Hall, P.S.; Bubuteishvili-Pacaud, L.; Henschel, V.; Deurloo, R.J.; Pallaud, C.; Bell, R. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): Primary results of a randomised, phase 3 trial. Lancet Oncol., 2013, 14(10), 933-942.
[http://dx.doi.org/10.1016/S1470-2045(13)70335-8] [PMID: 23932548]
[11]
Curigliano, G.; Pivot, X.; Cortés, J.; Elias, A.; Cesari, R.; Khosravan, R.; Collier, M.; Huang, X.; Cataruozolo, P.E.; Kern, K.A.; Goldhirsch, A. Randomized phase II study of sunitinib versus standard of care for patients with previously treated advanced triple-negative breast can-cer. Breast, 2013, 22(5), 650-656.
[http://dx.doi.org/10.1016/j.breast.2013.07.037] [PMID: 23958375]
[12]
Khokra, S.L.; Choudhary, D. Benzimidazole an important scaffold in drug discovery. Asian J. Biochem. Pharm. Res., 2011, 3(1), 476-486.
[13]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: Applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[14]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[15]
Abonia, R.; Cortés, E.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel 1,2,5-trisubstituted benzimidazoles as potential antitumor agents. Eur. J. Med. Chem., 2011, 46(9), 4062-4070.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.006] [PMID: 21719162]
[16]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[PMID: 23190032]
[17]
Katikireddy, R.; Marri, S.; Kakkerla, R.; Murali Krishna, M.P.S.; Gandamalla, D.; Reddy, Y.N. Synthesis, anticancer activity and molecular docking studies of hybrid benzimidazole-1,3,4-oxadiazol-2-N-alkyl/aryl amines. Polycycl. Aromat. Compd., 2021, 1-15.
[http://dx.doi.org/10.1080/10406638.2021.1959352]
[18]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and eva-luation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996] [PMID: 33190958]
[19]
Baldisserotto, A.; Demurtas, M.; Lampronti, I.; Tacchini, M.; Moi, D.; Balboni, G.; Pacifico, S.; Vertuani, S.; Manfredini, S.; Onnis, V. Synthesis and evaluation of antioxidant and antiproliferative activity of 2-arylbenzimidazoles. Bioorg. Chem., 2020, 94, 103396.
[http://dx.doi.org/10.1016/j.bioorg.2019.103396] [PMID: 31677860]
[20]
Bessières, M.; Plebanek, E.; Chatterjee, P.; Shrivastava-Ranjan, P.; Flint, M.; Spiropoulou, C.F.; Warszycki, D.; Bojarski, A.J.; Roy, V.; Agrofoglio, L.A. Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of Ebola virus infection. Eur. J. Med. Chem., 2021, 214, 113211.
[http://dx.doi.org/10.1016/j.ejmech.2021.113211] [PMID: 33548632]
[21]
Khalifa, M.E.; Gobouri, A.A.; Kabli, F.M.; Altalhi, T.A.; Almalki, A.S.; Elemshaty, A.M. Synthesis and pharmacological investigations of novel pyrazolyl and hydrazonoyl cyanide benzimidazole entities. J. Heterocycl. Chem., 2019, 56(4), 1426-1436.
[http://dx.doi.org/10.1002/jhet.3522]
[22]
Adnan, A.M.A.; Mahdi, M.F.; Khan, A.K. New 2-methyl benzimidazole derivatives bearing 4-thiazolidinone heterocyclic rings: Synthesis, preliminary pharmacological assessment and docking studies. Res. J. Pharm. Tech., 2021, 14(3), 1515-1520.
[http://dx.doi.org/10.5958/0974-360X.2021.00269.9]
[23]
Wang, X.; Xi, M.; Fu, J.; Zhang, F.; Cheng, G.; Yin, D.; You, Q. Synthesis, biological evaluation and SAR studies of benzimidazole deriva-tives as H1-antihistamine agents. Chin. Chem. Lett., 2012, 23(6), 707-710.
[http://dx.doi.org/10.1016/j.cclet.2012.04.020]
[24]
Alp, M.; Göker, H.; Brun, R.; Yildiz, S. Synthesis and antiparasitic and antifungal evaluation of 2′-arylsubstituted-1H,1‘H-[2,5’]bisbenzimidazolyl-5-carboxamidines. Eur. J. Med. Chem., 2009, 44(5), 2002-2008.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.003] [PMID: 19010569]
[25]
Iqbal, H.; Verma, A.K.; Yadav, P.; Alam, S.; Shafiq, M.; Mishra, D.; Khan, F.; Hanif, K.; Negi, A.S.; Chanda, D. Antihypertensive effect of a novel angiotensin II receptor blocker fluorophenyl benzimidazole: Contribution of cGMP, voltage-dependent calcium channels, and BKCa channels to vasorelaxant mechanisms. Front. Pharmacol., 2021, 12, 611109.
[http://dx.doi.org/10.3389/fphar.2021.611109] [PMID: 33859561]
[26]
Yang, H.; Ren, Y.; Gao, X.; Gao, Y. Synthesis and anticoagulant bioactivity evaluation of 1,2,5-trisubstituted benzimidazole fluorinated derivatives. Chem. Res. Chin. Univ., 2016, 32(6), 973-978.
[http://dx.doi.org/10.1007/s40242-016-6205-4]
[27]
Patil, A.; Ganguly, S.; Surana, S. A systematic review of benzimidazole derivatives as an antiulcer agent. Rasayan J. Chem., 2008, 1, 447-460.
[28]
Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol., 1997, 13(1), 83-117.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.83] [PMID: 9442869]
[29]
McNally, F.J. Modulation of microtubule dynamics during the cell cycle. Curr. Opin. Cell Biol., 1996, 8(1), 23-29.
[http://dx.doi.org/10.1016/S0955-0674(96)80044-5] [PMID: 8791399]
[30]
Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem., 2000, 69(1), 277-302.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.277] [PMID: 10966460]
[31]
Ren, Y.; Wang, Y.; Li, G.; Zhang, Z.; Ma, L.; Cheng, B.; Chen, J. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J. Med. Chem., 2021, 64(8), 4498-4515.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01837] [PMID: 33788562]
[32]
Liu, R.; Huang, M.; Zhang, S.; Li, L.; Li, M.; Sun, J.; Wu, L.; Guan, Q.; Zhang, W. Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2021, 226, 113826.
[http://dx.doi.org/10.1016/j.ejmech.2021.113826] [PMID: 34571171]
[33]
Yarden, Y.; Pines, G. The ERBB network: At last, cancer therapy meets systems biology. Nat. Rev. Cancer, 2012, 12(8), 553-563.
[http://dx.doi.org/10.1038/nrc3309] [PMID: 22785351]
[34]
Krishnaveni, K.; Kezia, M.; Nayak, S.; Netala, S.; Raju, K.; Khuntia, A.; Mounika, G.; Mohanty, S. In silico analysis of the inhibitory acti-vities of novel azo derivatives of benzimidazole on EGFR (HER-2) kinase domain. Int. J. Curr. Res., 2021, 13, 17575-17579.
[35]
Wang, F.; Weaver, V.M.; Petersen, O.W.; Larabell, C.A.; Dedhar, S.; Briand, P.; Lupu, R.; Bissell, M.J. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology. Proc. Natl. Acad. Sci. USA, 1998, 95(25), 14821-14826.
[http://dx.doi.org/10.1073/pnas.95.25.14821] [PMID: 9843973]
[36]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77(6), 400-410.
[http://dx.doi.org/10.1159/000279388] [PMID: 20130423]
[37]
Martinazzi, M.; Crivelli, F.; Zampatti, C.; Martinazzi, S. Relationships between epidermal growth factor receptor (EGF-R) and other predic-tors of prognosis in breast carcinomas. An immunohistochemical study. Pathologica, 1993, 85(1100), 637-644.
[PMID: 8170712]
[38]
Ménard, S.; Balsari, A.; Casalini, P.; Tagliabue, E.; Campiglio, M.; Bufalino, R.; Cascinelli, N. HER-2-positive breast carcinomas as a parti-cular subset with peculiar clinical behaviors. Clin. Cancer Res., 2002, 8(2), 520-525.
[PMID: 11839672]
[39]
Chu, B.; Liu, F.; Li, L.; Ding, C.; Chen, K.; Sun, Q.; Shen, Z.; Tan, Y.; Tan, C.; Jiang, Y. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells. Cell Death Dis., 2015, 6(3), e1686.
[http://dx.doi.org/10.1038/cddis.2015.25] [PMID: 25766325]
[40]
Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657.
[http://dx.doi.org/10.1016/j.bmc.2020.115657] [PMID: 32828424]
[41]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[42]
Bush, N.G.; Evans-Roberts, K.; Maxwell, A. DNA Topoisomerases. Ecosal Plus, 2015, 6(2), 2.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0010-2014] [PMID: 26435256]
[43]
Capranico, G.; Marinello, J.; Chillemi, G.; Type, I. Type I DNA Topoisomerases. J. Med. Chem., 2017, 60(6), 2169-2192.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00966] [PMID: 28072526]
[44]
Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemothe-rapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861.
[http://dx.doi.org/10.1016/j.apsb.2018.07.008] [PMID: 30505655]
[45]
Acar Çevik, U.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Kaya Çavuşoğlu, B.; Karaduman, A.B.; Atlıd, Ö.; Atlı Eklioğlu, Ö.; Kaplancıklı, Z.A. Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoi-somerase types I poison. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1657-1673.
[http://dx.doi.org/10.1080/14756366.2020.1806831] [PMID: 32811204]
[46]
Nayak, V.L.; Nagesh, N.; Ravikumar, A.; Bagul, C.; Vishnuvardhan, M.V.P.S.; Srinivasulu, V.; Kamal, A. 2-aryl benzimidazole conjugate induced apoptosis in human breast cancer MCF-7 cells through caspase independent pathway. Apoptosis, 2017, 22(1), 118-134.
[http://dx.doi.org/10.1007/s10495-016-1290-x] [PMID: 27770267]
[47]
Winer, E.P.; Hudis, C.; Burstein, H.J.; Wolff, A.C.; Pritchard, K.I.; Ingle, J.N.; Chlebowski, R.T.; Gelber, R.; Edge, S.B.; Gralow, J.; Cobleigh, M.A.; Mamounas, E.P.; Goldstein, L.J.; Whelan, T.J.; Powles, T.J.; Bryant, J.; Perkins, C.; Perotti, J.; Braun, S.; Langer, A.S.; Browman, G.P.; Somerfield, M.R. American society of clinical oncology technology assessment on the use of aromatase inhibitors as ad-juvant therapy for postmenopausal women with hormone receptor-positive breast cancer: Status report 2004. J. Clin. Oncol., 2005, 23(3), 619-629.
[http://dx.doi.org/10.1200/JCO.2005.09.121] [PMID: 15545664]
[48]
Lonning, P.E. Pharmacology of new aromatase inhibitors. Breast, 1996, 5(3), 202-206.
[http://dx.doi.org/10.1016/S0960-9776(96)90094-6]
[49]
Dowsett, M. Preoperative models to evaluate endocrine strategies for breast cancer. Clin. Cancer Res., 2003, 9(1 Pt 2), 502S-510S.
[PMID: 12538507]
[50]
Miller, W.R.; Jackson, J. The therapeutic potential of aromatase inhibitors. Expert Opin. Investig. Drugs, 2003, 12(3), 337-351.
[http://dx.doi.org/10.1517/13543784.12.3.337] [PMID: 12605559]
[51]
Miller, W.R.; Larionov, A.A. Understanding the mechanisms of aromatase inhibitor resistance. Breast Cancer Res., 2012, 14(1), 201.
[http://dx.doi.org/10.1186/bcr2931] [PMID: 22277572]
[52]
Thompson, E.A., Jr; Siiteri, P.K. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental mi-crosomes during aromatization of androstenedione. J. Biol. Chem., 1974, 249(17), 5364-5372.
[http://dx.doi.org/10.1016/S0021-9258(20)79735-8] [PMID: 4153532]
[53]
Chen, S.A.; Besman, M.J.; Sparkes, R.S.; Zollman, S.; Klisak, I.; Mohandas, T.; Hall, P.F.; Shively, J.E. Human aromatase: CDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15. DNA, 1988, 7(1), 27-38.
[http://dx.doi.org/10.1089/dna.1988.7.27] [PMID: 3390233]
[54]
Akhtar, M.; Wright, J.N.; Lee-Robichaud, P. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 2-12.
[http://dx.doi.org/10.1016/j.jsbmb.2010.11.003] [PMID: 21094255]
[55]
Valladares, L.E.; Payne, A.H. Induction of testicular aromatization by luteinizing hormone in mature rats. Endocrinology, 1979, 105(2), 431-436.
[http://dx.doi.org/10.1210/endo-105-2-431] [PMID: 456321]
[56]
Reed, K.C.; Ohno, S. Kinetic properties of human placental aromatase. Application of an assay measuring 3H2O release from 1beta,2beta-3H-androgens. J. Biol. Chem., 1976, 251(6), 1625-1631.
[http://dx.doi.org/10.1016/S0021-9258(17)33694-3] [PMID: 3502]
[57]
Durham, C.R.; Zhu, H.; Masters, B.S.; Simpson, E.R.; Mendelson, C.R. Regulation of aromatase activity of rat granulosa cells: Induction of synthesis of NADPH-cytochrome P-450 reductase by FSH and dibutyryl cyclic AMP. Mol. Cell. Endocrinol., 1985, 40(2-3), 211-219.
[http://dx.doi.org/10.1016/0303-7207(85)90177-7] [PMID: 2989033]
[58]
Hahn, E.F.; Miyairi, S.; Fishman, J. 19-Hydroxylation of androgens in the rat brain. Proc. Natl. Acad. Sci. USA, 1985, 82(9), 2728-2730.
[http://dx.doi.org/10.1073/pnas.82.9.2728] [PMID: 3857612]
[59]
Simpson, E.R.; Mahendroo, M.S.; Means, G.D.; Kilgore, M.W.; Hinshelwood, M.M.; Graham-Lorence, S.; Amarneh, B.; Ito, Y.; Fisher, C.R.; Michael, M.D.; Mendelson, C.R.; Bulun, S.E. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev., 1994, 15(3), 342-355.
[PMID: 8076586]
[60]
Amarneh, B.; Corbin, C.J.; Peterson, J.A.; Simpson, E.R.; Graham-Lorence, S. Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis. Mol. Endocrinol., 1993, 7(12), 1617-1624.
[PMID: 8145767]
[61]
Sobral, A.F.; Amaral, C.; Correia-da-Silva, G.; Teixeira, N. Unravelling exemestane: From biology to clinical prospects. J. Steroid Biochem. Mol. Biol., 2016, 163, 1-11.
[http://dx.doi.org/10.1016/j.jsbmb.2016.03.019] [PMID: 26992705]
[62]
McDonnell, D.P. The molecular pharmacology of SERMs. Trends Endocrinol. Metab., 1999, 10(8), 301-311.
[http://dx.doi.org/10.1016/S1043-2760(99)00177-0] [PMID: 10481160]
[63]
Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 13-22.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.001] [PMID: 21335088]
[64]
Acar Çevik, U.; Kaya Çavuşoğlu, B.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis, docking studies and biological activity of new benzimidazole-triazolothiadiazine derivatives as aromatase inhibitor. Molecules, 2020, 25(7), 1642.
[http://dx.doi.org/10.3390/molecules25071642] [PMID: 32252458]
[65]
Gaikwad, N.B.; Bansode, S.; Biradar, S.; Ban, M.; Srinivas, N.; Godugu, C.; Yaddanapudi, V.M. New 3-(1H-benzo[d]imidazol-2-yl)quinolin-2(1H)-one-based triazole derivatives: Design, synthesis, and biological evaluation as antiproliferative and apoptosis-inducing agents. Arch. Pharm. (Weinheim), 2021, 354(11), e2100074.
[http://dx.doi.org/10.1002/ardp.202100074] [PMID: 34346099]
[66]
Edwards, D.P. Regulation of signal transduction pathways by estrogen and progesterone. Annu. Rev. Physiol., 2005, 67(1), 335-376.
[http://dx.doi.org/10.1146/annurev.physiol.67.040403.120151] [PMID: 15709962]
[67]
Russo, J.; Russo, I.H. The role of estrogen in the initiation of breast cancer. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 89-96.
[http://dx.doi.org/10.1016/j.jsbmb.2006.09.004] [PMID: 17113977]
[68]
Tryfonidis, K.; Zardavas, D.; Katzenellenbogen, B.S.; Piccart, M. Endocrine treatment in breast cancer: Cure, resistance and beyond. Cancer Treat. Rev., 2016, 50, 68-81.
[http://dx.doi.org/10.1016/j.ctrv.2016.08.008] [PMID: 27643748]
[69]
An, K.C. Selective estrogen receptor modulators. Asian Spine J., 2016, 10(4), 787-791.
[http://dx.doi.org/10.4184/asj.2016.10.4.787] [PMID: 27559463]
[70]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treat-ment. Pharmacol. Ther., 2018, 186, 1-24.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.012] [PMID: 29289555]
[71]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.051] [PMID: 29407951]
[72]
Karadayi, F.Z.; Yaman, M.; Kisla, M.M.; Keskus, A.G.; Konu, O.; Ates-Alagoz, Z. Design, synthesis and anticancer/antiestrogenic activi-ties of novel indole-benzimidazoles. Bioorg. Chem., 2020, 100, 103929.
[http://dx.doi.org/10.1016/j.bioorg.2020.103929] [PMID: 32464404]
[73]
Zengin Karadayi, F.; Yaman, M.; Kisla, M.M.; Konu, O.; Ates-Alagoz, Z. Design, synthesis, anticancer activity, molecular docking and ADME studies of novel methylsulfonyl indole-benzimidazoles in comparison with ethylsulfonyl counterparts. New J. Chem., 2021, 45(20), 9010-9019.
[http://dx.doi.org/10.1039/D1NJ01019K]
[74]
Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13, 140-156.
[75]
Burke, J.E.; Williams, R.L. Synergy in activating class I PI3Ks. Trends Biochem. Sci., 2015, 40(2), 88-100.
[http://dx.doi.org/10.1016/j.tibs.2014.12.003] [PMID: 25573003]
[76]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[77]
Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signalling: The path to discovery and understanding. Nat. Rev. Mol. Cell Biol., 2012, 13(3), 195-203.
[http://dx.doi.org/10.1038/nrm3290] [PMID: 22358332]
[78]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[79]
Loewith, R.; Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics, 2011, 189(4), 1177-1201.
[http://dx.doi.org/10.1534/genetics.111.133363] [PMID: 22174183]
[80]
Howell, J.J.; Ricoult, S.J.H.; Ben-Sahra, I.; Manning, B.D. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans., 2013, 41(4), 906-912.
[http://dx.doi.org/10.1042/BST20130041] [PMID: 23863154]
[81]
Ricoult, S.J.H.; Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep., 2013, 14(3), 242-251.
[http://dx.doi.org/10.1038/embor.2013.5] [PMID: 23399656]
[82]
Dunlop, E.A.; Tee, A.R. mTOR and autophagy: A dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol., 2014, 36, 121-129.
[http://dx.doi.org/10.1016/j.semcdb.2014.08.006] [PMID: 25158238]
[83]
Dibble, C.C.; Manning, B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol., 2013, 15(6), 555-564.
[http://dx.doi.org/10.1038/ncb2763] [PMID: 23728461]
[84]
Kim, S.G.; Buel, G.R.; Blenis, J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells, 2013, 35(6), 463-473.
[http://dx.doi.org/10.1007/s10059-013-0138-2] [PMID: 23694989]
[85]
Jewell, J.L.; Russell, R.C.; Guan, K.L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol., 2013, 14(3), 133-139.
[http://dx.doi.org/10.1038/nrm3522] [PMID: 23361334]
[86]
Bar-Peled, L.; Sabatini, D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol., 2014, 24(7), 400-406.
[http://dx.doi.org/10.1016/j.tcb.2014.03.003] [PMID: 24698685]
[87]
Dibble, C.C.; Cantley, L.C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol., 2015, 25(9), 545-555.
[http://dx.doi.org/10.1016/j.tcb.2015.06.002] [PMID: 26159692]
[88]
Yu, P.; Laird, A.D.; Du, X.; Wu, J.; Won, K.A.; Yamaguchi, K.; Hsu, P.P.; Qian, F.; Jaeger, C.T.; Zhang, W.; Buhr, C.A.; Shen, P.; Abulafia, W.; Chen, J.; Young, J.; Plonowski, A.; Yakes, F.M.; Chu, F.; Lee, M.; Bentzien, F.; Lam, S.T.; Dale, S.; Matthews, D.J.; Lamb, P.; Foster, P. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations af-fecting the PI3K pathway. Mol. Cancer Ther., 2014, 13(5), 1078-1091.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0709] [PMID: 24634413]
[89]
Powles, T.; Lackner, M.R.; Oudard, S.; Escudier, B.; Ralph, C.; Brown, J.E.; Hawkins, R.E.; Castellano, D.; Rini, B.I.; Staehler, M.D.; Ra-vaud, A.; Lin, W.; O’Keeffe, B.; Wang, Y.; Lu, S.; Spoerke, J.M.; Huw, L.Y.; Byrtek, M.; Zhu, R.; Ware, J.A.; Motzer, R.J. Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everoli-mus in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2016, 34(14), 1660-1668.
[http://dx.doi.org/10.1200/JCO.2015.64.8808] [PMID: 26951309]
[90]
Chiarini, F.; Evangelisti, C.; McCubrey, J.A.; Martelli, A.M. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol. Sci., 2015, 36(2), 124-135.
[http://dx.doi.org/10.1016/j.tips.2014.11.004] [PMID: 25497227]
[91]
Voss, M.H.; Gordon, M.S.; Mita, M.; Rini, B.; Makker, V.; Macarulla, T.; Smith, D.C.; Cervantes, A.; Puzanov, I.; Pili, R.; Wang, D.; Jalal, S.; Pant, S.; Patel, M.R.; Neuwirth, R.L.; Enke, A.; Shou, Y.; Sedarati, F.; Faller, D.V.; Burris, H.A. III Phase 1 study of mTORC1/2 inhibi-tor sapanisertib (TAK-228) in advanced solid tumours, with an expansion phase in renal, endometrial or bladder cancer. Br. J. Cancer, 2020, 123(11), 1590-1598.
[http://dx.doi.org/10.1038/s41416-020-01041-x] [PMID: 32913286]
[92]
Panchal, I.; Devgirkar, A.G.; Patel, A.D.; Nagani, A.; Lad, C. Molecular modelling, synthesis and biological evaluation of novel benzimida-zole derivatives for the treatment of breast cancer. Curr. Chin. Chem., 2021, 1(1), 11-20.
[http://dx.doi.org/10.2174/2666001601666200121163605]
[93]
Wu, T.T.; Guo, Q.Q.; Chen, Z.L.; Wang, L.L.; Du, Y.; Chen, R.; Mao, Y.H.; Yang, S.G.; Huang, J.; Wang, J.T.; Wang, L.; Tang, L.; Zhang, J.Q. Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors. Eur. J. Med. Chem., 2020, 204, 112637.
[http://dx.doi.org/10.1016/j.ejmech.2020.112637] [PMID: 32717477]
[94]
Hunt, T.; Nasmyth, K.; Novák, B. The cell cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1584), 3494-3497.
[http://dx.doi.org/10.1098/rstb.2011.0274] [PMID: 22084376]
[95]
Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell, 1995, 81(3), 323-330.
[http://dx.doi.org/10.1016/0092-8674(95)90385-2] [PMID: 7736585]
[96]
Wang, J.Y.; Knudsen, E.S.; Welch, P.J. The retinoblastoma tumor suppressor protein. Adv. Cancer Res., 1994, 64, 25-85.
[http://dx.doi.org/10.1016/S0065-230X(08)60834-9] [PMID: 7879661]
[97]
Nair, B.C.; Vadlamudi, R.K. Regulation of hormonal therapy resistance by cell cycle machinery. Gene Ther. Mol. Biol., 2008, 12, 395.
[PMID: 20148177]
[98]
Thangavel, C.; Dean, J.L.; Ertel, A.; Knudsen, K.E.; Aldaz, C.M.; Witkiewicz, A.K.; Clarke, R.; Knudsen, E.S. Therapeutically activating RB: Reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr. Relat. Cancer, 2011, 18(3), 333-345.
[http://dx.doi.org/10.1530/ERC-10-0262] [PMID: 21367843]
[99]
Dickler, M.N.; Tolaney, S.M.; Rugo, H.S.; Cortés, J.; Diéras, V.; Patt, D.; Wildiers, H.; Hudis, C.A.; O’Shaughnessy, J.; Zamora, E.; Yard-ley, D.A.; Frenzel, M.; Koustenis, A.; Baselga, J. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin. Cancer Res., 2017, 23(17), 5218-5224.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0754] [PMID: 28533223]
[100]
Sledge, G.W., Jr; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; Koh, H.; Grischke, E.M.; Frenzel, M.; Lin, Y.; Barriga, S.; Smith, I.C.; Bourayou, N.; Llombart-Cussac, A. MONARCH 2: Abemaciclib in combina-tion with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol., 2017, 35(25), 2875-2884.
[http://dx.doi.org/10.1200/JCO.2017.73.7585] [PMID: 28580882]
[101]
Sledge, G.W., Jr; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; Koh, H.; Grischke, E.M.; Conte, P.; Lu, Y.; Barriga, S.; Hurt, K.; Frenzel, M.; Johnston, S.; Llombart-Cussac, A. The effect of abemaciclib plus ful-vestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy – MO-NARCH 2: A randomized clinical trial. JAMA Oncol., 2020, 6(1), 116-124.
[http://dx.doi.org/10.1001/jamaoncol.2019.4782] [PMID: 31563959]
[102]
Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.C.; Manso, L.; Freedman, O.C.; Garnica Jaliffe, G.; Forrester, T.; Frenzel, M.; Barriga, S.; Smith, I.C.; Bourayou, N.; Di Leo, A. MONARCH 3: Abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol., 2017, 35(32), 3638-3646.
[http://dx.doi.org/10.1200/JCO.2017.75.6155] [PMID: 28968163]
[103]
Gelbert, L.M.; Cai, S.; Lin, X.; Sanchez-Martinez, C.; Del Prado, M.; Lallena, M.J.; Torres, R.; Ajamie, R.T.; Wishart, G.N.; Flack, R.S.; Neubauer, B.L.; Young, J.; Chan, E.M.; Iversen, P.; Cronier, D.; Kreklau, E.; de Dios, A. Preclinical characterization of the CDK4/6 inhibi-tor LY2835219: In-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. New Drugs, 2014, 32(5), 825-837.
[http://dx.doi.org/10.1007/s10637-014-0120-7] [PMID: 24919854]
[104]
Eldehna, W.M.; El Hassab, M.A.; Abo-Ashour, M.F.; Al-Warhi, T.; Elaasser, M.M.; Safwat, N.A.; Suliman, H.; Ahmed, M.F.; Al-Rashood, S.T.; Abdel-Aziz, H.A.; El-Haggar, R. Development of isatin-thiazolo[3,2-a]benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological and molecular dynamics investigations. Bioorg. Chem., 2021, 110, 104748.
[http://dx.doi.org/10.1016/j.bioorg.2021.104748] [PMID: 33684714]
[105]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[106]
Huang, Y.; Nayak, S.; Jankowitz, R.; Davidson, N.E.; Oesterreich, S. Epigenetics in breast cancer: What’s new? Breast Cancer Res., 2011, 13(6), 225.
[http://dx.doi.org/10.1186/bcr2925] [PMID: 22078060]
[107]
Li, Y.; Seto, E. HDACs, and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[108]
Tu, H.J.; Lin, Y.J.; Chao, M.W.; Sung, T.Y.; Wu, Y.W.; Chen, Y.Y.; Lin, M.H.; Liou, J.P.; Pan, S.L.; Yang, C.R. The anticancer effects of MPT0G211, a novel HDAC6 inhibitor, combined with chemotherapeutic agents in human acute leukemia cells. Clin. Epigenetics, 2018, 10(1), 162.
[http://dx.doi.org/10.1186/s13148-018-0595-8] [PMID: 30594243]
[109]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[110]
Novotny-Diermayr, V.; Sangthongpitag, K.; Hu, C.Y.; Wu, X.; Sausgruber, N.; Yeo, P.; Greicius, G.; Pettersson, S.; Liang, A.L.; Loh, Y.K.; Bonday, Z.; Goh, K.C.; Hentze, H.; Hart, S.; Wang, H.; Ethirajulu, K.; Wood, J.M. SB939, a novel potent and orally active histone deacety-lase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol. Cancer Ther., 2010, 9(3), 642-652.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0689] [PMID: 20197387]
[111]
Kim, S.H.; Redvers, R.P.; Chi, L.H.; Ling, X.; Lucke, A.J.; Reid, R.C.; Fairlie, D.P.; Martin, A.C.B.M.; Anderson, R.L.; Denoyer, D.; Pou-liot, N. Identification of brain metastasis genes and therapeutic evaluation of histone deacetylase inhibitors in a clinically relevant model of breast cancer brain metastasis. Dis. Model. Mech., 2018, 11(7), DMM034850.
[http://dx.doi.org/10.1242/dmm.034850] [PMID: 29784888]
[112]
Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001, 107(2), 149-159.
[http://dx.doi.org/10.1016/S0092-8674(01)00527-X] [PMID: 11672523]
[113]
Luo, J.; Nikolaev, A.Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001, 107(2), 137-148.
[http://dx.doi.org/10.1016/S0092-8674(01)00524-4] [PMID: 11672522]
[114]
Roth, M.; Chen, W.Y. Sorting out functions of sirtuins in cancer. Oncogene, 2014, 33(13), 1609-1620.
[http://dx.doi.org/10.1038/onc.2013.120] [PMID: 23604120]
[115]
Chen, W.; Bhatia, R. Roles of SIRT1 in leukemogenesis. Curr. Opin. Hematol., 2013, 20(4), 308-313.
[http://dx.doi.org/10.1097/MOH.0b013e328360ab64] [PMID: 23519155]
[116]
Han, L.; Liang, X.H.; Chen, L.X.; Bao, S.M.; Yan, Z.Q. SIRT1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration. Int. J. Clin. Exp. Pathol., 2013, 6(11), 2357-2365.
[PMID: 24228097]
[117]
Riggio, M.; Polo, M.L.; Blaustein, M.; Colman-Lerner, A.; Lüthy, I.; Lanari, C.; Novaro, V. PI3K/AKT pathway regulates phosphorylation of steroid receptors, hormone independence and tumor differentiation in breast cancer. Carcinogenesis, 2012, 33(3), 509-518.
[http://dx.doi.org/10.1093/carcin/bgr303] [PMID: 22180571]
[118]
Pinton, G.; Zonca, S.; Manente, A.G.; Cavaletto, M.; Borroni, E.; Daga, A.; Jithesh, P.V.; Fennell, D.; Nilsson, S.; Moro, L. SIRT1 at the crossroads of AKT1 and ERβ in malignant pleural mesothelioma cells. Oncotarget, 2016, 7(12), 14366-14379.
[http://dx.doi.org/10.18632/oncotarget.7321] [PMID: 26885609]
[119]
Jin, X.; Wei, Y.; Xu, F.; Zhao, M.; Dai, K.; Shen, R.; Yang, S.; Zhang, N. SIRT1 promotes formation of breast cancer through modulating Akt activity. J. Cancer, 2018, 9(11), 2012-2023.
[http://dx.doi.org/10.7150/jca.24275] [PMID: 29896286]
[120]
Yoon, Y.K.; Osman, H.; Choon, T.S. Potent sirtuin inhibition with 1,2,5-trisubstituted benzimidazoles. MedChemComm, 2016, 7(11), 2094-2099.
[http://dx.doi.org/10.1039/C6MD00378H]
[121]
Abdel-Aziz, H.A.; Eldehna, W.M.; Ghabbour, H.; Al-Ansary, G.H.; Assaf, A.M.; Al-Dhfyan, A. Synthesis, crystal study, and anti-proliferative activity of some 2-benzimidazolylthioacetophenones towards triple-negative breast cancer MDA-MB-468 cells as apoptosis-inducing agents. Int. J. Mol. Sci., 2016, 17(8), 1221.
[http://dx.doi.org/10.3390/ijms17081221] [PMID: 27483243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy