Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

An Overview of Microbial α-amylase and Recent Biotechnological Developments

Author(s): Rajendra Singh, Si Wouk Kim, Anila Kumari and Praveen Kumar Mehta*

Volume 11, Issue 1, 2022

Published on: 08 June, 2022

Page: [11 - 26] Pages: 16

DOI: 10.2174/2211550111666220328141044

Price: $65

conference banner
Abstract

The α-amylase is one of the most promising commercial enzymes with tremendous applications in various industries. Microbial α-amylase shares almost 25-30% of the enzyme market due to its catalytic function in several industries, including sugar, detergent, paper, textile, pharmaceutical industries, etc. The α-amylase hydrolyzes glycosidic linkages of structural components of starch, resulting in maltose, glucose, and high fructose syrups. Starch, the second most abundant organic substance on the Earth, is a readily available, low-cost renewable substrate mainly used in biorefinery and food industries. Amylases are ubiquitous in nature due to their involvement in carbohydrate metabolism. The α-amylases of microbial origin have technical advantages as compared to animal and plant origin. Considering physicochemical properties, bacterial α-amylases are most diverse. However, for industrial purposes, these properties of the biocatalyst, either individually or in a combination, are required to modify through genetic and protein engineering according to the targeted process. The review presents an overview of the current findings of microbial sourced α- amylases, commercial applications, market trends in relevant industries, and achieved improvements in thermostability, catalytic function, pH tolerance, substrate, and product specificities through recombinant DNA technology and protein engineering.

Keywords: Microbial activity, α-amylase, starch, industrial application, protein engineering, biotechnological developments.

Graphical Abstract

[1]
Liu L, Yang H, Shin HD, et al. How to achieve high-level expression of microbial enzymes: Strategies and perspectives. Bioengineered 2013; 4(4): 212-23.
[http://dx.doi.org/10.4161/bioe.24761] [PMID: 23686280]
[2]
Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: Industrial progress in 21st century 3 Biotech 2016; 6: 174.
[http://dx.doi.org/10.1007/s13205-016-0485-8]
[3]
de Souza PM, de Oliveira Magalhães P. Application of microbial α-amylase in industry - A review. Braz J Microbiol 2010; 41(4): 850-61.
[http://dx.doi.org/10.1590/S1517-83822010000400004] [PMID: 24031565]
[4]
Illanes A, Cauerhff A, Wilson L, Castro GR. Recent trends in biocatalysis engineering. Bioresour Technol 2012; 115: 48-57.
[http://dx.doi.org/10.1016/j.biortech.2011.12.050] [PMID: 22424920]
[5]
Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol Adv 2015; 33(7): 1443-54.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.014] [PMID: 25747291]
[6]
Adrio JL, Demain AL. Microbial enzymes: Tools for biotechnological processes. Biomolecules 2014; 4(1): 117-39.
[http://dx.doi.org/10.3390/biom4010117] [PMID: 24970208]
[7]
Enzymes market size, share & trends analysis report by application (industrial enzymes, specialty enzymes), by product (carbohydrase, proteases, lipases), by source, by region, and segment forecasts, 2020 – 2027 2020. Available from: https://www. grandviewre-search.com/industry-analysis/enzymes-industry Accessed on June 20th 2021.
[8]
Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α- amylases: A biotechnological perspective. Process Biochem 2003; 38(11): 1599-616.
[http://dx.doi.org/10.1016/S0032-9592(03)00053-0]
[9]
Li S, Yang X, Yang S, Zhu M, Wang X. Technology prospecting on enzymes: Application, marketing and engineering. Comput Struct Biotechnol J 2012; 2(3): e201209017.
[http://dx.doi.org/10.5936/csbj.201209017] [PMID: 24688658]
[10]
The Amylase Research Society of Japan. Data on individual amylases. In: Handbook of amylase and related enzymes-their sources, isola-tion methods, properties and applications. Oxford: Pergamon 1988; pp. 18-124.
[11]
El-Enshasy HA, Abdel FYR, Othman NZ. Amylases: Characteristics, sources, production, and applications. In: Bioprocessing Technolo-gies in Biorefinery for Sustainable Production of Fuels, Chemical and Polymer. Hoboken: Wiley 2013; pp. 111-30.
[http://dx.doi.org/10.1002/9781118642047.ch7]
[12]
Singh R, Mittal A, Kumar M, Mehta PK. Amylases: A note on current applications. Int Res J Biol Sci 2016; 5(11): 27-32.
[13]
Elyasi FB, Ahmadi Y, Yari KA, Dilmaghani A. Microbial alpha-amylase production: Progress, challenges and perspectives. Adv Pharm Bull 2020; 10(3): 350-8.
[http://dx.doi.org/10.34172/apb.2020.043] [PMID: 32665893]
[14]
Gopinath S, Sugunan S. Enzymes immobilized on montmorillonite K 10: Effect of adsorption and grafting on the surface properties and the enzyme activity. Appl Clay Sci 2007; 35(1–2): 67-75.
[http://dx.doi.org/10.1016/j.clay.2006.04.007]
[15]
Rajagopalan G, Krishnan C. α-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate Bioresour Technol 2008; 99(8): 3044-50.
[http://dx.doi.org/10.1016/j.biortech.2007.06.001] [PMID: 17644331]
[16]
Rana N, Walia A, Gaur A. Alpha-amylases from microbial sources and its potential applications in various industries. Natl Acad Sci Lett 2013; 36(1): 9-17.
[http://dx.doi.org/10.1007/s40009-012-0104-0]
[17]
Gusakov AV, Kondratyeva EG, Sinitsyn AP. Comparison of two methods for assaying reducing sugars in the determination of carbohy-drase activities. Int J Anal Chem 2011; 2011: 283658.
[http://dx.doi.org/10.1155/2011/283658] [PMID: 21647284]
[18]
Burhan AU, Nisa C, Gökhan C, Ömer AA, Osman G. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant α-amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 2003; 38: 1397-403.
[http://dx.doi.org/10.1016/S0032-9592(03)00037-2]
[19]
Vyas G, Sharma N, Sharma N. Purification and characterization of α-amylase from a novel thermoalkalophilic strain of Bacillus sonorensis GV2 isolated from mushroom compost. Int Res J Pure Appl Chem 2019; 25: 1-4.
[http://dx.doi.org/10.9734/irjpac/2019/v19i330111]
[20]
Pranay K, Padmadeo SR, Prasad B. Production of amylase from Bacillus subtilis sp. strain KR1 under solid state fermentation on different agrowastes. Biocatal Agric Biotechnol 2019; 21: 101300.
[http://dx.doi.org/10.1016/j.bcab.2019.101300]
[21]
Almalki MA. Solid state fermentation of agro-residues for the production of amylase from Bacillus subtilis for industrial applications. Int J Curr Microbiol Appl Sci 2018; 7(3): 1341-8.
[http://dx.doi.org/10.20546/ijcmas.2018.703.160]
[22]
Chowdary AR, Palkar OP, Walawalkar AK. Optimization of amylase production from Bacillus cereus using solid state fermentation. J Biotech Res 2018; 4(8): 58-65.
[23]
Dou S, Chi N, Zhou X, Zhang Q, Pang F, Xiu Z. Molecular cloning, expression, and biochemical characterization of a novel cold-active α-amylase from Bacillus sp. dsh19-1. Extremophiles 2018; 22(5): 739-49.
[http://dx.doi.org/10.1007/s00792-018-1034-7] [PMID: 29936543]
[24]
Sudan SK, Kumar N, Kaur I, Sahni G. Production, purification and characterization of raw starch hydrolyzing thermostable acidic α-amylase from hot springs, India. Int J Biol Macromol 2018; 117: 831-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.231] [PMID: 29864538]
[25]
Afrisham S, Badoei-Dalfard A, Namaki-Shoushtari A, Karami Z. Characterization of a thermostable, CaCl2-activated and raw-starch hy-drolyzing alpha-amylase from Bacillus licheniformis AT70: Production under solid state fermentation by utilizing agricultural wastes. J Mol Catal, B Enzym 2016; 132: 98-106.
[http://dx.doi.org/10.1016/j.molcatb.2016.07.002]
[26]
Paul JS, Lall BM, Jadhav SK, Tiwari KL. Parameter’s optimization and kinetics study of alpha-amylase enzyme of Bacillus sp. MB6 iso-lated from vegetable waste. Process Biochem 2017; 52: 123-9.
[http://dx.doi.org/10.1016/j.procbio.2016.10.005]
[27]
Salim AA, Grbavčić S, Šekuljica N, et al. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresour Technol 2017; 228: 193-200.
[http://dx.doi.org/10.1016/j.biortech.2016.12.081] [PMID: 28063362]
[28]
Abou-Elela G, El-Sersy NA, Wefky SH. Statistical optimization of cold adapted alpha-amylase production by free and immobilized cells of Nocardiopsis aegyptia. J Appl Sci Res 2009; 5(3): 286-92.
[29]
Nithya K, Muthukumar C, Kadaikunnan S, Alharbi NS, Khaled JM, Dhanasekaran D. Purification, characterization, and statistical optimization of a thermostable alpha-amylase from desert actinobacterium Streptomyces fragilis DA7-7 3 Biotech 2017; 7(5): 350.
[http://dx.doi.org/10.1007/s13205-017-0981-5]
[30]
Jun H, Kieselbach T, Jönsson LJ. Enzyme production by filamentous fungi: Analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Fact 2011; 10(1): 68.
[http://dx.doi.org/10.1186/1475-2859-10-68] [PMID: 21861877]
[31]
Kalia S, Bhattacharya A, Prajapati SK, Malik A. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application. Chemosphere 2021; 279: 130554.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130554]
[32]
Aliyah A, Alamsyah G, Ramadhani R, Hermansyah H. Production of α-amylase and β- glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia 2017; 136: 418-23.
[http://dx.doi.org/10.1016/j.egypro.2017.10.269]
[33]
Abdullah R, Nadeem S, Iqtedar M, Kaleem A, Iftikhar T, Naz S. Influence of growth conditions on enhanced production of alpha amylase from Penicillium species in solid state fermentation. Indian J Biotechnol 2017; 16(3): 426-32.
[34]
Sahnoun M, Kriaa M, Elgharbi F, Ayadi DZ, Bejar S, Kammoun R. Aspergillus oryzae S2 alpha-amylase production under solid state fer-mentation: Optimization of culture conditions. Int J Biol Macromol 2015; 75: 73-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.026] [PMID: 25617840]
[35]
Ahmed K, Munawar S, Khan MA. Cultural conditions for maximum alpha-amylase production by Penicillium notatum IBGE 03 using shaken flask technique of submerged fermentation. Pure Appl Biol 2015; 4(3): 306-12.
[http://dx.doi.org/10.19045/bspab.2015.43005]
[36]
Saranraj P, Stella D. Fungal amylase - A review. Int J Microbiol Res 2013; 4(2): 203-11.
[http://dx.doi.org/10.5829/idosi.ijmr.2013.4.2.75170]
[37]
Abdullah R, Naeem N, Aftab M, et al. Enhanced production of alpha amylase by exploiting novel bacterial co-culture technique employing solid state fermentation. Iran J Sci Technol Trans A Sci 2018; 42(2): 305-12.
[http://dx.doi.org/10.1007/s40995-016-0015-x]
[38]
Kannan TR, Kanagaraj C. Molecular characteristic of α-AMYLASE enzymes producing from Bacillus licheniformis (JQ946317) using solid state fermentation. Biocatal Agric Biotechnol 2019; 20: 101240.
[http://dx.doi.org/10.1016/j.bcab.2019.101240]
[39]
Uzun U, Demirci E, Akatin MY. Purification and characterization of Rhizoctonia solani AG-4 strain ZB-34 α-amylase produced by solid-state fermentation using corn bran. Turk Biyokim Derg 2018; 43(3): 257-67.
[http://dx.doi.org/10.1515/tjb-2017-0159]
[40]
Balakrishnan M, Jeevarathinam G, Kumar SKS, Muniraj I, Uthandi S. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes. BMC Biotechnol 2021; 21(1): 33.
[http://dx.doi.org/10.1186/s12896-021-00686-7]
[41]
Tallapragada P, Dikshit R, Jadhav A, Sarah U. Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotechnol 2017; 15(1): 95-101.
[http://dx.doi.org/10.1016/j.jgeb.2017.02.003] [PMID: 30647646]
[42]
Sundarram A, Murthy TPK. Alpha-amylase production and applications: A review. J Appl Environ Microbiol 2014; 2(4): 166-75.
[http://dx.doi.org/10.12691/jaem-2-4-10]
[43]
Bhardwaj N, Kumar B, Verma PA. Detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour Bioprocess 2019; 6(1): 40.
[http://dx.doi.org/10.1186/s40643-019-0276-2]
[44]
Abd-Elaziz AM, Karam EA, Ghanem MM, Moharam ME, Kansoh AL. Production of a novel α-amylase by Bacillus atrophaeus NRC1 isolated from honey: Purification and characterization. Int J Biol Macromol 2020; 148: 292-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.120] [PMID: 31945438]
[45]
Allala F, Bouacem K, Boucherba N, et al. Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline α-amylase from Tepidimonas fonticaldi strain HB23. Int J Biol Macromol 2019; 132: 558-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.201] [PMID: 30928371]
[46]
Wu X, Wang Y, Tong B, Chen X, Chen J. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol 2018; 109: 329-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.004] [PMID: 29233713]
[47]
Ozdemir S, Fincan SA, Karakaya A, Enez B. A novel raw starch hydrolyzing thermostable α-amylase produced by newly isolated Bacillus mojavensis SO-10: Purification, characterization and usage in starch industries. Braz Arch Biol Technol 2018; 61.
[48]
Du R, Song Q, Zhang Q, et al. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol 2018; 115: 1151-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.004]
[49]
El-Sayed AKA, Abou-Dobara MI, El-Fallal AA, Omar NF. Gene sequence, modeling, and enzymatic characterization of α-amylase AmyLa from the thermophile Laceyella sp. DS3. Stärke 2017; 69(5–6): 1-9.
[http://dx.doi.org/10.1002/star.201600255]
[50]
Zhang F, Yang X, Geng L, Zhang Z, Yin Y, Li W. Purification and characterization of a novel and versatile α-amylase from thermophilic Anoxybacillus sp. YIM 342. Stärke 2016; 68(5–6): 446-53.
[http://dx.doi.org/10.1002/star.201400056]
[51]
Zafar A, Aftab MN. ud Din Z, Aftab S, Iqbal I, ul Haq I. Cloning, purification and characterization of a highly thermostable amylase gene of Thermotoga petrophila into Escherichia coli. Appl Biochem Biotechnol 2016; 178(4): 831-48.
[http://dx.doi.org/10.1007/s12010-015-1912-8] [PMID: 26526464]
[52]
Santorelli M, Maurelli L, Pocsfalvi G, et al. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Halo-terrigena turkmenica. Int J Biol Macromol 2016; 92: 174-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.001] [PMID: 27377461]
[53]
Baltas N, Dincer B, Ekinci AP, Kolayli S, Adiguzel A. Purification and characterization of extracellular α-amylase from a thermophilic Anoxybacillus thermarum A4 strain. Braz Arch Biol Technol 2016; 59(0)
[http://dx.doi.org/10.1590/1678-4324-2016160346]
[54]
Dey TB, Banerjee R. Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103. Biocatal Agric Biotechnol 2015; 4(1): 83-90.
[http://dx.doi.org/10.1016/j.bcab.2014.10.002]
[55]
Xian L, Wang F, Luo X, Feng YL, Feng JX. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One 2015; 10(3): e0121531.
[http://dx.doi.org/10.1371/journal.pone.0121531] [PMID: 25811759]
[56]
Sharma A, Satyanarayana T. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Extremophiles 2012; 16(3): 515-22.
[http://dx.doi.org/10.1007/s00792-012-0451-2] [PMID: 22527045]
[57]
Apostolidi ME, Kalantzi S, Hatzinikolaou DG, Kekos D, Mamma D. Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891 3 Biotech 2020; 10: 311.
[http://dx.doi.org/10.1007/s13205-020-02305-2]
[58]
Roy JK, Borah A, Mahanta CL, Mukherjee AK. Cloning and overexpression of raw starch digesting α-amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α-amylase (AmyBS-I) in raw starch digestion and baking in-dustry. J Mol Catal, B Enzym 2013; 97: 118-29.
[http://dx.doi.org/10.1016/j.molcatb.2013.07.019]
[59]
Jiang T, Cai M, Huang M, et al. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geo-bacillus sp. Protein Expr Purif 2015; 114: 15-22.
[http://dx.doi.org/10.1016/j.pep.2015.06.002] [PMID: 26073094]
[60]
Kim SM, Park H, Choi JI. Cloning and characterization of cold-adapted α-amylase from antarctic Arthrobacter agilis. Appl Biochem Biotechnol 2017; 181(3): 1048-59.
[http://dx.doi.org/10.1007/s12010-016-2267-5] [PMID: 27714640]
[61]
Al-Amri A, Al-Ghamdi MA, Khan JA, et al. Escherichia coli expression and characterization of α-amylase from Geobacillus thermodeni-trificans DSM-465. Braz J Biol 2021; 82: e239449.
[62]
Solat N, Shafiei M. A novel pH and thermo-tolerant halophilic alpha-amylase from moderate halophile Nesterenkonia sp. strain F: Gene analysis, molecular cloning, heterologous expression and biochemical characterization. Arch Microbiol 2021; 203(6): 3641-55.
[http://dx.doi.org/10.1007/s00203-021-02359-7] [PMID: 33993325]
[63]
Burhanoğlu T, Sürmeli Y, Şanlı-Mohamed G. Identification and characterization of novel thermostable α-amylase from Geobacillus sp. GS33. Int J Biol Macromol 2020; 164(164): 578-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.171] [PMID: 32693140]
[64]
Shofiyah SS, Yuliani D, Widya N, et al. Isolation, expression, and characterization of raw starch degrading α-amylase from a marine lake Bacillus megaterium NL3. Heliyon 2020; 6(12): e05796.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05796] [PMID: 33426327]
[65]
Fang W, Xue S, Deng P, et al. AmyZ1: A novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches. Biotechnol Biofuels 2019; 12: 95.
[http://dx.doi.org/10.1186/s13068-019-1432-9]
[66]
Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA. Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif 2019; 155: 78-85.
[http://dx.doi.org/10.1016/j.pep.2018.11.009] [PMID: 30496815]
[67]
Liu S, Ahmed S, Fang Y. Cloning, expression and characterization of a novel α-amylase from Salinispora arenicola CNP193. Protein J 2019; 38(6): 716-22.
[http://dx.doi.org/10.1007/s10930-019-09870-3] [PMID: 31562586]
[68]
Trabelsi S, Sahnoun M, Elgharbi F, et al. Aspergillus oryzae S2 AmyA amylase expression in Pichia pastoris: Production, purification and novel properties. Mol Biol Rep 2019; 46(1): 921-32.
[http://dx.doi.org/10.1007/s11033-018-4548-2] [PMID: 30535895]
[69]
Wang X, Kan G, Ren X, et al. Molecular cloning and characterization of a novel alpha-amylase from antarctic sea ice bacterium Pseudoalt-eromonas sp. M175 and its primary application in detergent. BioMed Res Int 2018; 2018: 3258383.
[http://dx.doi.org/10.1155/2018/3258383] [PMID: 30050926]
[70]
Parashar D, Satyanarayana T. Production of Ca2+-independent and acidstable recombinant α-amylase of Bacillus acidicola extracellularly and its applicability in generating maltooligosaccharides. Mol Biotechnol 2016; 58(11): 707-17.
[http://dx.doi.org/10.1007/s12033-016-9970-x] [PMID: 27568390]
[71]
Emtenani S, Asoodeh A, Emtenani S. Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. Int J Biol Macromol 2015; 72: 290-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.023] [PMID: 25168843]
[72]
Emampour M, Noghabi KA, Zahiri HS. Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J Mol Catal, B Enzym 2015; 111: 79-86.
[http://dx.doi.org/10.1016/j.molcatb.2014.10.012]
[73]
Wang P, Wang P, Tian J, et al. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefa-ciens. Sci Rep 2016; 6(1): 22229.
[http://dx.doi.org/10.1038/srep22229] [PMID: 26916714]
[74]
El-Sayed AKA, Abou-Dobara MI, El-Fallal AA, Omar NF. Heterologous expression, purification, immobilization and characterization of recombinant α-amylase AmyLa from Laceyella sp. DS3. Int J Biol Macromol 2019; 132: 1274-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.010] [PMID: 30953727]
[75]
Woodley JM. Protein engineering of enzymes for process applications. Curr Opin Chem Biol 2013; 17(2): 310-6.
[http://dx.doi.org/10.1016/j.cbpa.2013.03.017] [PMID: 23562542]
[76]
Kumari A, Singh K, Kayastha AM. α-Amylase: General properties,mechanism and biotechnological applications - a review Curr Biotechnol 2012; 1(1)
[http://dx.doi.org/10.2174/2211550111201010098]
[77]
Böttcher D, Bornscheuer UT. Protein engineering of microbial enzymes. Curr Opin Microbiol 2010; 13(3): 274-82.
[http://dx.doi.org/10.1016/j.mib.2010.01.010] [PMID: 20171138]
[78]
Li S, Yang Q, Tang B. Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence align-ment based site-directed mutagenesis. Biotechnol Appl Biochem 2020; 67(4): 677-84.
[http://dx.doi.org/10.1002/bab.1907] [PMID: 32133700]
[79]
Xie X, Ban X, Gu Z, et al. Structure-based engineering of a maltooligosaccharide-forming amylase to enhance product specificity. J Agric Food Chem 2020; 68(3): 838-44.
[http://dx.doi.org/10.1021/acs.jafc.9b07234] [PMID: 31896254]
[80]
Wang CH, Lu LH, Huang C, He BF, Huang RB. Simultaneously improved thermostability and hydrolytic pattern of alpha-amylase by engi-neering central beta strands of TIM barrel. Appl Biochem Biotechnol 2020; 192(1): 57-70.
[http://dx.doi.org/10.1007/s12010-020-03308-8] [PMID: 32219624]
[81]
Baroroh U, Yusuf M, Rachman SD, Ishmayana S, Hasan K, Subroto T. Molecular dynamics study to improve the substrate adsorption of Saccharomycopsis fibuligera R64 alpha-amylase by designing a new surface binding site. Adv Appl Bioinform Chem 2019; 12(12): 1-13.
[http://dx.doi.org/10.2147/AABC.S198110] [PMID: 31239719]
[82]
Huang L, Shan M, Ma J, et al. Directed evolution of α-amylase from Bacillus licheniformis to enhance its acid-stable performance. Biologia (Bratisl) 2019; 74(10): 1363-72.
[http://dx.doi.org/10.2478/s11756-019-00262-7]
[83]
Xie X, Qiu G, Zhang Z, et al. Importance of Trp139 in the product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Appl Microbiol Biotechnol 2019; 103(23-24): 9433-42.
[http://dx.doi.org/10.1007/s00253-019-10194-6] [PMID: 31676918]
[84]
Gai Y, Chen J, Zhang S, Zhu B, Zhang D. Property improvement of α-amylase from Bacillus stearothermophilus by deletion of amino acid residues arginine 179 and glycine 180. Food Technol Biotechnol 2018; 56(1): 58-64.
[http://dx.doi.org/10.17113/ftb.56.01.18.5448] [PMID: 29795997]
[85]
Li S, Yang Q, Tang B, Chen A. Improvement of enzymatic properties of Rhizopus oryzae α-amylase by site-saturation mutagenesis of histidine 286. Enzyme Microb Technol 2018; 117: 96-102.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.012] [PMID: 30037559]
[86]
Yang Q, Tang B, Li S. Improving the thermostability of α-amylase from Rhizopus oryzae by rational design. Sheng Wu Gong Cheng Xue Bao 2018; 34(7): 1117-27.
[http://dx.doi.org/10.13345/j.cjb.170492]
[87]
Wang C-H, Liu X-L, Huang R-B, He B-F, Zhao M-M. Enhanced acidic adaptation of bacillus subtilis Ca-independent alpha-amylase by rational engineering of pKa values. Biochem Eng J 2018; 139(15): 146-53.
[http://dx.doi.org/10.1016/j.bej.2018.08.015]
[88]
Liu Yihan, Lin Huang, Jia Leibo, et al. Improvement of the acid stability of Bacillus licheniformis alpha amylase by site-directed mutagen-esis. Process Biochem 58: 174-80.
[http://dx.doi.org/10.1016/j.procbio.2017.04.040]
[89]
Yusuf M, Baroroh U, Hasan K, Rachman SD, Ishmayana S, Subroto T. Computational Model of the Effect of a Surface-Binding Site on the Saccharomycopsis fibuligera R64 α-amylase to the substrate adsorption. Bioinform Biol Insights 2017; 11: 1177932217738764.
[http://dx.doi.org/10.1177/1177932217738764] [PMID: 29162975]
[90]
Li Z, Duan X, Wu J. Improving the thermostability and enhancing the Ca2+ binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus. J Biotechnol 2016; 222(222): 65-72.
[http://dx.doi.org/10.1016/j.jbiotec.2016.02.013] [PMID: 26869314]
[91]
Deng Z, Yang H, Li J, et al. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol 2014; 98(9): 3997-4007.
[http://dx.doi.org/10.1007/s00253-013-5375-y] [PMID: 24247992]
[92]
Amalia R, Ismaya WT, Puspasari F, et al. Heterologous expression of α-amylase from Saccharomycopsis fibuligera R64 and its Tyr401Trp mutant in Pichia pastoris. Microbiol Indones 2016; 10(1): 4.
[http://dx.doi.org/10.5454/mi.10.1.4]
[93]
Yang G, Yao H, Mozzicafreddo M, Ballarini P, Pucciarelli S, Miceli C. Rational engineering of a cold-adapted α-amylase from the Antarctic ciliate Euplotes focardii for simultaneous improvement of thermostability and catalytic activity. Appl Environ Microbiol 2017; 83(13): e00449-17.
[http://dx.doi.org/10.1128/AEM.00449-17] [PMID: 28455329]
[94]
Brena B, González-Pombo P, Batista-Viera F. Immobilization of enzymes: A literature survey. In: Guisan J, Ed. Immobilization of en-zymes and cells methods in molecular biology (methods and protocols). Totowa, NJ: Humana Press 2013; p. 1051.
[http://dx.doi.org/10.1007/978-1-62703-550-7_2]
[95]
Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 2012; 30(3): 489-511.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.003] [PMID: 21951558]
[96]
Mohamed SA, Khan JA, Al-Bar OA, El-Shishtawy RM. Immobilization of Trichoderma harzianum α-amylase on treated wool: Optimiza-tion and characterization. Molecules 2014; 19(6): 8027-38.
[http://dx.doi.org/10.3390/molecules19068027]
[97]
Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC. Improvement of microbial α-amylase stability: Strategic approaches. Process Biochem 2016; 51(10): 1380-90.
[http://dx.doi.org/10.1016/j.procbio.2016.06.021]
[98]
Singh R, Pandey D, Dhariwal S, Sood P, Chand D. Bioconversion of acrylonitrile using nitrile hydratase activity of Bacillus sp. APB6 3 Biotech 2018; 8: 225.
[http://dx.doi.org/10.1007/s13205-018-1207-1]
[99]
Singh R, Pandey D, Devi N, Chand D. Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6. Bioprocess Biosyst Eng 2018; 41(8): 1225-32.
[http://dx.doi.org/10.1007/s00449-018-1951-y] [PMID: 29748858]
[100]
Singh R, Ryu J, Kim SW. Microbial consortia including methanotrophs: Some benefits of living together. J Microbiol 2019; 57(11): 939-52.
[http://dx.doi.org/10.1007/s12275-019-9328-8] [PMID: 31659683]
[101]
Torabizadeh H, Montazeri E. Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydr Res 2020; 488: 107904.
[http://dx.doi.org/10.1016/j.carres.2019.107904] [PMID: 31901816]
[102]
Samui A. Happy, Sahu SK. Integration of A-amylase into covalent organic framework for highly efficient biocatalyst. Microporous Mesoporous Mater 2020; 291: 109700.
[http://dx.doi.org/10.1016/j.micromeso.2019.109700]
[103]
Mulko L, Pereyra JY, Rivarola CR, Barbero CA, Acevedo DF. Improving the retention and reusability of Alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. Int J Biol Macromol 2019; 122: 1253-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.078] [PMID: 30219512]
[104]
Almulaiky YQ, Aqlan FM, Aldhahri M, et al. α-Amylase immobilization on amidoximated acrylic microfibres activated by cyanuric chloride R Soc Open Sci 2018; 5(11): 172164.
[http://dx.doi.org/10.1098/rsos.172164] [PMID: 30564380]
[105]
Mohamed SA, Al-Harbi MH, Almulaiky YQ, et al. Immobilization of Trichoderma harzianum α-amylase on PPyAgNp/Fe3O4- nanocomposite: Chemical and physical properties Artif Cells Nanomed Biotechnol 2018; 46((sup2)): 201-6.
[http://dx.doi.org/10.1080/21691401.2018.1453828] [PMID: 29578361]
[106]
Defaei M, Taheri-Kafrani A, Miroliaei M, Yaghmaei P. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. Int J Biol Macromol 2018; 113(113): 354-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.147] [PMID: 29486263]
[107]
Singh V, Rakshit K, Rathee S, et al. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for en-hanced reusability in bio-catalytic processes. Bioresour Technol 2016; 214: 528-33.
[http://dx.doi.org/10.1016/j.biortech.2016.05.002] [PMID: 27176673]
[108]
Homaei A, Saberi D. Immobilization of α-amylase on gold nanorods: An ideal system for starch processing. Process Biochem 2015; 50(9): 1394-9.
[http://dx.doi.org/10.1016/j.procbio.2015.06.002]
[109]
Torabizadeh H, Tavakoli M, Safari M. Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. J Mol Catal, B Enzym 2014; 108: 13-20.
[http://dx.doi.org/10.1016/j.molcatb.2014.06.005]
[110]
Guo H, Tang Y, Yu Y, Xue L, Qian JQ. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Int J Biol Macromol 2016; 87: 537-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.080] [PMID: 26959172]
[111]
Salgaonkar M, Nadar SS, Rathod VK. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int J Biol Macromol 2018; 113(113): 464-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.092] [PMID: 29458106]
[112]
Singh R, Kumar M, Mittal A, Mehta PK. Microbial metabolites in healthcare, agriculture and nutrition 3 Biotech 2017; 7(1): 15.
[http://dx.doi.org/10.1007/s13205-016-0586-4 ]
[113]
Niyonzima FN, More SS. Detergent-compatible bacterial amylases. Appl Biochem Biotechnol 2014; 174(4): 1215-32.
[http://dx.doi.org/10.1007/s12010-014-1144-3] [PMID: 25129040]
[114]
Singh R, Kumar M, Mittal A, Mehta PK. Cellulases in industrial applications. Ann Appl Biosci 2016; 3(4): R23-9.
[115]
Singh R, Kumar M, Mittal A, Mehta PK. Lignocellulolytic enzymes: Biomass to biofuel. Int J Adv Res (Indore) 2016; 4(10): 2175-82.
[http://dx.doi.org/10.21474/IJAR01/2039]
[116]
Moreno A. Saab‐Rincón G, Santamaría RI, Soberón X, López‐Munguía A. A more efficient starch degradation by the combination of hydrolase and transferase activities of α‐amylase and cyclomaltodextrin glucanotransferase. Stärke 2004; 56(2): 63-8.
[http://dx.doi.org/10.1002/star.200300194]
[117]
Fructose Market Size, Share & Trends Analysis Report By Product (Fructose Syrups, High Fructose Corn Syrup), By Application (Beverages, Processed Foods), By Region (APAC, North America), And Segment Forecasts, 2020 – 2027 2020.Available from: https://www.giiresearch.com/report/grvi977778-fructose-market-size-share-trends-analysis-report.html (Accessed on April 2021)
[118]
Bioethanol Market by Feedstock. (Starch based, sugar based, cellulose based), End-use Industry (transportation, pharmaceuticals, cosmetics, alcoholic beverages), Fuel blend (E5, E10, E15 to E70, E75 & E85), and Region - Global Forecast to 2025 Available from: https://www.marketsandmarkets.com/Market-Reports/bioethanol-market-131222570.html?gclid=Cj0KCQiA_JWOBhDRARIsANymNOZUXQtFqRqyyYh-o4fZyWOf3Fva3weeJuoxXO3oQh1ivAMY1WiqdQaAhweEALw_wcB
[119]
Ethanol Fuel Basics. Available from: https://afdc.energy.gov/ fuels/ethanol_fuel_basics.html
[120]
Dahiya S, Bajaj BK, Kumar A, Tiwari SK, Singh B. A review on biotechnological potential of multifarious enzymes in bread making. Process Biochem 2020; 99: 290-306.
[http://dx.doi.org/10.1016/j.procbio.2020.09.002]
[121]
Aehle W. Enzymes in industry: Production and applications. 3rd ed. Weinheim, Germany: Wiley-VCH 2007.
[http://dx.doi.org/10.1002/9783527617098]
[122]
Alpha amylase Market: Global Market Study on Alpha Amylase: Growing usage as substitute for emulsifiers in food industry 2020. Available from: https://www.persistencemarketresearch. com/market-research/alpha-amylase-market.asp Accessed on June 25, 2021
[123]
Roy JK, Rai SK, Mukherjee AK. Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a. Int J Biol Macromol 2012; 50(1): 219-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.10.026] [PMID: 22085756]
[124]
Song Q, Wang Y, Yin C, Zhang XH. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T). Enzyme Microb Technol 2016; 90: 83-92.
[http://dx.doi.org/10.1016/j.enzmictec.2016.05.003] [PMID: 27241296]
[125]
Priyadarshini S, Pradhan SK, Ray P. Production, characterization and application of thermostable, alkaline α-amylase (AA11) from Bacil-lus cereus strain SP-CH11 isolated from Chilika Lake. Int J Biol Macromol 2020; 145: 804-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.149] [PMID: 31758985]
[126]
Singh R, Mittal A, Kumar M, Mehta PK. Organic acid: An overview on microbial production. Int J Adv Biotechnol Res 2017; 8(1): 104-11.
[127]
Singh R, Mittal A, Kumar M, Mehta PK. Microbial proteases in commercial applications. J Pharm Chem Biol Sci 2016; 4(3): 365-74.
[128]
Karimi M, Biria D. The promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blend. Sci Rep 2019; 9(1): 2612.
[http://dx.doi.org/10.1038/s41598-019-39366-0] [PMID: 30796314]
[129]
Pandi A, Ramalingam S, Rao JR, Kamini NR, Gowthaman MK. Inexpensive α-amylase production and application for fiber splitting in leather processing. RSC Advances 2016; 6(39): 33170-6.
[http://dx.doi.org/10.1039/C5RA26373E]
[130]
Kalishwaralal K, Gopalram S, Vaidyanathan R, Deepak V, Pandian SRK, Gurunathan S. Optimization of α-amylase production for the green synthesis of gold nanoparticles. Colloids Surf B Biointerfaces 2010; 77(2): 174-80.
[http://dx.doi.org/10.1016/j.colsurfb.2010.01.018] [PMID: 20189782]
[131]
Yin D, Yin X, Wang X, et al. Supplementation of amylase combined with glucoamylase or protease changes intestinal microbiota diversity and benefits for broilers fed a diet of newly harvested corn. J Anim Sci Biotechnol 2018; 9: 24.
[http://dx.doi.org/10.1186/s40104-018-0238-0]
[132]
Schramm VG, Massuquetto A, Bassi LS, et al. Exogenous α-amylase improves the digestibility of corn and corn-soybean meal diets for broilers. Poult Sci 2021; 100(4): 101019.
[http://dx.doi.org/10.1016/j.psj.2021.101019] [PMID: 33690055]
[133]
Stefanello C, Vieira SL, Soster P, et al. Utilization of corn-based diets supplemented with an exogenous α-amylase for broilers. Poult Sci 2019; 98(11): 5862-9.
[http://dx.doi.org/10.3382/ps/pez290] [PMID: 31189183]
[134]
Aderibigbe A, Cowieson A, Sorbara JO, Adeola O. Intestinal starch and energy digestibility in broiler chickens fed diets supplemented with α-amylase. Poult Sci 2020; 99(11): 5907-14.
[http://dx.doi.org/10.1016/j.psj.2020.08.036] [PMID: 33142508]
[135]
Aderibigbe A, Cowieson AJ, Sorbara JO, Adeola O. Growth phase and dietary α-amylase supplementation effects on nutrient digestibility and feedback enzyme secretion in broiler chickens. Poult Sci 2020; 99(12): 6867-76.
[http://dx.doi.org/10.1016/j.psj.2020.09.007] [PMID: 33248602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy