Review Article

Pharmacological Exploration of Triazole-based Therapeutics for Alzheimer’s Disease: An Overview

Author(s): Chandu Anantha Lakshmi Prasanna and Abha Sharma*

Volume 23, Issue 9, 2022

Published on: 17 May, 2022

Page: [933 - 953] Pages: 21

DOI: 10.2174/1389450123666220328153741

Price: $65

Abstract

Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative disorder that may account for approximately 60-70% of cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions, including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid-beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease, including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but is not effective in curing the disease, which creates the need to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation. Moreover, it has proved its significance in various drug categories. This review mainly summarizes the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole-based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) inhibitors, apoptosis signal-regulating kinase 1 (ASK1) inhibitors, somatostatin receptor subtype-4 (SSTR4) agonist, several other druggable targets, molecular modelling studies, as well as various methodologies for the synthesis of triazoles containing molecules such as click reaction, Pellizzari reaction, and Einhorn- Brunner reaction.

Keywords: Alzheimer’s disease, 1, 2, 3-triazole, 4-triazole, Aβ-amyloid, tau proteins, phosphodiesterase 1 inhibitors, Pellizzari reaction, molecular docking.

« Previous
Graphical Abstract

[1]
Alzheimer’s Association. Facts and figures report. Alzheimer’s Association 2020; 2020: 1-91.
[2]
2020 Alzheimer’s Disease facts and figures. Alzheimers Dement 2020; 16(3): 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[3]
Mcgill-carter T. Market analysis Alzheimers disease 2020. J Psychiatry 2020; 22(6): 21-2.
[4]
Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[5]
Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev Res 2020; 81(2): 165-83.
[http://dx.doi.org/10.1002/ddr.21587] [PMID: 31820476]
[6]
Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: A patent review (2008 - 2011). Expert Opin Ther Pat 2013; 23(3): 319-31.
[http://dx.doi.org/10.1517/13543776.2013.749862] [PMID: 23289412]
[7]
George T, Mehta DV, Tahilramani R, David J, Talwalker PK. Synthesis of some s-triazoles with potential analgetic and antiinflammatory activities. J Med Chem 1971; 14(4): 335-8.
[http://dx.doi.org/10.1021/jm00286a016] [PMID: 5553747]
[8]
Cui LJ, Xie ZF, Piao HR, Li G, Chai KY, Quan ZS. Synthesis and anticonvulsant activity of 1-substituted-7-benzyloxy-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoline. Biol Pharm Bull 2005; 28(7): 1216-20.
[http://dx.doi.org/10.1248/bpb.28.1216] [PMID: 15997101]
[9]
Al-Soud YA, Al-Dweri MN, Al-Masoudi NA. Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives. Farmaco 2004; 59(10): 775-83.
[http://dx.doi.org/10.1016/j.farmac.2004.05.006] [PMID: 15474054]
[10]
Huang M, Deng Z, Tian J, Liu T. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. Eur J Med Chem 2017; 127: 900-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.067] [PMID: 27876192]
[11]
Zhang X, Rakesh KP, Shantharam CS, et al. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg Med Chem 2018; 26(2): 340-55.
[http://dx.doi.org/10.1016/j.bmc.2017.11.026] [PMID: 29269253]
[12]
Bonache MA, Moreno-Fernández S, Miguel M, Sabater-Muñoz B, González-Muñiz R. Small library of triazolyl polyphenols correlating antioxidant activity and stability with number and position of hydroxyl groups. ACS Comb Sci 2018; 20(12): 694-9.
[http://dx.doi.org/10.1021/acscombsci.8b00118] [PMID: 30372022]
[13]
Gujjar R, Marwaha A, El Mazouni F, et al. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogen-ase inhibitor with antimalarial activity in mice. J Med Chem 2009; 52(7): 1864-72.
[http://dx.doi.org/10.1021/jm801343r] [PMID: 19296651]
[14]
Qin HL, Zhang ZW, Lekkala R, Alsulami H, Rakesh KP. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur J Med Chem 2020; 193: 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[15]
Liu J, Liu Q, Yang X, et al. Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates. Bioorg Med Chem 2013; 21(24): 7742-51.
[http://dx.doi.org/10.1016/j.bmc.2013.10.017] [PMID: 24200932]
[16]
Kane JM, Dudley MW, Sorensen SM, Miller FP. 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. J Med Chem 1988; 31(6): 1253-8.
[http://dx.doi.org/10.1021/jm00401a031] [PMID: 3373495]
[17]
Hester JB Jr, VonVoigtlander P, Evenson GN. 6-(Substituted-amino)-4H-s-triazolo[4,3-a][1,4]benzodiazepines and 4-(substituted-amino)-6H-s-triazolo[4,3-a][1,4]benzodiazepines with potential antianxiety activity. J Med Chem 1980; 23(8): 873-7.
[http://dx.doi.org/10.1021/jm00182a012] [PMID: 6105215]
[18]
Ko K, Kim HJ, Ho PS, et al. Discovery of a novel highly selective histamine H4 receptor antagonist for the treatment of atopic dermatitis. J Med Chem 2018; 61(7): 2949-61.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01855] [PMID: 29579390]
[19]
Boechat N, Ferreira VF, Ferreira SB, et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem 2011; 54(17): 5988-99.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[20]
Mohamed MAA, Abd Allah OA, Bekhit AA, Kadry AM, El-Saghier AMM. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J Heterocycl Chem 2020; 57(6): 2365-78.
[http://dx.doi.org/10.1002/jhet.3951]
[21]
Tronci E, Simola N, Borsini F, et al. Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: Acute and subchronic studies in rats. Eur J Pharmacol 2007; 566(1-3): 94-102.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.021] [PMID: 17445798]
[22]
Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162: 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[23]
Boukhssas S, Aouine Y, Faraj H, Alami A, El Hallaoui A, Bekkari H. Synthesis, characterization, and antibacterial activity of diethyl 1-((4-Methyl-2-Phenyl-4,5-Dihydrooxazol-4-Yl)Methyl)-1 H -1,2,3-triazole-4,5-dicarboxylate. J Chem 2017; 2017(1): 1-6.
[http://dx.doi.org/10.1155/2017/4238360]
[24]
Qin HL, Zhang ZW, Ravindar L, Rakesh KP. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur J Med Chem 2020; 207: 112832.
[http://dx.doi.org/10.1016/j.ejmech.2020.112832] [PMID: 32971428]
[25]
da Silva F de C, de Souza MCBV, Frugulhetti IIP, et al. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 2009; 44(1): 373-83.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[26]
Shalini K, Kumar N, Drabu S, Sharma PK. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem 2011; 7: 668-77.
[http://dx.doi.org/10.3762/bjoc.7.79] [PMID: 21804864]
[27]
Láinez MJA. Rizatriptan in the treatment of migraine. Neuropsychiatr Dis Treat 2006; 2(3): 247-59.
[http://dx.doi.org/10.2147/nedt.2006.2.3.247] [PMID: 19412472]
[28]
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22(10): 1572-81.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[29]
Agalave SG, Maujan SR, Pore VS. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 2011; 6(10): 2696-718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[30]
Xu M, Peng Y, Zhu L, Wang S, Ji J, Rakesh KP. Triazole derivatives as inhibitors of Alzheimer’s disease: Current developments and structure-activity relationships. Elsevier Masson SAS 2019; 180: 656-72.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.059] [PMID: 31352246]
[31]
Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2011; 26(1): 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[32]
Sahu JK, Ganguly S, Kaushik A. Triazoles: A valuable insight into recent developments and biological activities. Chin J Nat Med 2013; 11(5): 456-65.
[http://dx.doi.org/10.1016/S1875-5364(13)60084-9] [PMID: 24359767]
[33]
Asif M. Biological potentials of biological active triazole derivatives: A short review. Organic Chemistry Current Research 2016; 5(4): 2-9.
[http://dx.doi.org/10.4172/2161-0401.1000173]
[34]
Breugst M, Reissig HU. The huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. Angew Chem Int Ed Engl 2020; 59(30): 12293-307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[35]
Sharpless WD, Wu P, Hansen TV, Lindberg JG. Just click it: Undergraduate procedures for the copper(I)-catalyzed formation of 1,2,3-triazoles from azides and terminal acetylenes. J Chem Educ 2005; 82(12): 1833-6.
[http://dx.doi.org/10.1021/ed082p1833]
[36]
Zhang L, Chen X, Xue P, et al. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 2005; 127(46): 15998-9.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[37]
Hui R, Zhao M, Chen M, Ren Z, Guan Z. One-pot synthesis of 4-Aryl-NH-1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN3. Chin J Chem 2017; 35(12): 1808-12.
[http://dx.doi.org/10.1002/cjoc.201700367]
[38]
Barluenga J, Valdés C, Beltrán G, Escribano M, Aznar F. Developments in Pd catalysis: Synthesis of 1H-1,2,3-triazoles from sodium azide and alkenyl bromides. Angew Chem Int Ed 2006; 45(41): 6893-6.
[http://dx.doi.org/10.1002/anie.200601045] [PMID: 17001730]
[39]
Yang L, Wu Y, Yang Y, Wen C, Wan JP. Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide. Beilstein J Org Chem 2018; 14: 2348-53.
[http://dx.doi.org/10.3762/bjoc.14.210] [PMID: 30254699]
[40]
Shelke GM, Rao VK, Jha M, Cameron TS, Kumar A. Microwave-assisted catalyst-free synthesis of substituted 1,2,4-triazoles. Synlett 2015; 26(3): 404-7.
[http://dx.doi.org/10.1055/s-0034-1379734]
[41]
Einhorn A, Bischkopff E, Szelinski B, et al. Ueber die Nmethylolverbindungen der säureamide. Justus Liebigs Ann Chem 1905; 343(3): 207-305. [Erste Abhandlung.].
[http://dx.doi.org/10.1002/jlac.19053430207]
[42]
Bartus RT. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000; 163(2): 495-529.
[http://dx.doi.org/10.1006/exnr.2000.7397] [PMID: 10833325]
[43]
Muley S S, Kavitha M, Lade D, et al. Application of 1,4,5-trisubstituted-1,2,3-triazoles as acetylcholinesterase inhibitors. Indo Am j pharm res 2015; 4(2231-6878): 2231-6876.
[44]
Mohammadi-Khanaposhtani M, Saeedi M, Zafarghandi NS, et al. Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur J Med Chem 2015; 92: 799-806.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.044] [PMID: 25636055]
[45]
Bagheri SM, Khoobi M, Nadri H, et al. Synthesis and anticholinergic activity of 4-hydroxycoumarin derivatives containing substituted benzyl-1,2,3-triazole moiety. Chem Biol Drug Des 2015; 86(5): 1215-20.
[http://dx.doi.org/10.1111/cbdd.12588] [PMID: 26010139]
[46]
Mohammadi-Khanaposhtani M, Mahdavi M, Saeedi M, et al. Design, synthesis, biological evaluation, and docking study of acetylcho-linesterase inhibitors: New acridone-1,2,4-oxadiazole-1,2,3-triazole hybrids. Chem Biol Drug Des 2015; 86(6): 1425-32.
[http://dx.doi.org/10.1111/cbdd.12609] [PMID: 26077890]
[47]
Saeedi M, Ansari S, Mahdavi M, et al. Synthesis of novel 1,2,3-triazole-dihydro[3,2-c[chromenones as acetylcholinesterase inhibitors. Synth Commun 2015; 45(20): 2311-8.
[http://dx.doi.org/10.1080/00397911.2015.1077971]
[48]
Mantoani SP, Chierrito TPC, Vilela AFL, Cardoso CL, Martínez A, Carvalho I. Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors. Molecules 2016; 21(2): 1-12.
[http://dx.doi.org/10.3390/molecules21020193] [PMID: 26861273]
[49]
Li JC, Zhang J, Rodrigues MC, et al. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuro-protective activity. Bioorg Med Chem Lett 2016; 26(16): 3881-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.017] [PMID: 27426301]
[50]
Saeedi M, Safavi M, Karimpour-Razkenari E, et al. Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer’s disease. Bioorg Chem 2017; 70: 86-93.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.011] [PMID: 27914694]
[51]
Najafi Z, Mahdavi M, Saeedi M, et al. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 2017; 125: 1200-12.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.008] [PMID: 27863370]
[52]
Wu G, Gao Y, Kang D, et al. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm 2017; 9(1): 149-59.
[http://dx.doi.org/10.1039/C7MD00457E] [PMID: 30108908]
[53]
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents. Mol Divers 2020; 24(3): 641-54.
[http://dx.doi.org/10.1007/s11030-019-09970-3] [PMID: 31327094]
[54]
Najafi Z, Mahdavi M, Saeedi M, et al. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg Chem 2019; 83: 303-16.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.056] [PMID: 30396115]
[55]
Le-Nhat-Thuy G, Nguyen Thi N, Pham-The H, et al. Synthesis and biological evaluation of novel quinazoline-triazole hybrid com-pounds with potential use in Alzheimer’s disease. Bioorg Med Chem Lett 2020; 30(18): 127404.
[http://dx.doi.org/10.1016/j.bmcl.2020.127404] [PMID: 32717612]
[56]
Kumar J, Gill A, Shaikh M, et al. Pyrimidine-triazolopyrimidine and pyrimidine-pyridine hybrids as potential acetylcholinesterase inhibi-tors for Alzheimer’s Disease. ChemistrySelect 2018; 3(2): 736-47.
[http://dx.doi.org/10.1002/slct.201702599]
[57]
Özil M, Balaydın HT, Şentürk M. Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investi-gation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorg Chem 2019; 86: 705-13.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.045] [PMID: 30836234]
[58]
Santos SN, Alves De Souza G, Pereira TM, et al. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. RSC Advances 2019; 9(35): 20356-69.
[http://dx.doi.org/10.1039/C9RA04105B]
[59]
Siddiqui SZ, Arfan M, Abbasi MA, et al. Discovery of dual inhibitors of acetyl and butrylcholinesterase and antiproliferative activity of 1,2,4-triazole-3-thiol: Synthesis and in silico molecular study. ChemistrySelect 2020; 5(21): 6430-9.
[http://dx.doi.org/10.1002/slct.201904905]
[60]
Cai Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease. (Review). Mol Med Rep 2014; 9(5): 1533-41.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[61]
Di Pietro O, Alencar N, Esteban G, et al. Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors. Bioorg Med Chem 2016; 24(20): 4835-54.
[http://dx.doi.org/10.1016/j.bmc.2016.06.045] [PMID: 27396685]
[62]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[63]
Kaur A, Narang SS, Kaur A, et al. Multifunctional mono-triazole derivatives inhibit Aβ42 Aggregation and Cu2+-mediated aβ42 aggregation and protect against aβ42-induced cytotoxicity. Chem Res Toxicol 2019; 32(9): 1824-39.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00168] [PMID: 31402645]
[64]
Kaur A, Kaur A, Goyal D, Goyal B. How does the mono-triazole derivative modulate Aβ42 aggregation and disrupt a protofibril structure: Insights from molecular dynamics simulations. ACS Omega 2020; 5(25): 15606-19.
[http://dx.doi.org/10.1021/acsomega.0c01825] [PMID: 32637837]
[65]
Kaur A, Mann S, Kaur A, et al. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s disease. Bioorg Chem 2019; 87: 572-84.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.058] [PMID: 30928879]
[66]
Kaur A, Shuaib S, Goyal D, Goyal B. Interactions of a multifunctional di-triazole derivative with Alzheimer’s Aβ42 monomer and Aβ42 protofibril: A systematic molecular dynamics study. Phys Chem Chem Phys 2020; 22(3): 1543-56.
[http://dx.doi.org/10.1039/C9CP04775A] [PMID: 31872820]
[67]
Wang W, Wang W, Yao G, et al. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 151: 351-62.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.082] [PMID: 29635167]
[68]
Das S, Smid SD. Identification of dibenzyl imidazolidine and triazole acetamide derivatives through virtual screening targeting amyloid beta aggregation and neurotoxicity in PC12 cells. Eur J Med Chem 2017; 130: 354-64.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.057] [PMID: 28273562]
[69]
Soares HD, Gasior M, Toyn JH, et al. The γ-secretase modulator, BMS-932481, modulates Aβ peptides in the plasma and cerebrospinal fluid of healthy volunteers. J Pharmacol Exp Ther 2016; 358(1): 138-50.
[http://dx.doi.org/10.1124/jpet.116.232256] [PMID: 27189973]
[70]
Yngve U, Paulsen K, MacSari I, et al. Triazolopyrimidinones as γ-secretase modulators: Structure-activity relationship, modulator pro-file, and in vivo profiling. MedChemComm 2013; 4(2): 422-31.
[http://dx.doi.org/10.1039/c2md20312j]
[71]
Ratni H, Alker A, Bartels B, et al. Discovery of RO7185876, a highly potent γ-secretase modulator (GSM) as a potential treatment for alzheimer’s disease. ACS Med Chem Lett 2020; 11(6): 1257-68.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00109] [PMID: 32551009]
[72]
Coimbra JRM, Marques DFF, Baptista SJ, et al. Highlights in BACE1 inhibitors for Alzheimer’s Disease treatment. Front Chem 2018; 6: 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[73]
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg Chem 2019; 84: 363-71.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.038] [PMID: 30530107]
[74]
Iraji A, Firuzi O, Khoshneviszadeh M, et al. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur J Med Chem 2017; 141: 690-702.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.057] [PMID: 29107423]
[75]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s Disease. Front Neurosci 2018; 12: 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[76]
Jain AK, Karthikeyan C, McIntosh KD, Tiwari AK, Trivedi P, Duttkonar A. Unravelling the potency of 4,5-diamino-4h-1,2,4 triazole-3-thiol derivatives for kinase inhibition using a rational approach. New J Chem 2019; 43(3): 1202-15.
[http://dx.doi.org/10.1039/C8NJ04205E]
[77]
Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci 2012; 13(2): 2219-38.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[78]
Arunrungvichian K, Boonyarat C, Fokin VV, Taylor P, Vajragupta O. Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors. ACS Chem Neurosci 2015; 6(8): 1331-40.
[http://dx.doi.org/10.1021/acschemneuro.5b00059] [PMID: 25978789]
[79]
Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in alzheimer’s disease. Front Neurosci 2019; 13: 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[80]
Fu H, Tang W, Chen Z, et al. Synthesis and preliminary evaluations of a triazole-cored antagonist as a PET imaging probe ([18F]N2B-0518) for GluN2B subunit in the brain. ACS Chem Neurosci 2019; 10(5): 2263-75.
[http://dx.doi.org/10.1021/acschemneuro.8b00591] [PMID: 30698943]
[81]
Nabavi SM, Talarek S, Listos J, et al. Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem Toxicol Elsevier 2019; 134: 110822.
[http://dx.doi.org/10.1016/j.fct.2019.110822] [PMID: 31536753]
[82]
Dyck B, Branstetter B, Gharbaoui T, et al. Discovery of selective phosphodiesterase 1 inhibitors with memory enhancing properties. J Med Chem 2017; 60(8): 3472-83.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00302] [PMID: 28406621]
[83]
Hasegawa Y, Toyama K, Uekawa K, Ichijo H, Kim-Mitsuyama S. Role of ASK1/p38 cascade in a mouse model of alzheimer’s disease and brain aging. J Alzheimers Dis 2018; 61(1): 259-63.
[http://dx.doi.org/10.3233/JAD-170645] [PMID: 29154282]
[84]
Himmelbauer MK, Xin Z, Jones JH, et al. Rational design and optimization of a novel class of macrocyclic apoptosis signal-regulating kinase 1 inhibitors. J Med Chem 2019; 62(23): 10740-56.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01206] [PMID: 31710475]
[85]
Sandoval KE, Farr SA, Banks WA, Crider AM, Morley JE, Witt KA. Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ(42) oligomers via a metalloproteinase-dependent mechanism. Brain Res 2013; 1520: 145-56.
[http://dx.doi.org/10.1016/j.brainres.2013.05.006] [PMID: 23669069]
[86]
Daryaei I, Sandoval K, Witt K, Kontoyianni M, Michael Crider A. Discovery of a 3,4,5-trisubstituted-1,2,4-triazole agonist with high affinity and selectivity at the somatostatin subtype-4 (sst4) receptor. MedChemComm 2018; 9(12): 2083-90.
[http://dx.doi.org/10.1039/C8MD00388B] [PMID: 30746066]
[87]
Rastegari A, Nadri H, Mahdavi M, et al. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg Chem 2019; 83: 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[88]
Umar T, Gusain S, Raza MK, et al. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents. Bioorg Med Chem 2019; 27(14): 3156-66.
[http://dx.doi.org/10.1016/j.bmc.2019.06.004] [PMID: 31176571]
[89]
Pal T, Bhimaneni S, Sharma A, Flora SJS. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine-triazoles as anti-Alzheimer’s Agents. RSC Advances 2020; 10(44): 26006-21.
[http://dx.doi.org/10.1039/D0RA04942E]
[90]
de Freitas Silva M, Tardelli Lima E, Pruccoli L, et al. Design, synthesis and biological evaluation of novel triazole N-acylhydrazone hybrids for Alzheimer’s Disease. Molecules 2020; 25(14): 1-18.
[http://dx.doi.org/10.3390/molecules25143165] [PMID: 32664425]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy