Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Inorganic-organic Synergy in Nano-hybrids Makes a New Class of Drug with Targeted Delivery: Glutamate Functionalization of Iron Nanoparticles for Potential Bone Marrow Delivery and X-ray Dynamic Therapy

Author(s): Ria Ghosh, Susmita Mondal, Dipanjan Mukherjee, Aniruddha Adhikari, Maitree Bhattacharyya and Samir Kumar Pal*

Volume 19, Issue 10, 2022

Published on: 25 May, 2022

Page: [991 - 1000] Pages: 10

DOI: 10.2174/1567201819666220328142620

Price: $65

Abstract

The direct delivery of therapeutic molecules is generally inefficient and has several problems. Hence, nanomedicines with targeted and controlled delivery applications have been an exciting field of research for the past decade. In this regard, the adjustable properties of inorganic nanoparticles like particle size distribution, ability to change the targeting ligand to have a higher affinity towards the pathologic cell, and controlled delivery properties have made them indispensable for targeted drug delivery applications. Changing the ligand on the surface of the inorganic nanoparticle can direct different therapeutic molecules to different organs like the liver, spleen, kidney, bone, and even brain. However, while the other targeted nanomedicines are well-reported, the targeting of therapeutics to bone marrow cells is sparse in the literature. Hence, the administration of therapeutics for bone-related disorders, like bone metastases, leads to several problems, such as severe systemic toxicity and suboptimal efficacy. In this direction, we have shown our successful effort to functionalise a model inorganic nanoparticle (Fe2O3) by glutamate ligand which is reported to have a high affinity towards the NMDA receptors of the bone cells. We have performed spectroscopic studies to characterize the nano-hybrid. We have shown that the cargo or the Fe2O3 nanoparticle possesses the ability to generate photo-induced reactive oxygen species (ROS), thereby leading to a therapeutic opportunity for bone metastases. In addition, the nanoparticle also possesses the ability to generate enhanced ROS on X-ray irradiation, which may provide a new strategy for bone metastases and cancer therapy. Also, this paper reviews the advancement in the drug delivery applications of inorganic nanoparticles and highlights the crosstalk between the inorganic nanoparticles with the conjugated targeting ligand for efficient delivery applications.

Keywords: Nanomedicine, nanoparticles, glutamate, bone targeting, X-ray induced dynamic therapy, ROS generation.

Graphical Abstract

[1]
Zhang, Z.; Zhu, H.; Wang, X.; Yang, X. Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Mikrochim. Acta, 2011, 174(1), 183-189.
[http://dx.doi.org/10.1007/s00604-011-0600-9]
[2]
Crane, J.K. Metal nanoparticles in infection and immunity. Immunol. Invest., 2020, 49(7), 794-807.
[http://dx.doi.org/10.1080/08820139.2020.1776724] [PMID: 32524902]
[3]
Martínez-Carmona, M.; Izquierdo-Barba, I.; Colilla, M.; Vallet-Regí, M. Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomater., 2019, 96, 547-556.
[http://dx.doi.org/10.1016/j.actbio.2019.07.001] [PMID: 31279160]
[4]
Yuan, P.; Ding, X.; Yang, Y.Y.; Xu, Q.H. Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv. Healthc. Mater., 2018, 7(13), e1701392.
[http://dx.doi.org/10.1002/adhm.201701392] [PMID: 29582578]
[5]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1), e1416.
[http://dx.doi.org/10.1002/wnan.1416] [PMID: 27312983]
[6]
Hussain, S.; Joo, J.; Kang, J.; Kim, B.; Braun, G.B.; She, Z-G.; Kim, D.; Mann, A.P.; Mölder, T.; Teesalu, T.; Carnazza, S.; Guglielmino, S.; Sailor, M.J.; Ruoslahti, E. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng., 2018, 2(2), 95-103.
[http://dx.doi.org/10.1038/s41551-017-0187-5] [PMID: 29955439]
[7]
Badkas, A.; Frank, E.; Zhou, Z.; Jafari, M.; Chandra, H.; Sriram, V.; Lee, J.Y.; Yadav, J.S. Modulation of in vitro phagocytic uptake and immunogenicity potential of modified Herceptin®-conjugated PLGA-PEG nanoparticles for drug delivery. Colloids Surf. B Biointerfaces, 2018, 162, 271-278.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.001] [PMID: 29216514]
[8]
Derfus, A.M.; von Maltzahn, G.; Harris, T.J.; Duza, T.; Vecchio, K.S.; Ruoslahti, E.; Bhatia, S.N. Remotely triggered release from magnetic nanoparticles. Adv. Mater., 2007, 19(22), 3932-3936.
[http://dx.doi.org/10.1002/adma.200700091]
[9]
Hua, X.; Tan, S.; Bandara, H.M.; Fu, Y.; Liu, S.; Smyth, H.D. Externally controlled triggered-release of drug from PLGA micro and nanoparticles. PLoS One, 2014, 9(12), e114271.
[http://dx.doi.org/10.1371/journal.pone.0114271] [PMID: 25479357]
[10]
Tee, J.K.; Peng, F.; Ho, H.K. Effects of inorganic nanoparticles on liver fibrosis: Optimizing a double-edged sword for therapeutics. Biochem. Pharmacol., 2019, 160, 24-33.
[http://dx.doi.org/10.1016/j.bcp.2018.12.003] [PMID: 30529191]
[11]
Prakash, S.; Malhotra, M.; Shao, W.; Tomaro-Duchesneau, C.; Abbasi, S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1340-1351.
[http://dx.doi.org/10.1016/j.addr.2011.06.013] [PMID: 21756952]
[12]
Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release, 2014, 185, 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[13]
Patel, T.; Zhou, J.; Piepmeier, J.M.; Saltzman, W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 701-705.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[14]
Adhikari, A.; Mondal, S.; Das, M.; Biswas, P.; Pal, U.; Darbar, S.; Bhattacharya, S.S.; Pal, D.; Saha-Dasgupta, T.; Das, A.K.; Mallick, A.K.; Pal, S.K. Incorporation of a biocompatible nanozyme in cellular antioxidant enzyme cascade reverses huntington’s like disorder in preclinical model. Adv. Healthc. Mater., 2021, 10(7), e2001736.
[http://dx.doi.org/10.1002/adhm.202001736] [PMID: 33326181]
[15]
Adhikari, A.; Polley, N.; Darbar, S.; Bagchi, D.; Pal, S.K. Citrate functionalized Mn3O4 in nanotherapy of hepatic fibrosis by oral administration. Future Sci. OA, 2016, 2(4), FSO146.
[http://dx.doi.org/10.4155/fsoa-2016-0029] [PMID: 28116129]
[16]
Mondal, S.; Adhikari, A.; Das, M.; Darbar, S.; Alharbi, A.; Ahmed, S.A.; Bhattacharya, S.S.; Pal, D.; Pal, S.K. Novel one pot synthesis and spectroscopic characterization of a folate-Mn3O4 nanohybrid for potential photodynamic therapeutic application. RSC Advances, 2019, 9(52), 30216-30225.
[http://dx.doi.org/10.1039/C9RA06835J]
[17]
Adhikari, A.; Mondal, S.; Chatterjee, T.; Das, M.; Biswas, P.; Ghosh, R.; Darbar, S.; Alessa, H.; Althakafy, J.T.; Sayqal, A.; Ahmed, S.A.; Das, A.K.; Bhattacharyya, M.; Pal, S.K. Redox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice. Commun. Biol., 2021, 4(1), 1013.
[http://dx.doi.org/10.1038/s42003-021-02546-8] [PMID: 34446827]
[18]
Mondal, S.; Ghosh, R.; Adhikari, A.; Pal, U.; Mukherjee, D.; Biswas, P.; Darbar, S.; Singh, S.; Bose, S.; Saha-Dasgupta, T.; Pal, S.K. In vitro and microbiological assay of functionalized hybrid nanomaterials to validate their efficacy in nanotheranostics: A combined spectroscopic and computational study. ChemMedChem, 2021, 16(24), 3739-3749.
[http://dx.doi.org/10.1002/cmdc.202100494] [PMID: 34550644]
[19]
Mondal, S.; Adhikari, A.; Ghosh, R.; Singh, M.; Das, M.; Darbar, S.; Bhattacharya, S.S.; Pal, D.; Pal, S.K. Synthesis and spectroscopic characterization of a target-specific nanohybrid for redox buffering in cellular milieu. MRS Adv., 2021, 6(16), 427-433.
[http://dx.doi.org/10.1557/s43580-021-00087-0]
[20]
Aznar, E.; Villalonga, R.; Giménez, C.; Sancenón, F.; Marcos, M.D.; Martínez-Máñez, R.; Díez, P.; Pingarrón, J.M.; Amorós, P. Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chem. Commun. (Camb.), 2013, 49(57), 6391-6393.
[http://dx.doi.org/10.1039/c3cc42210k] [PMID: 23749150]
[21]
Caldorera-Moore, M.; Guimard, N.; Shi, L.; Roy, K. Designer nanoparticles: Incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv., 2010, 7(4), 479-495.
[http://dx.doi.org/10.1517/17425240903579971] [PMID: 20331355]
[22]
Shi Kam, N.W.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into Mammalian cells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[23]
Srinivasarao, M.; Low, P.S. Ligand-targeted drug delivery. Chem. Rev., 2017, 117(19), 12133-12164.
[http://dx.doi.org/10.1021/acs.chemrev.7b00013] [PMID: 28898067]
[24]
Kneuer, C.; Sameti, M.; Haltner, E.G.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C.M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm., 2000, 196(2), 257-261.
[http://dx.doi.org/10.1016/S0378-5173(99)00435-4] [PMID: 10699731]
[25]
Sandhu, K.K.; McIntosh, C.M.; Simard, J.M.; Smith, S.W.; Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem., 2002, 13(1), 3-6.
[http://dx.doi.org/10.1021/bc015545c] [PMID: 11792172]
[26]
de Sousa, M.; Visani de Luna, L.A.; Fonseca, L.C.; Giorgio, S.; Alves, O.L. Folic-acid-functionalized graphene oxide nanocarrier: Synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Appl. Nano Mater., 2018, 1(2), 922-932.
[http://dx.doi.org/10.1021/acsanm.7b00324]
[27]
Stiegler, L.M.S.; Luchs, T.; Hirsch, A. Shell-by-shell functionalization of inorganic nanoparticles. Chem. Eur. J., 2020, 26(39), 8483-8498.
[http://dx.doi.org/10.1002/chem.202000195] [PMID: 32167598]
[28]
Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 2002, 23(7), 1553-1561.
[http://dx.doi.org/10.1016/S0142-9612(01)00267-8] [PMID: 11922461]
[29]
Zhang, Y.; Sun, C.; Kohler, N.; Zhang, M. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed. Microdevices, 2004, 6(1), 33-40.
[http://dx.doi.org/10.1023/B:BMMD.0000013363.77466.63] [PMID: 15307442]
[30]
Zhu, S.G.; Xiang, J.J.; Li, X.L.; Shen, S.R.; Lu, H.B.; Zhou, J.; Xiong, W.; Zhang, B.C.; Nie, X.M.; Zhou, M.; Tang, K.; Li, G.Y. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol. Appl. Biochem., 2004, 39(Pt 2), 179-187.
[http://dx.doi.org/10.1042/BA20030077] [PMID: 15032738]
[31]
Tkachenko, A.G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M.F.; Franzen, S.; Feldheim, D.L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc., 2003, 125(16), 4700-4701.
[http://dx.doi.org/10.1021/ja0296935] [PMID: 12696875]
[32]
Sawant, R.M.; Hurley, J.P.; Salmaso, S.; Kale, A.; Tolcheva, E.; Levchenko, T.S.; Torchilin, V.P. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem., 2006, 17(4), 943-949.
[http://dx.doi.org/10.1021/bc060080h] [PMID: 16848401]
[33]
Bareford, L.M.; Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev., 2007, 59(8), 748-758.
[http://dx.doi.org/10.1016/j.addr.2007.06.008] [PMID: 17659804]
[34]
Giri, A.; Goswami, N.; Pal, M.; Myint, M.T.Z.; Al-Harthi, S.; Singha, A. Rational surface modification of Mn3O4 nanoparticles to induce multiple photoluminescence and room temperature ferromagnetism. J. Mater. Chem. C, 2013, 1(9), 1885-1895.
[http://dx.doi.org/10.1039/c3tc00709j]
[35]
Giri, A.; Goswami, N.; Sasmal, C.; Polley, N.; Majumdar, D.; Sarkar, S.; Bandyopadhyay, S.N.; Singha, A.; Pal, S.K. Unprecedented catalytic activity of Mn3O4 nanoparticles: Potential lead of a sustainable therapeutic agent for hyperbilirubinemia. RSC Advances, 2014, 4(10), 5075-5079.
[http://dx.doi.org/10.1039/c3ra45545a]
[36]
dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K.A. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small, 2011, 7(23), 3341-3349.
[http://dx.doi.org/10.1002/smll.201101076] [PMID: 22009913]
[37]
Oh, W-K.; Kim, S.; Choi, M.; Kim, C.; Jeong, Y.S.; Cho, B-R.; Hahn, J.S.; Jang, J. Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano, 2010, 4(9), 5301-5313.
[http://dx.doi.org/10.1021/nn100561e] [PMID: 20698555]
[38]
Li, H-Y.; Lin, H-C.; Huang, B-J.; Kai, Lo; Kai Lo, A.Z.; Saidin, S.; Lai, C-H. Size preferences uptake of glycosilica nanoparticles to MDA-MB-231 cell. Langmuir, 2020, 36(38), 11374-11382.
[http://dx.doi.org/10.1021/acs.langmuir.0c02297] [PMID: 32902993]
[39]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[40]
Gupta, A.K.; Curtis, A.S. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25(15), 3029-3040.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.095] [PMID: 14967536]
[41]
Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231.
[http://dx.doi.org/10.1002/cbf.3266] [PMID: 28498520]
[42]
Adhikari, A.; Mondal, S.; Das, M.; Ghosh, R.; Biswas, P.; Darbar, S. Redox buffering capacity of nanomaterials as an index of ros-based therapeutics and toxicity: A preclinical animal study. ACS Biomater. Sci. Eng., 2021, 7(6), 2475-2484.
[43]
Pantarotto, D.; Partidos, C.D.; Graff, R.; Hoebeke, J.; Briand, J-P.; Prato, M.; Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc., 2003, 125(20), 6160-6164.
[http://dx.doi.org/10.1021/ja034342r] [PMID: 12785847]
[44]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[45]
Zauner, W.; Farrow, N.A.; Haines, A.M. In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density. J. Control. Release, 2001, 71(1), 39-51.
[http://dx.doi.org/10.1016/S0168-3659(00)00358-8] [PMID: 11245907]
[46]
Desai, M.P.; Labhasetwar, V.; Walter, E.; Levy, R.J.; Amidon, G.L. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res., 1997, 14(11), 1568-1573.
[http://dx.doi.org/10.1023/A:1012126301290] [PMID: 9434276]
[47]
Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70(3), 353-363.
[http://dx.doi.org/10.1016/S0168-3659(00)00367-9] [PMID: 11182205]
[48]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[49]
Elci, S.G.; Jiang, Y.; Yan, B.; Kim, S.T.; Saha, K.; Moyano, D.F.; Yesilbag Tonga, G.; Jackson, L.C.; Rotello, V.M.; Vachet, R.W. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano, 2016, 10(5), 5536-5542.
[http://dx.doi.org/10.1021/acsnano.6b02086] [PMID: 27164169]
[50]
Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed.: Nanotechnol. Biol. Med., 2015, 11(7), 1603-1611.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[51]
Chaudhuri, S.; Sardar, S.; Bagchi, D.; Dutta, S.; Debnath, S.; Saha, P.; Lemmens, P.; Pal, S.K. Photoinduced dynamics and toxicity of a cancer drug in proximity of inorganic nanoparticles under visible light. ChemPhysChem, 2016, 17(2), 270-277.
[http://dx.doi.org/10.1002/cphc.201500905] [PMID: 26563628]
[52]
Nandi, R.; Mishra, S.; Maji, T.K.; Manna, K.; Kar, P.; Banerjee, S.; Dutta, S.; Sharma, S.K.; Lemmens, P.; Saha, K.D.; Pal, S.K. A novel nanohybrid for cancer theranostics: Folate sensitized Fe2O3 nanoparticles for colorectal cancer diagnosis and photodynamic therapy. J. Mater. Chem. B, 2017, 5(21), 3927-3939.
[http://dx.doi.org/10.1039/C6TB03292C] [PMID: 32264254]
[53]
Pareta, R.A.; Taylor, E.; Webster, T.J. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology, 2008, 19(26), 265101.
[http://dx.doi.org/10.1088/0957-4484/19/26/265101] [PMID: 21828670]
[54]
Butoescu, N.; Seemayer, C.A.; Foti, M.; Jordan, O.; Doelker, E. Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 2009, 30(9), 1772-1780.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.017] [PMID: 19135244]
[55]
Cowan, R.W.; Seidlitz, E.P.; Singh, G. Glutamate signaling in healthy and diseased bone. Front. Endocrinol. (Lausanne), 2012, 3, 89.
[http://dx.doi.org/10.3389/fendo.2012.00089] [PMID: 22833735]
[56]
Quan, K.; Zhang, Z.; Ren, Y.; Busscher, H.J.; van der Mei, H.C.; Peterson, B.W. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms. J. Mater. Sci. Technol., 2021, 69, 69-78.
[http://dx.doi.org/10.1016/j.jmst.2020.08.031]
[57]
Rana, S.; Shetake, N.G.; Barick, K.C.; Pandey, B.N.; Salunke, H.G.; Hassan, P.A. Folic acid conjugated Fe3O4 magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans., 2016, 45(43), 17401-17408.
[http://dx.doi.org/10.1039/C6DT03323G] [PMID: 27731450]
[58]
Sou, K.; Goins, B.; Oyajobi, B.O.; Travi, B.L.; Phillips, W.T. Bone marrow-targeted liposomal carriers. Expert Opin. Drug Deliv., 2011, 8(3), 317-328.
[http://dx.doi.org/10.1517/17425247.2011.553218] [PMID: 21275831]
[59]
Mann, A.P.; Tanaka, T.; Somasunderam, A.; Liu, X.; Gorenstein, D.G.; Ferrari, M. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv. Mater., 2011, 23(36), H278-H282.
[http://dx.doi.org/10.1002/adma.201101541] [PMID: 21833996]
[60]
Merle, B.; Itzstein, C.; Delmas, P.D.; Chenu, C. NMDA glutamate receptors are expressed by osteoclast precursors and involved in the regulation of osteoclastogenesis. J. Cell. Biochem., 2003, 90(2), 424-436.
[http://dx.doi.org/10.1002/jcb.10625] [PMID: 14505357]
[61]
Yue, Y.; Luo, Z.; Liao, Z.; Zhang, L.; Liu, S.; Wang, M.; Zhao, F.; Cao, C.; Ding, Y.; Yue, S. Excessive activation of NMDA receptor inhibits the protective effect of endogenous bone marrow mesenchymal stem cells on promoting alveolarization in bronchopulmonary dysplasia. Am. J. Physiol. Cell Physiol., 2019, 316(6), C815-C827.
[http://dx.doi.org/10.1152/ajpcell.00392.2018] [PMID: 30917030]
[62]
Itzstein, C.; Cheynel, H.; Burt-Pichat, B.; Merle, B.; Espinosa, L.; Delmas, P.D.; Chenu, C. Molecular identification of NMDA glutamate receptors expressed in bone cells. J. Cell. Biochem., 2001, 82(1), 134-144.
[http://dx.doi.org/10.1002/jcb.1114] [PMID: 11400170]
[63]
Huang, Y.; Xiao, Z.; Guan, Z.; Shen, Y.; Jiang, Y.; Xu, X.; Huang, Z.; Zhao, C. A light-triggered self-reinforced nanoagent for targeted chemo-photodynamic therapy of breast cancer bone metastases via ER stress and mitochondria mediated apoptotic pathways. J. Control. Release, 2020, 319, 119-134.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.043] [PMID: 31883459]
[64]
Mu, C-F.; Shen, J.; Liang, J.; Zheng, H-S.; Xiong, Y.; Wei, Y-H.; Li, F. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials, 2018, 155, 191-202.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.029] [PMID: 29182960]
[65]
Si, J-C.; Xing, Y.; Peng, M-L.; Zhang, C.; Buske, N.; Chen, C.; Cui, Y-L. Solvothermal synthesis of tunable iron oxide nanorods and their transfer from organic phase to water phase. CrystEngComm, 2014, 16(4), 512-516.
[http://dx.doi.org/10.1039/C3CE41544A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy