Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

A Detailed Insight onto the Molecular and Cellular Mechanism of Action of the Antifungal Drugs Used in the Treatment of Superficial Fungal Infections

Author(s): Pranay Wal*, Nikita Saraswat and Himangi Vig

Volume 17, Issue 3, 2022

Published on: 08 June, 2022

Page: [148 - 159] Pages: 12

DOI: 10.2174/1574885517666220328141054

Price: $65

conference banner
Abstract

Background: Dermatomycosis is a type of fungal infection that can infect human skin, hair, and nails; an increasing growth of fungal infections ranging from superficial to systemic infection is alarming. Common causative agents are Candida, Cryptococcus, Aspergillus, and Pneumocystis species. A wide range of antifungal drugs is used for the treatment of mycotic infections. These antifungal drugs can be oral or topical. The topical therapy ensures reduced side effects. Some act as fungistatic, while others act as fungicidal. These drugs work by a different mechanism of action to prevent and cure fungal infections.

Objective: The effective treatment of the fungal infection includ the use of proper antifungal drug therapy. Antifungal drugs are classified into various classes. This paper focuses on understanding and interpreting the detailed molecular and cellular mechanism of action of various classes of anti-fungal drugs with their important characteristics along with the safety and efficacy data of individual drugs of the particular class.

Methods: The data selection for carrying out the respective study has been made by studying the combination of review articles and research papers from different databases, like ResearchGate, PubMed, MDPI, Elsevier, ScienceDirect, and MedCrave, ranging from the year 1972 to 2019, by using the keywords like “anti-fungal agents”, “dermatophytes”, “cutaneous candidiasis”, “superficial fungal infections”, “oral candidiasis”, “amphotericin”, “echinocandins”, “azoles”, “polyenes” “ketoconazole”, “terbinafine”, “griseofulvin”, “azoles”.

Result: Based on interpretation, it is concluded that the different classes of antifungal drugs follow the different mechanisms of action and target the fungal cell membrane, and are efficient in reducing fungal disease by their respective mechanism.

Conclusion: The prevention and cure of fungal infections can be done by oral or topical antifungal drugs aimed to destroy the fungal cell membrane. These drugs show action by their respective pathways that are either preventing the formation of ergosterol or squalene or act by inhibiting the β-1,3- glucan synthase enzyme. All the drugs are found to be effective in treating fungal infections.

Keywords: Superficial fungal infections, dermatophytes, cutaneous candidiasis, oral candidiasis, Tinea capitis, seborrheic dermatitis, antifungal agents, ketoconazole, azoles, echinocandins, fluconazole, miconazole, polyenes, nystatin, terbinafine, amphotericin, griseofulvin.

Graphical Abstract

[1]
Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control 2006; 34(10): S98-S110.
[http://dx.doi.org/10.1016/j.ajic.2006.05.295]
[2]
Benítez JM, Montáns FJ. The mechanical behavior of skin: Structures and models for the finite element analysis. Comput Struc 2017; 190: 75-107.
[http://dx.doi.org/10.1016/j.compstruc.2017.05.003]
[3]
Yannas IV. Regeneration of skin. Springer New York, NY: Tissue and Organ Regeneration in Adults 2001; pp. 89-136.
[4]
Carmichael SW. The tangled web of Langer’s lines. Clin Anat 2014; 27(2): 162-8.
[http://dx.doi.org/10.1002/ca.22278] [PMID: 24038134]
[5]
Koster MI. Making an epidermis. Ann N Y Acad Sci 2009; 1170(1): 7-10.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04363.x] [PMID: 19686098]
[6]
Rai M, Ingle AP, Pandit R, et al. Nanotechnology for the treatment of fungal infections on human skin The microbiology of skin, soft tissue, bone and joint infections. USA: Academic Press 2017; pp. 169-84.
[http://dx.doi.org/10.1016/B978-0-12-811079-9.00019-7]
[7]
Pianalto KM, Alspaugh JA. New horizons in antifungal therapy. J Fungi (Basel) 2016; 2(4): 26.
[http://dx.doi.org/10.3390/jof2040026] [PMID: 29376943]
[8]
Elewski BE. Tinea capitis: A current perspective. J Am Acad Dermatol 2000; 42(1 Pt 1): 1-20.
[http://dx.doi.org/10.1016/S0190-9622(00)90001-X] [PMID: 10607315]
[9]
Gupta AK, Sauder DN, Shear NH. Antifungal agents: An overview. Part I. J Am Acad Dermatol 1994; 30(5 Pt 1): 677-98.
[http://dx.doi.org/10.1016/S0190-9622(08)81495-8] [PMID: 8176006]
[10]
Gupta AK, Sauder DN, Shear NH. Antifungal agents: An overview. Part II. J Am Acad Dermatol 1994; 30(6): 911-33.
[http://dx.doi.org/10.1016/S0190-9622(94)70112-1] [PMID: 7619094]
[11]
Crawford F, Hollis S. Topical treatments for fungal infections of the skin and nails of the foot. Cochrane Database Syst Rev 2007; (3): CD001434.
[http://dx.doi.org/10.1002/14651858.CD001434.pub2] [PMID: 17636672]
[12]
Rotta I, Ziegelmann PK, Otuki MF, Riveros BS, Bernardo NL, Correr CJ. Efficacy of topical antifungals in the treatment of dermatophytosis: A mixed-treatment comparison meta-analysis involving 14 treatments. JAMA Dermatol 2013; 149(3): 341-9.
[http://dx.doi.org/10.1001/jamadermatol.2013.1721] [PMID: 23553036]
[13]
Sathyan G, Ritschel WA, Husain AS. Transdermal delivery of tacrine. I. Identification of a suitable delivery vehicle. Int J Pharm 1995; 114(1): 75-83.
[http://dx.doi.org/10.1016/0378-5173(94)00214-P]
[14]
Magdum C, Naikwade N, Shah R. Preparation and evaluation of fluconazole topical microemulsion. J Pharm Res 2009; 2(3): 557-61.
[15]
Banerjee M, Ghosh A, Basak S. Comparative evaluation of efficacy and safety of topical fluconazole and clotrimazole in the treatment of Tinea corporis. J Pak Assoc Dermatol 2012; 22(4): 342-9.
[16]
Gungor S, Erdal M, Aksu B. New formulation strategies in topical antifungal therapy. J Chem Dermatol Sci Appl 2013; 3: 56-65.
[17]
Silva H, Luz G, Satake C. Surfactant-based transdermal system for fluconazole skin delivery. J Nanomed Nanotechnol 2014; 5(5): 1-10.
[http://dx.doi.org/10.4172/2157-7439.1000231]
[18]
Naik A, Kalia YN, Guy RH. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharm Sci Technol Today 2000; 3(9): 318-26.
[http://dx.doi.org/10.1016/S1461-5347(00)00295-9] [PMID: 10996573]
[19]
Dismukes WE. Introduction to antifungal drugs. Clin Infect Dis 2000; 30(4): 653-7.
[http://dx.doi.org/10.1086/313748] [PMID: 10770726]
[20]
Grant SM, Clissold SP. Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs 1990; 39(6): 877-916.
[http://dx.doi.org/10.2165/00003495-199039060-00006] [PMID: 2196167]
[21]
Grant SM, Clissold SP. Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 1989; 37(3): 310-44.
[http://dx.doi.org/10.2165/00003495-198937030-00003] [PMID: 2540949]
[22]
De Keyser P, De Backer M, Massart DL, Westelinck KJ. Two-week oral treatment of tinea pedis, comparing terbinafine (250 mg/day) with itraconazole (100 mg/day): A double-blind, multicentre study. Br J Dermatol 1994; 130(s43)(Suppl. 43): 22-5.
[http://dx.doi.org/10.1111/j.1365-2133.1994.tb06089.x] [PMID: 8186137]
[23]
Fuller LC, Barton RC, Mohd Mustapa MF, et al. British association of dermatologists’ guidelines for the management of Tinea capitis 2014. Br J Dermatol 2014; 171(3): 454-63.
[http://dx.doi.org/10.1111/bjd.13196] [PMID: 25234064]
[24]
González U, Seaton T, Bergus G, Jacobson J, Martínez-Monzón C. Systemic antifungal therapy for Tinea capitis in children. Cochrane Database Syst Rev 2007; (4): CD004685.
[PMID: 17943825]
[25]
Tey HL, Tan AS, Chan YC. Meta-analysis of randomized, controlled trials comparing griseofulvin and terbinafine in the treatment of Tinea capitis. J Am Acad Dermatol 2011; 64(4): 663-70.
[http://dx.doi.org/10.1016/j.jaad.2010.02.048] [PMID: 21334096]
[26]
Babel DE, Baughman SA. Evaluation of the adult carrier state in juvenile Tinea capitis caused by Trichophyton tonsurans. J Am Acad Dermatol 1989; 21(6): 1209-12.
[http://dx.doi.org/10.1016/S0190-9622(89)70331-5] [PMID: 2584457]
[27]
Fromtling RA. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1988; 1(2): 187-217.
[http://dx.doi.org/10.1128/CMR.1.2.187] [PMID: 3069196]
[28]
Livermore DM. The need for new antibiotics. Clin Microbiol Infect 2004; 10(Suppl. 4): 1-9.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1004.x] [PMID: 15522034]
[29]
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev 2014; 114(22): 11242-71.
[http://dx.doi.org/10.1021/cr5003134] [PMID: 25337991]
[30]
Belenky P, Camacho D, Collins JJ. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep 2013; 3(2): 350-8.
[http://dx.doi.org/10.1016/j.celrep.2012.12.021] [PMID: 23416050]
[31]
Shahzan M, Sohaib AS. Smiline Girija, Vijayashree J. Priyadharsini. A computational study targeting the mutated L321F of ERG11 gene in C. albicans, associated with fluconazole resistance with bioactive compounds from Acacia nilotica. J Mycol Med 2019; 29(4): 303-9.
[http://dx.doi.org/10.1016/j.mycmed.2019.100899] [PMID: 31570303]
[32]
Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie 2016; 130: 132-45.
[http://dx.doi.org/10.1016/j.biochi.2016.05.013] [PMID: 27234616]
[33]
Nett JE, Andes DR. Antifungal agents: Spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am 2016; 30(1): 51-83.
[http://dx.doi.org/10.1016/j.idc.2015.10.012] [PMID: 26739608]
[34]
Prasad R, Shah AH, Rawal MK. Antifungals: Mechanism of action and drug resistance. Adv Exp Med Biol 2016; 892: 327-49.
[http://dx.doi.org/10.1007/978-3-319-25304-6_14] [PMID: 26721281]
[35]
Varughese L, Choubey S, Yadav M, Beniwal V. Emergence of azole therapy for cancer associated fungal infections and their potential human toxicity. Nat Prod J 2014; 4(2): 153-8.
[http://dx.doi.org/10.2174/221031550402141009100751]
[36]
Poirier JM, Berlioz F, Isnard F, Cheymol G. Marked intra- and inter-patient variability of itraconazole steady state plasma concentrations. Therapie 1996; 51(2): 163-7.
[PMID: 8763051]
[37]
Barone JA, Moskovitz BL, Guarnieri J, et al. Enhanced bioavailability of itraconazole in hydroxypropyl-β-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 1998; 42(7): 1862-5.
[http://dx.doi.org/10.1128/AAC.42.7.1862] [PMID: 9661037]
[38]
Richardson K. The discovery and profile of fluconazole. J Chemother 1990; 2(1): 51-4.
[http://dx.doi.org/10.1080/1120009X.1990.11738981] [PMID: 2332784]
[39]
Cha R, Sobel JD. Fluconazole for the treatment of candidiasis: 15 years experience. Expert Rev Anti Infect Ther 2004; 2(3): 357-66.
[http://dx.doi.org/10.1586/14787210.2.3.357] [PMID: 15482201]
[40]
Troke PF, Andrews RJ, Pye GW, Richardson K. Fluconazole and other azoles: Translation of in vitro activity to in vivo and clinical efficacy. Rev Infect Dis 1990; 12(Suppl. 3): S276-80.
[http://dx.doi.org/10.1093/clinids/12.Supplement_3.S276] [PMID: 2184505]
[41]
Dolton MJ, McLachlan AJ. Optimizing azole antifungal therapy in the prophylaxis and treatment of fungal infections. Curr Opin Infect Dis 2014; 27(6): 493-500.
[http://dx.doi.org/10.1097/QCO.0000000000000103] [PMID: 25229352]
[42]
Pound MW, Townsend ML, Dimondi V, Wilson D, Drew RH. Overview of treatment options for invasive fungal infections. Med Mycol 2011; 49(6): 561-80.
[http://dx.doi.org/10.3109/13693786.2011.560197] [PMID: 21366509]
[43]
Lass-Flörl C. Triazole antifungal agents in invasive fungal infections: A comparative review. Drugs 2011; 71(18): 2405-19.
[http://dx.doi.org/10.2165/11596540-000000000-00000] [PMID: 22141384]
[44]
Donnelly JP, De Pauw BE. Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infect 2004; 10(Suppl. 1): 107-17.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00838.x] [PMID: 14748807]
[45]
Chen SC, Tong ZS, Lee OC, et al. Clinician response to Candida organisms in the urine of patients attending hospital. Eur J Clin Microbiol Infect Dis 2008; 27(3): 201-8.
[http://dx.doi.org/10.1007/s10096-007-0427-9] [PMID: 18060438]
[46]
Faergemann J, Borgers M, Degreef H. A new ketoconazole topical gel formulation in seborrhoeic dermatitis: An updated review of the mechanism. Expert Opin Pharmacother 2007; 8(9): 1365-71.
[http://dx.doi.org/10.1517/14656566.8.9.1365] [PMID: 17563270]
[47]
Gupta AK, Lyons DC. The rise and fall of oral ketoconazole. J Cutan Med Surg 2015; 19(4): 352-7.
[http://dx.doi.org/10.1177/1203475415574970] [PMID: 25775613]
[48]
Choi FD, Juhasz MLW, Mesinkovska AN. Topical ketoconazole: A systematic review of current dermatological applications and future developments. J Dermatolog Treat 2019; 30(8): 760-71.
[http://dx.doi.org/10.1080/09546634.2019.1573309] [PMID: 30668185]
[49]
Heel RC, Brogden RN, Carmine A, Morley PA, Speight TM, Avery GS. Ketoconazole: A review of its therapeutic efficacy in superficial and systemic fungal infections. Drugs 1982; 23(1-2): 1-36.
[http://dx.doi.org/10.2165/00003495-198223010-00001] [PMID: 6276122]
[50]
Männistö PT, Mäntylä R, Nykänen S, Lamminsivu U, Ottoila P. Impairing effect of food on ketoconazole absorption. Antimicrob Agents Chemother 1982; 21(5): 730-3.
[http://dx.doi.org/10.1128/AAC.21.5.730] [PMID: 6285814]
[51]
Zhang AY, Camp WL, Elewski BE. Advances in topical and systemic antifungals. Dermatol Clin 2007; 25(2): 165-83.
[http://dx.doi.org/10.1016/j.det.2007.01.002] [PMID: 17430754]
[52]
Draelos ZD, Feldman SR, Butners V, Alió Saenz AB. Long-term safety of ketoconazole foam, 2% in the treatment of seborrheic dermatitis: Results of a phase IV, open-label study. J Drugs Dermatol 2013; 12(1): e1-6.
[PMID: 23377341]
[53]
Liu J, Warshaw EM. Allergic contact dermatitis from ketoconazole. Cutis 2014; 94(3): 112-4.
[PMID: 25279470]
[54]
Janssen Pharmaceuticals Inc. Nizoral shampoo label. 2013. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021738lbl.pdf
[55]
Center for Drug Development and Research. Nizoral AD Pharmacology. 1997. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/97/20310_NIZORAL A-D 1%25_pharmr.pdf
[56]
TEVA Pharmaceuticals. Ketoconazole cream label. 2000. Available from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/75581_Ketoconazole_prntlbl.pdf
[57]
Stiefel Laboratories Inc. Extina label. 2007. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021738lbl.pdf
[58]
Aqua Pharmaceuticals. Xolegel label. 2011. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021946s005lbl.pdf
[59]
US Food and Drug Administration. Drugs@FDA: FDA approved drug products. 2018. Available from: https://www.accessdata.fda. gov/scripts/cder/daf/index.cfm
[60]
US Food and Drug Administration. Orange book: Approved drug products with therapeutic equivalence evaluations. 2018. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/patent_ info.cfm?Product_No=001Appl_No=021946
[61]
Crowley PD, Gallagher HC. Clotrimazole as a pharmaceutical: Past, present and future. J Appl Microbiol 2014; 117(3): 611-7.
[http://dx.doi.org/10.1111/jam.12554] [PMID: 24863842]
[62]
Gupta M, Sharma V, Chauhan NS. Promising novel nanopharmaceuticals for improving topical antifungal drug delivery Nano- and Microscale Drug Delivery Systems. Amsterdam, The Netherlands: Elsevier 2017; pp. 197-228.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00011-X]
[63]
Bolla PK, Meraz CA, Rodriguez VA, et al. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules 2019; 24(17): 3139.
[http://dx.doi.org/10.3390/molecules24173139] [PMID: 31470517]
[64]
Ravani L, Esposito E, Bories C, et al. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int J Pharm 2013; 454(2): 695-702.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.015] [PMID: 23792467]
[65]
Akhtar N, Pathak K. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: Development and comparison with ethosomal gel. AAPS PharmSciTech 2012; 13(1): 344-55.
[http://dx.doi.org/10.1208/s12249-012-9754-y] [PMID: 22282041]
[66]
Alam MA, Al-Janoobi FI, Alzahrani KA, Al-Agamy MH, Abdelgalil AA, Al-Mohizea AM. In-vitro efficacies of topical microemulsions of clotrimazole and ketoconazole; and in-vivo performance of clotrimazole microemulsion. J Drug Deliv Sci Technol 2017; 39: 408-16.
[http://dx.doi.org/10.1016/j.jddst.2017.04.025]
[67]
Maheshwari RGS, Tekade RK, Sharma PA, et al. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm J 2012; 20(2): 161-70.
[http://dx.doi.org/10.1016/j.jsps.2011.10.001] [PMID: 23960788]
[68]
Santos SS, Lorenzoni A, Ferreira LM, et al. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C 2013; 33(3): 1389-94.
[http://dx.doi.org/10.1016/j.msec.2012.12.040] [PMID: 23827586]
[69]
Esposito E, Ravani L, Contado C, et al. Clotrimazole nanoparticle gel for mucosal administration. Mater Sci Eng C 2013; 33(1): 411-8.
[http://dx.doi.org/10.1016/j.msec.2012.09.007] [PMID: 25428089]
[70]
Manca ML, Usach I, Peris JE, et al. Optimization of innovative three-dimensionally-structured hybrid vesicles to improve the cutaneous delivery of Clotrimazole for the treatment of topical candidiasis. Pharmaceutics 1969; 11(6): 263-71.
[PMID: 4897900]
[71]
Godefroi EF, Heeres J, Van Cutsem J, Janssen PA. Preparation and antimycotic properties of derivatives of 1-phenethylimidazole. J Med Chem 1969; 12(5): 784-91.
[72]
Ramananda Rao G, Swamy KS, Kumari S, Sirsi M. Miconazole and its action on Candida species. Proc Soc Biol Chem India 1972; 31: 25.
[73]
Brugmans JP, Van Cutsem JM, Thienpont DC. Treatment of long-term tinea pedis with miconazole. Double-blind clinical evaluation. Arch Dermatol 1970; 102(4): 428-32.
[http://dx.doi.org/10.1001/archderm.1970.04000100076015] [PMID: 4919243]
[74]
Godts P, Vermylen P, Vancutse J. Clinical evaluation of miconazole nitrate in treatment of vaginal candidiasis. Arzneimittelforschung 1971; 21(2): 256.
[75]
Thiery M, Mrozowski BJ, Van Kets H. Miconazole, a new broad-spectrum antimycotic, in the treatment of vaginal candidosis. Mykosen 1972; 15(1): 35-7.
[http://dx.doi.org/10.1111/j.1439-0507.1972.tb02425.x] [PMID: 5059260]
[76]
Vandaele R, Uyttendaele K. Miconazole nitrate in the topical treatment of dermatomycoses. A clinical evaluation. Arzneimittelforschung 1972; 22(7): 1221-3.
[PMID: 4678134]
[77]
Pemberton MN, Oliver RJ, Theaker ED. Miconazole oral gel and drug interactions. Br Dent J 2004; 196(9): 529-31.
[http://dx.doi.org/10.1038/sj.bdj.4811224] [PMID: 15131616]
[78]
Nicolau DP, Crowe H, Nightingale CH, Quintiliani R. Bioavailability of fluconazole administered via a feeding tube in intensive care unit patients. J Antimicrob Chemother 1995; 36(2): 395-401.
[http://dx.doi.org/10.1093/jac/36.2.395] [PMID: 8522469]
[79]
Ely JW, Rosenfeld S, Seabury Stone M. Diagnosis and management of tinea infections. Am Fam Physician 2014; 90(10): 702-10.
[PMID: 25403034]
[80]
Gupta AK, Mays RR, Versteeg SG, Shear NH, Piguet V. Update on current approaches to diagnosis and treatment of onychomycosis. Expert Rev Anti Infect Ther 2018; 16(12): 929-38.
[http://dx.doi.org/10.1080/14787210.2018.1544891] [PMID: 30411650]
[81]
Gupta AK, Foley KA, Versteeg SG. New antifungal agents and new formulations against dermatophytes. Mycopathologia 2017; 182(1-2): 127-41.
[http://dx.doi.org/10.1007/s11046-016-0045-0] [PMID: 27502503]
[82]
Gayam V, Khalid M, Dahal S, Garlapati P, Gill A. Hyperacute liver injury following intravenous fluconazole: A rare case of dose-independent hepatotoxicity. J Family Med Prim Care 2018; 7(2): 451-4.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_330_17] [PMID: 30090793]
[83]
Balfour JA, Faulds D. Terbinafine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs 1992; 43(2): 259-84.
[http://dx.doi.org/10.2165/00003495-199243020-00010] [PMID: 1372222]
[84]
Ghannoum MA, Rice LB. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999; 12(4): 501-17.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[85]
Lanyi JK, Plachy WZ, Kates M. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene. Biochemistry 1974; 13(24): 4914-20.
[http://dx.doi.org/10.1021/bi00721a006] [PMID: 4373043]
[86]
Ryder NS, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother 1997; 8: 275-88.
[87]
Elewski BE. Mechanisms of action of systemic antifungal agents. J Am Acad Dermatol 1993; 28(5 Pt 1): S28-34.
[http://dx.doi.org/10.1016/S0190-9622(09)80305-8] [PMID: 8496409]
[88]
Abdel-Rahman SM, Nahata MC. Oral terbinafine: A new antifungal agent. Ann Pharmacother 1997; 31(4): 445-56.
[http://dx.doi.org/10.1177/106002809703100412] [PMID: 9101008]
[89]
Gupta AK, Mays RR, Versteeg SG, et al. Tinea capitis in children: A systematic review of management. J Eur Acad Dermatol Venereol 2018; 32(12): 2264-74.
[http://dx.doi.org/10.1111/jdv.15088] [PMID: 29797669]
[90]
Krishnan-Natesan S. Terbinafine: A pharmacological and clinical review. Expert Opin Pharmacother 2009; 10(16): 2723-33.
[http://dx.doi.org/10.1517/14656560903307462] [PMID: 19874252]
[91]
Schäfer-Korting M, Schoellmann C, Korting HC. Fungicidal activity plus reservoir effect allow short treatment courses with terbinafine in Tinea pedis. Skin Pharmacol Physiol 2008; 21(4): 203-10.
[http://dx.doi.org/10.1159/000135636] [PMID: 18509254]
[92]
Gupta1 AK, Yokou M, Arika T, Bucks D. Evaluation of the in vitro and in vivo efficacy of butenafine hydrochloride cream 1% against Malassezia furfur species and seborrheic dermatitis. J Dermatolog Treat 2000; 11(2): 79-83.
[http://dx.doi.org/10.1080/09546630050517450]
[93]
Koga H, Nanjoh Y, Makimura K, Tsuboi R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med Mycol 2009; 47(6): 640-7.
[http://dx.doi.org/10.1080/13693780802541518] [PMID: 19115136]
[94]
Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M. Amphotericin biosynthesis in Streptomyces nodosus: Deductions from analysis of polyketide synthase and late genes. Chem Biol 2001; 8(7): 713-23.
[http://dx.doi.org/10.1016/S1074-5521(01)00046-1] [PMID: 11451671]
[95]
Baginski M, Czub J. Amphotericin B and its new derivatives - mode of action. Curr Drug Metab 2009; 10(5): 459-69.
[http://dx.doi.org/10.2174/138920009788898019] [PMID: 19689243]
[96]
Laniado-Laborín R, Cabrales-Vargas MN, Amphotericin B, Amphotericin B. Side effects and toxicity. Rev Iberoam Micol 2009; 26(4): 223-7.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[97]
Chapman S. Principles and practice of infectious diseases. In: Blastomyces dermatitidis. Mandell G L, Douglas RG, Jr., Bennett JE, Eds.: Churchill Livingstone Inc., New York, USA, Ed. 1990; p. 1999-2008.
[98]
Parente-Rocha JA, Bailão AM, Amaral AC, et al. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: An overview about endemic dimorphic fungi. Mediators Inflamm 2017; 2017: 9870679.
[http://dx.doi.org/10.1155/2017/9870679] [PMID: 28694566]
[99]
Fujita K, Tatsumi M, Ogita A, Kubo I, Tanaka T. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J 2014; 281(4): 1304-13.
[http://dx.doi.org/10.1111/febs.12706] [PMID: 24393541]
[100]
Hamill RJ. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[101]
Sklenár Z, Scigel V, Horácková K, Slanar O. Compounded preparations with nystatin for oral and oromucosal administration. Acta Pol Pharm 2013; 70(4): 759-62.
[PMID: 23923400]
[102]
Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: The expanding antifungal armamentarium. Clin Infect Dis 2015; 61(6)(Suppl. 6): S604-11.
[http://dx.doi.org/10.1093/cid/civ814] [PMID: 26567277]
[103]
Eschenauer G, Depestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag 2007; 3(1): 71-97.
[http://dx.doi.org/10.2147/tcrm.2007.3.1.71] [PMID: 18360617]
[104]
Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 2017; 8(2): 186-97.
[http://dx.doi.org/10.1080/21505594.2016.1201250] [PMID: 27325145]
[105]
Feldmesser M, Kress Y, Mednick A, Casadevall A. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 2000; 182(6): 1791-5.
[http://dx.doi.org/10.1086/317614] [PMID: 11069257]
[106]
Kelly BP. Superficial fungal infections. Pediatr Rev 2012; 33(4): e22-37.
[http://dx.doi.org/10.1542/pir.33.4.e22] [PMID: 22474120]
[107]
Shehabeldine A, El-Hamshary H, Hasanin M, El-Faham A, Al-Sahly M. Enhancing the antifungal activity of griseofulvin by incorporation a green biopolymer-based nanocomposite. Polymers (Basel) 2021; 13(4): 542.
[http://dx.doi.org/10.3390/polym13040542] [PMID: 33673135]
[108]
Kawabe Y, Mizuno N, Miwa N, Sakakibara S. Photosensitivity induced by griseofulvin. Photodermatology 1988; 5(6): 272-4.
[PMID: 3249685]
[109]
Alkeswania A, Cantrellb W, Elewsk B. Treatment of Tinea capitis. Skin Appendage Disord 2019; 5(4): 201-10.
[http://dx.doi.org/10.1159/000495909]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy