Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

A Review of Biological Applications of Transition Metal Complexes Incorporating N-acylhydrazones

Author(s): Imane Hamzi*

Volume 19, Issue 8, 2022

Published on: 02 June, 2022

Page: [968 - 990] Pages: 23

DOI: 10.2174/1570193X19666220328124048

Price: $65

Abstract

In view of the crucial importance of the bioactivities of N-acylhydrazone derivatives and their corresponding metal complexes, N-acylhydrazones have recently attracted the attention of researchers in the chemical, biological, and pharmaceutical fields. This review aims to describe Nacylhydrazone complexes involving transition metal ions, such as copper, chromium, manganese, iron, cobalt, nickel, and zinc, and investigate their properties and possible applications in various domains. The most promising applications of the number of transition metal complexes incorporating Nacylhydrazones in biology, medicine, and pharmacology are also examined and determined.

Keywords: N-Acylhydrazone, transition metal complexes, Schiff-base, bio-inorganic chemistry, bioactive molecules, antitumor.

Graphical Abstract

[1]
Leung, C.H.; Lin, S.; Zhong, H.J.; Ma, D.L. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. (Camb.), 2015, 6(2), 871-884.
[http://dx.doi.org/10.1039/C4SC03094J] [PMID: 28660015]
[2]
Hoonur, R.S.; Patil, B.R.; Badiger, D.S.; Vadavi, R.S.; Gudasi, K.B.; Dandawate, P.R.; Ghaisas, M.M.; Padhye, S.B.; Nethaji, M. Transition metal complexes of 3-aryl-2-substituted 1,2-dihydroquinazolin-4(3H)-one derivatives: New class of analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2010, 45(6), 2277-2282.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.072] [PMID: 20185211]
[3]
Rupiani, S.; Buonfiglio, R.; Manerba, M.; Di Ianni, L.; Vettraino, M.; Giacomini, E.; Masetti, M.; Falchi, F.; Di Stefano, G.; Roberti, M.; Recanatini, M. Identification of N-acylhydrazone derivatives as novel lactate dehydrogenase A inhibitors. Eur. J. Med. Chem., 2015, 101, 63-70.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.028] [PMID: 26114812]
[4]
Cui, Z.; Li, Y.; Ling, Y.; Huang, J.; Cui, J.; Wang, R.; Yang, X. New class of potent antitumor acylhydrazone derivatives containing furan. Eur. J. Med. Chem., 2010, 45(12), 5576-5584.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.007] [PMID: 20884091]
[5]
Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem., 2013, 21(21), 6592-6599.
[http://dx.doi.org/10.1016/j.bmc.2013.08.026] [PMID: 24071449]
[6]
Yu, X.; Shi, L.; Ke, S. Acylhydrazone derivatives as potential anticancer agents: Synthesis, bio-evaluation and mechanism of action. Bioorg. Med. Chem. Lett., 2015, 25(24), 5772-5776.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.069] [PMID: 26546214]
[7]
Zhang, B.; Zhao, Y.; Zhai, X.; Wang, L.; Yang, J.; Tan, Z.; Gong, P. Design, synthesis and anticancer activities of diaryl urea derivatives bearing N-acylhydrazone moiety. Chem. Pharm. Bull. (Tokyo), 2012, 60(8), 1046-1054.
[http://dx.doi.org/10.1248/cpb.c12-00234] [PMID: 22863709]
[8]
Cardoso, L.N.F.; Nogueira, T.C.M.; Rodrigues, F.A.R.; Oliveira, A.C.A.; Luciano, M.C.S.; Pessoa, C.; de Souza, M.V.N. N-Acylhydrazones containing thiophene nucleus: A new anticancer class. Med. Chem. Res., 2017, 26(8), 1605-1608.
[http://dx.doi.org/10.1007/s00044-017-1832-y]
[9]
Maia, R.C.; Tesch, R.; Fraga, C.A.M. Acylhydrazone derivatives: A patent review. Expert Opin. Ther. Pat., 2014, 24(11), 1161-1170.
[http://dx.doi.org/10.1517/13543776.2014.959491] [PMID: 25213630]
[10]
Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Strobykina, A.S.; Kulik, N.V.; Bukharov, S.V.; Voronina, J.K.; Khamatgalimov, A.R.; Mironov, V.F. Synthesis and antimicrobial activity evaluation of some novel water-soluble isatin-3-acylhydrazones. Monatsh. Chem., 2018, 149(1), 111-117.
[http://dx.doi.org/10.1007/s00706-017-2049-y] [PMID: 30662093]
[11]
Candéa, A.L.P.; Ferreira, M. de L.; Pais, K.C.; Cardoso, L.N.F.; Kaiser, C.R.; Henriques, M.; Lourenço, M.C.; Bezerra, F.A.; de Souza, M.V. Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorg. Med. Chem. Lett., 2009, 19(22), 6272-6274.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.098] [PMID: 19819134]
[12]
Sampiron, E.G.; Costacurta, G.F.; Baldin, V.P.; Almeida, A.L.; Ieque, A.L.; Santos, N.C.S.; Alves-Olher, V.G.; Vandresen, F.; Gimenes, A.C.R.; Siqueira, V.L.D.; Caleffi-Ferracioli, K.R.; Cardoso, R.F.; Scodro, R.B.L. Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents. Future Microbiol., 2019, 14(11), 981-994.
[http://dx.doi.org/10.2217/fmb-2019-0040] [PMID: 31382801]
[13]
Nogueira, T.C.M.; dos Santos Cruz, L.; Lourenço, M.C.; de Souza, M.V.N. Design, synthesis and anti-tuberculosis activity of hydrazones and n-acylhydrazones containing vitamin b6 and different heteroaromatic nucleus. Lett. Drug Des. Discov., 2018, 16(7), 792-798.
[http://dx.doi.org/10.2174/1570180815666180627122055]
[14]
Cardoso, L.N.F.; Bispo, M.L.F.; Kaiser, C.R.; Wardell, J.L.; Wardell, S.M.S.V.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; Soares, R.P.P.; Ro-cha, M.N.; de Souza, M.V.N. Anti-tuberculosis evaluation and conformational study of N-acylhydrazones containing the thiophene nucle-us. Arch. Pharm. (Weinheim), 2014, 347(6), 432-448.
[http://dx.doi.org/10.1002/ardp.201300417] [PMID: 24616002]
[15]
Leal, C.M.; Pereira, S.L.; Kümmerle, A.E.; Leal, D.M.; Tesch, R.; de Sant’Anna, C.M.R.; Fraga, C.A.M.; Barreiro, E.J.; Sudo, R.T.; Zapata-Sudo, G. Antihypertensive profile of 2-thienyl-3,4-methylenedioxybenzoylhydrazone is mediated by activation of the A2A adenosine re-ceptor. Eur. J. Med. Chem., 2012, 55, 49-57.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.056] [PMID: 22857782]
[16]
Lacerda, R.B.; da Silva, L.L.; de Lima, C.K.F.; Miguez, E.; Miranda, A.L.P.; Laufer, S.A.; Barreiro, E.J.; Fraga, C.A.M. Discovery of novel orally active anti-inflammatory N-phenylpyrazolyl-N-glycinyl-hydrazone derivatives that inhibit TNF-α production. PLoS One, 2012, 7(10), e46925.
[http://dx.doi.org/10.1371/journal.pone.0046925] [PMID: 23056531]
[17]
da Silva, T.F.; Bispo Júnior, W.; Alexandre-Moreira, M.S.; Costa, F.N.; Monteiro, C.E.; Ferreira, F.F.; Barroso, R.C.R.; Noël, F.; Sudo, R.T.; Zapata-Sudo, G.; Lima, L.M.; Barreiro, E.J. Novel orally active analgesic and anti-inflammatory cyclohexyl-N-acylhydrazone deriva-tives. Molecules, 2015, 20(2), 3067-3088.
[http://dx.doi.org/10.3390/molecules20023067] [PMID: 25685912]
[18]
da Silva, Y.K.C.; Augusto, C.V.; de Castro Barbosa, M.L.; de Albuquerque Melo, G.M.; de Queiroz, A.C.; de Lima Matos Freire Dias, T.; Júnior, W.B.; Barreiro, E.J.; Lima, L.M.; Alexandre-Moreira, M.S. Synthesis and pharmacological evaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic and anti-inflammatory drug candidates. Bioorg. Med. Chem., 2010, 18(14), 5007-5015.
[http://dx.doi.org/10.1016/j.bmc.2010.06.002] [PMID: 20598893]
[19]
Dimmock, J.R.; Vashishtha, S.C.; Stables, J.P. Anticonvulsant properties of various acetylhydrazones, oxamoylhydrazones and semi-carbazones derived from aromatic and unsaturated carbonyl compounds. Eur. J. Med. Chem., 2000, 35(2), 241-248.
[http://dx.doi.org/10.1016/S0223-5234(00)00123-9] [PMID: 10758285]
[20]
Gökçe, M.; Geciken, A.E.; Yildirim, E.; Tosuni, A.U. Synthesis and anticonvulsant activity of 5-chloro-2(3H)-benzoxazolinone-3-acetyl-2-(o/p-substituted benzal) hydrazone derivatives. Arzneimittelforschung, 2008, 58(11), 537-542.
[http://dx.doi.org/10.1055/s-0031-1296554] [PMID: 19137903]
[21]
Can, Ö.D.; Altintop, M.D.; Özkay, Ü.D.; Uçel, U.I. Doğruer, B.; Kaplancikli, Z.A. Synthesis of thiadiazole derivatives bearing hydrazone moieties and evaluation of their pharmacological effects on anxiety, depression, and nociception parameters in mice. Arch. Pharm. Res., 2012, 35(4), 659-669.
[http://dx.doi.org/10.1007/s12272-012-0410-6] [PMID: 22553059]
[22]
Hu, J.H.; Li, J.; Qi, J.; Sun, Y. Acylhydrazone based fluorescent chemosensor for zinc in aqueous solution with high selectivity and sensi-tivity. Sens. Actuators B Chem., 2015, 208, 581-587.
[http://dx.doi.org/10.1016/j.snb.2014.11.066]
[23]
Naseema, K.; Sujith, K.V.; Manjunatha, K.B.; Kalluraya, B.; Umesh, G.; Rao, V. Synthesis, characterization and studies on the nonlinear optical parameters of hydrazones. Opt. Laser Technol., 2010, 42(5), 741-748.
[http://dx.doi.org/10.1016/j.optlastec.2009.11.019]
[24]
Sun, J.; Zhou, Y. Design, synthesis, and insecticidal activity of some novel diacylhydrazine and acylhydrazone derivatives. Molecules, 2015, 20(4), 5625-5637.
[http://dx.doi.org/10.3390/molecules20045625] [PMID: 25830791]
[25]
Li, L.; Zhu, L.; Chen, D.; Hu, X.; Wang, R. Use of acylhydrazine- and acylhydrazone-type ligands to promote cui-catalyzed c-n cross-coupling reactions of aryl bromides with n-heterocycles. Eur. J. Org. Chem., 2011, 2011(14), 2692-2696.
[http://dx.doi.org/10.1002/ejoc.201100112]
[26]
Pouralimardan, O.; Chamayou, A.C.; Janiak, C.; Hosseini-Monfared, H. Hydrazone schiff base-manganese(II) complexes: Synthesis, crys-tal structure and catalytic reactivity. Inorg. Chim. Acta, 2007, 360(5), 1599-1608.
[http://dx.doi.org/10.1016/j.ica.2006.08.056]
[27]
Mancka, M.; Plass, W. Dioxomolybdenum(VI) complexes with amino acid functionalized N-Salicylidene hydrazides: Synthesis, structure and catalytic activity. Inorg. Chem. Commun., 2007, 10(6), 677-680.
[http://dx.doi.org/10.1016/j.inoche.2007.02.029]
[28]
Chaur, M.N.; Collado, D.; Lehn, J.M. Configurational and constitutional information storage: Multiple dynamics in systems based on pyridyl and acyl hydrazones. Chemistry, 2011, 17(1), 248-258.
[http://dx.doi.org/10.1002/chem.201002308] [PMID: 21207621]
[29]
Chaur, M. Aroylhydrazones as potential systems for information storage: Photoisomerization and metal complexation. Rev. Colomb. Quim., 2012, 41(3), 349-358.
[30]
Yao, H.; Wang, J.; Zhou, Q.; Guan, X.W.; Fan, Y.Q.; Zhang, Y.M.; Wei, T.B.; Lin, Q. Acylhydrazone functionalized benzimidazole-based metallogel for the efficient detection and separation of Cr3. Soft Matter, 2018, 14(41), 8390-8394.
[http://dx.doi.org/10.1039/C8SM01789A] [PMID: 30310908]
[31]
Cegłowski, M.; Schroeder, G. Preparation of porous resin with schiff base chelating groups for removal of heavy metal ions from aqueous solutions. Chem. Eng. J., 2015, 263, 402-411.
[http://dx.doi.org/10.1016/j.cej.2014.11.047]
[32]
Al-Ne’aimi, M.M.; Al-Khuder, M.M. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydra-zoneoxime and bis-acylhydrazone) moieties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 105, 365-373.
[http://dx.doi.org/10.1016/j.saa.2012.10.046] [PMID: 23333690]
[33]
Yang, F.; Huang, C.; Guo, H.; Lin, J.; Peng, Q. Synthesis and extraction property of novel thiacalix[4]biscrown: Thiacalix[4]-1,3-2,4-Aza-Biscrown. J. Incl. Phenom. Macrocycl. Chem., 2007, 58(1-2), 169-172.
[http://dx.doi.org/10.1007/s10847-006-9139-5]
[34]
Choudhary, S.; Morrow, J.R. Dynamic acylhydrazone metal ion complex libraries: A mixed-ligand approach to increased selectivity in extraction. Angew. Chem. Int. Ed., 2002, 41(21), 4096-4098.
[http://dx.doi.org/10.1002/1521-3773(20021104)41:21<4096:AID-ANIE4096>3.0.CO;2-0] [PMID: 12412093]
[35]
Chevalier, A.; Osypenko, A.; Lehn, J.M.; Meyer, D. Phase transfer of metal cations by induced dynamic carrier agents: Biphasic extraction based on dynamic covalent chemistry. Chem. Sci. (Camb.), 2020, 11(42), 11468-11477.
[http://dx.doi.org/10.1039/D0SC04098C] [PMID: 34094390]
[36]
Hamzi, I.; Barhoumi-Slimi, T.M.; Abidi, R. Synthesis, characterization, and conformational study of acylhydrazones of αβ-unsaturated aldehydes. Heteroatom Chem., 2016, 27(3), 139-148.
[http://dx.doi.org/10.1002/hc.21310]
[37]
Hamzi, I.; Fray, M.; Abidi, R.; Barhoumi-Slimi, T. Synthesis, characterization and conformational study of new αβ-unsaturated acylhy-drazones based on calix [4]Arene backbone. J. Mol. Struct., 2019, 1185, 78-84.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.047]
[38]
Su, X.; Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev., 2014, 43(6), 1963-1981.
[http://dx.doi.org/10.1039/c3cs60385g] [PMID: 24429467]
[39]
Bu, X.H.; Du, M.; Zhang, L.; Song, X.B.; Zhang, R.H.; Clifford, T. Novel homobinuclear lanthanide(iii) complexes with isonicotinoyl hydrazone: Synthesis and coordination chemistry. Inorg. Chim. Acta, 2000, 308(1-2), 143-149.
[http://dx.doi.org/10.1016/S0020-1693(00)00215-2]
[40]
Anwar, M.U.; Shuvaev, K.V.; Dawe, L.N.; Thompson, L.K. Polynuclear Fe(n) complexes (n = 1, 2, 4, 5) of polytopic hydrazone ligands with Fe(II), Fe(III) and mixed oxidation state combinations. Inorg. Chem., 2011, 50(23), 12141-12154.
[http://dx.doi.org/10.1021/ic201891h] [PMID: 22029385]
[41]
Gudasi, K.B.; Patil, S.A.; Bakale, R.P.; Nethaji, M. Ligational behaviour of (E)-2-Amino-N′-[1-(2-Hydroxyphenyl) Ethyli-dene]Benzohydrazide towards Later 3d metal ions: X-Ray crystal structure of nickel(IV). J. Mol. Struct., 2014, 1065-1066(1), 179-185.
[http://dx.doi.org/10.1016/j.molstruc.2014.03.001]
[42]
(a)Singh, R.B.; Jain, P.; Singh, R.P. Hydrazones as analytical reagents: A review Talanta., 1982, 29(2), 77-84.
[http://dx.doi.org/10.1016/0039-9140(82)80024-6] [PMID: 18963087]
(b)Okimoto, M.; Chiba, T. Electrochemical oxidation of ketone acylhydrazones and their hydrogen cyanide adducts in sodium cyanide-methanol. Transformation of ketones to nitriles. J. Org. Chem., 1990, 55(3), 1070-1076.
[http://dx.doi.org/10.1021/jo00290a048]
[43]
Sugiura, M.; Kobayashi, S. N-acylhydrazones as versatile electrophiles for the synthesis of nitrogen-containing compounds. Angew. Chem. Int. Ed., 2005, 44(33), 5176-5186.
[http://dx.doi.org/10.1002/anie.200500691] [PMID: 16059954]
[44]
(a)Xie, Z.; Song, Y.; Xu, L.; Guo, Y.; Zhang, M.; Li, L.; Chen, K.; Liu, X. Rapid synthesis of N-Tosylhydrazones under solvent-free conditions and their potential application against human triplenegative breast cancer. ChemistryOpen, 2018, 7(12), 977-983.
[http://dx.doi.org/10.1002/open.201800206] [PMID: 30524923]
(b)dos Santos Filho, J.M.; Pinheiro, S.M. Stereoselective, solvent free, highly efficient synthesis of aldo-and keto-N-acylhydrazones ap-plying grindstone chemistry. Green Chem., 2017, 19(9), 2212-2224.
[http://dx.doi.org/10.1039/C7GC00730B]
[45]
Andrade, M.M.; Barros, M.T. Fast synthesis of N-acylhydrazones employing a microwave assisted neat protocol. J. Comb. Chem., 2010, 12(2), 245-247.
[http://dx.doi.org/10.1021/cc9001444] [PMID: 20050700]
[46]
Marzouk, M.I. Microwave assisted condensation of hydrazone derivatives with aldehydes. Izv. Him., 2009, 41(1), 84-88.
[47]
Qinghan, L.; Zhigang, Z. Microwave-Assisted synthesis of 2-[4-Bi-(4-Fluorophenyl)-Methylpiperazin-1- yl] acteyl hydrazones. Youji Huaxue, 2009, 29(1), 119-122.
[48]
Sharma, S.D.; Pandhi, S.B. Synthesis of 0-Lactams via cycloaddition of hydrazones with phenoxyketene. J. Org. Chem., 1990, 55(7), 2196-2200.
[http://dx.doi.org/10.1021/jo00294a040]
[49]
Allcock, S.J.; Gilchrist, T.L.; Shuttleworth, S.J.; King, F.D. Intramolecular and intermolecular diels-alder reactions of acylhydrazones de-rived from methacrolein and ethylacrolein. Tetrahedron, 1991, 47(48), 10053-10064.
[http://dx.doi.org/10.1016/S0040-4020(01)96054-5]
[50]
Belskaya, N.P.; Eliseeva, A.I.; Bakulev, V.A. Hydrazones as Substrates for cycloaddition reactions. Russ. Chem. Rev., 2015, 84(12), 1226-1257.
[http://dx.doi.org/10.1070/RCR4463]
[51]
Allock, S.J.; Gilchrist, T.L.; King, F.D. Diels-Alder cycloaddition reactions of aβ-unsaturated aldehyde acylhydrazones. Tetrahedron Lett., 1991, 32(1), 125-128.
[http://dx.doi.org/10.1016/S0040-4039(00)71235-4]
[52]
Konishi, H.; Ogawa, C.; Sugiura, M.; Kobayashi, S. Cyanation of N-Acylhydrazones with trimethylsilyl cyanide promoted by a brønsted base and a lewis acid. Adv. Synth. Catal., 2005, 347(15), 1899-1903.
[http://dx.doi.org/10.1002/adsc.200505272]
[53]
Keith, J.M.; Jacobsen, E.N. Asymmetric hydrocyanation of hydrazones catalyzed by lanthanide--PYBOX complexes. Org. Lett., 2004, 6(2), 153-155.
[http://dx.doi.org/10.1021/ol035844c] [PMID: 14723516]
[54]
Cullen, S.T.J.; Friestad, G.K. Alkyl radical addition to aliphatic and aromatic N-Acylhydrazones using an organic photoredox catalyst. Org. Lett., 2019, 21(20), 8290-8294.
[http://dx.doi.org/10.1021/acs.orglett.9b03053] [PMID: 31560554]
[55]
Friestad, G.K.; Marié, J.C.; Deveau, A.M. Stereoselective Mn-mediated coupling of functionalized iodides and hydrazones: A synthetic entry to the tubulysin γ-amino acids. Org. Lett., 2004, 6(19), 3249-3252.
[http://dx.doi.org/10.1021/ol048986v] [PMID: 15355024]
[56]
Kobayashi, S.; Hamada, T.; Manabe, K. Lewis acid-catalyzed allylation reactions of acylhydrazones with tetraallyltin in aqueous media. Synlett, 2001, 7(7), 1140-1142.
[http://dx.doi.org/10.1055/s-2001-15166]
[57]
Berger, R.; Rabbat, P.M.A.; Leighton, J.L. Toward a versatile allylation reagent: Practical, enantioselective allylation of acylhydrazones using strained silacycles. J. Am. Chem. Soc., 2003, 125(32), 9596-9597.
[http://dx.doi.org/10.1021/ja035001g] [PMID: 12904019]
[58]
Burk, M.J.; Feaster, J.E. Enantioselective hydrogenation of the C:N Group: A catalytic asymmetric reductive amination procedure. J. Am. Chem. Soc., 1992, 114(15), 6266-6267.
[http://dx.doi.org/10.1021/ja00041a067]
[59]
Burk, M.J.; Martinez, J.P.; Feaster, J.E.; Cosford, N. Catalytic asymmetric reductive amination of ketones via highly enantioselective hy-drogenation of the =N double bond. Tetrahedron, 1994, 50(15), 4399-4428.
[http://dx.doi.org/10.1016/S0040-4020(01)89375-3]
[60]
Majji, G.; Rout, S.K.; Guin, S.; Gogoi, A.; Patel, B.K. Iodine-Catalysed oxidative cyclisation of acylhydrazones to 2,5-substituted 1,3,4-oxadiazoles. RSC Advances, 2014, 4(11), 5357-5362.
[http://dx.doi.org/10.1039/c3ra44897e]
[61]
Chiba, T.; Okimoto, M. Electrooxidative cyclization of n-acylhydrazones of aldehydes and ketones to δ3-1,3,4-oxadiazolines and 1,3,4-oxadiazoles. J. Org. Chem., 1992, 57(5), 1375-1379.
[http://dx.doi.org/10.1021/jo00031a014]
[62]
Kim, K-S.; Chung, Y.K.; Kim, H.; Ha, C.Y.; Huh, J.; Song, C. Additive-Free photo-mediated oxidative cyclization of pyridinium acylhy-drazones to 1,3,4-oxadiazoles: Solid-State conversion in a microporous organic polymer and supramolecular energy-level engineering. RSC Advances, 2021, 11(4), 1969-1975.
[http://dx.doi.org/10.1039/D0RA09581H]
[63]
Barbazán, P.; Carballo, R.; Vázquez-López, E.M. Synthesis and structure of 2-acetylpyridine-salicyloylhydrazone and its copper(ii) and zinc(ii) complexes. The effect of the metal coordination on the weak intermolecular interactions. CrystEngComm, 2007, 9(8), 668-675.
[http://dx.doi.org/10.1039/b703442c]
[64]
Pol-Fachin, L.; Fraga, C.A.M.; Barreiro, E.J.; Verli, H. Characterization of the conformational ensemble from bioactive N-acylhydrazone derivatives. J. Mol. Graph. Model., 2010, 28(5), 446-454.
[http://dx.doi.org/10.1016/j.jmgm.2009.10.004] [PMID: 19942466]
[65]
Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Conformational behaviour and E/Z isomerization of N-Acyl and N-Aroylhydrazones. Tetrahedron, 1986, 42(13), 3649-3654.
[http://dx.doi.org/10.1016/S0040-4020(01)87332-4]
[66]
Lopes, A.B.; Miguez, E.; Kümmerle, A.E.; Rumjanek, V.M.; Fraga, C.A.M.; Barreiro, E.J. Characterization of amide bond conformers for a novel heterocyclic template of N-acylhydrazone derivatives. Molecules, 2013, 18(10), 11683-11704.
[http://dx.doi.org/10.3390/molecules181011683] [PMID: 24071978]
[67]
Issa, Y.M.; Issa, R.M.; Abdel-Latif, S.A.; Abdel-Salam, H.A. Structural studies of Cu(II) chelates with some arylidene derivatives of ben-zilic hydrazide. Monatsh. Chem., 1998, 129(1), 19-29.
[http://dx.doi.org/10.1007/PL00010100]
[68]
Repich, H.H.; Orysyk, S.I.; Orysyk, V.V.; Zborovskii, Y.L.; Pekhnyo, V.I.; Vovk, M.V. Synthesis, crystal structure and spectral charac-terization of the first ag+ complex compounds involving O,N,O-Coordinated N-Acylhydrazones of salicylaldehyde. J. Mol. Struct., 2017, 1144, 225-236.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.024]
[69]
Kuriakose, M.; Prathapachandra Kurup, M.R.; Suresh, E. Six coordinate ni(ii) complexes of onn donor aroylhydrazone ligands: Synthesis, spectral studies, and crystal structures. Struct. Chem., 2007, 18(5), 579-584.
[http://dx.doi.org/10.1007/s11224-007-9187-5]
[70]
Mangalam, N.A.; Sheeja, S.R.; Kurup, M.R.P. Mn(II) complexes of some acylhydrazones with NNO donor sites: Syntheses, a spectro-scopic view on their coordination possibilities and crystal structures. Polyhedron, 2010, 29(18), 3318-3323.
[http://dx.doi.org/10.1016/j.poly.2010.09.007]
[71]
Popov, L.D.; Levchenkov, S.I.; Lukov, V.V.; Gishko, K.B.; Borodkin, S.A.; Tupolova, Y.P.; Askalepova, O.I.; Vlasenko, V.G.; Spiri-donova, D.V.; Lazarenko, V.A.; Burlov, A.S.; Shcherbakov, I.N. Acylhydrazone based on 2-N-Tosylaminobenzaldehyde and Girard T Reagent: Synthesis, structure, and coordination ability. Russ. J. Gen. Chem., 2021, 91(1), 90-97.
[http://dx.doi.org/10.1134/S1070363221010102]
[72]
Ray, A.; Banerjee, S.; Sen, S.; Butcher, R.J.; Rosair, G.M.; Garland, M.T.; Mitra, S. Two Zn(II) and One Mn(II) complexes using two dif-ferent hydrazone ligands: Spectroscopic studies and structural aspects. Struct. Chem., 2008, 19(2), 209-217.
[http://dx.doi.org/10.1007/s11224-007-9274-7]
[73]
Carcelli, M.; Mazza, P.; Pelizzi, C.; Pelizzi, G.; Zani, F. Antimicrobial and genotoxic activity of 2,6-diacetylpyridine bis(acylhydrazones) and their complexes with some first transition series metal ions. X-ray crystal structure of a dinuclear copper(II) complex. J. Inorg. Biochem., 1995, 57(1), 43-62.
[http://dx.doi.org/10.1016/0162-0134(94)00004-T] [PMID: 7876834]
[74]
El-Tabl, A.S.; El-Saied, F.A.; Al-Hakimi, A.N. Synthesis, spectroscopic investigation and biological activity of metal complexes with ONO trifunctionalalized hydrazone ligand. Trans. Met. Chem. (Weinh.), 2007, 32(6), 689-701.
[http://dx.doi.org/10.1007/s11243-007-0228-0]
[75]
El-Tabl, A.S.; El-Saied, F.A.; Plass, W.; Al-Hakimi, A.N. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(1), 90-99.
[http://dx.doi.org/10.1016/j.saa.2007.11.011] [PMID: 18242122]
[76]
Singh, V.P.; Katiyar, A.; Singh, S. Synthesis, characterization of some transition metal(II) complexes of acetone p-amino acetophenone salicyloyl hydrazone and their anti microbial activity. Biometals, 2008, 21(4), 491-501.
[http://dx.doi.org/10.1007/s10534-008-9136-9] [PMID: 18305909]
[77]
Rodríguez-Argüelles, M.C.; Cao, R.; García-Deibe, A.M.; Pelizzi, C.; Sanmartín-Matalobos, J.; Zani, F. Antibacterial and antifungal activity of metal(ii) complexes of acylhydrazones of 3-Isatin and 3-(N-Methyl)Isatin. Polyhedron, 2009, 28(11), 2187-2195.
[http://dx.doi.org/10.1016/j.poly.2008.12.038]
[78]
Karbouj, R.; El-Dissouky, A.; Jeragh, B.; Al-Saleh, E. Synthesis, characterization, and biological activity studies on (E)-N′-[2-Hydroxy-1,2-Di(Pyridin-2-Yl)Ethylidine]Aroyl hydrazides and their copper(ii) complexes. J. Coord. Chem., 2010, 63(5), 868-883.
[http://dx.doi.org/10.1080/00958971003645946]
[79]
Juliano, C.; Mattana, A.; Solinas, C. Versatile coordinating behaviour of bis(acylhydrazone) ligands derived from imino- and methyl-iminodiacetic acid diethyl ester. antimicrobial properties of their trinuclear copper(ii) complexes. Trans. Met. Chem. (Weinh.), 2010, 35(2), 253-261.
[http://dx.doi.org/10.1007/s11243-009-9321-x]
[80]
Zaky, R.R.; Ibrahim, K.M.; Gabr, I.M. Bivalent transition metal complexes of o-hydroxyacetophenone [N-(3-hydroxy-2-naphthoyl)] hy-drazone: Spectroscopic, antibacterial, antifungal activity and thermogravimetric studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 28-34.
[http://dx.doi.org/10.1016/j.saa.2011.05.028] [PMID: 21782500]
[81]
Xu, Z.H.; Zhang, X.W.; Zhang, W.Q.; Gao, Y.H.; Zeng, Z.Z. Synthesis, characterization, dna interaction and antibacterial activities of two tetranuclear cobalt(ii) and nickel(ii) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone. Inorg. Chem. Commun., 2011, 14(10), 1569-1573.
[http://dx.doi.org/10.1016/j.inoche.2011.06.005]
[82]
Ye, X.P.; Wang, G.J.; Pan, P.; Zhang, Z.P.; Wu, W.N.; Wang, Y. Syntheses, crystal structures and biological activities of two cu(ii) com-plexes with an acylhydrazone ligand bearing pyrrole unit. Wuji Huaxue Xuebao, 2014, 30(12), 2789-2795.
[http://dx.doi.org/10.11862/CJIC.2014.336]
[83]
El-Gammal, O.A.; Rakha, T.H.; Metwally, H.M.; Abu El-Reash, G.M. Synthesis, characterization, DFT and biological studies of isatinpico-linohydrazone and its Zn(II), Cd(II) and Hg(II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 127, 144-156.
[http://dx.doi.org/10.1016/j.saa.2014.02.008] [PMID: 24632168]
[84]
Jeragh, B.; Ali, M.S.; El-Asmy, A.A. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 295-301.
[http://dx.doi.org/10.1016/j.saa.2015.03.021] [PMID: 25791887]
[85]
Bhaskar, R.; Salunkhe, N.; Yaul, A.; Aswar, A. Bivalent transition metal complexes of ONO donor hydrazone ligand: Synthesis, structural characterization and antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 621-627.
[http://dx.doi.org/10.1016/j.saa.2015.06.121] [PMID: 26163785]
[86]
Mathews, N.A.; Jose, A.; Kurup, M.R.P. Synthesis and characterization of a new aroylhydrazone ligand and its cobalt(iii) complexes: X-ray crystallography and in vitro evaluation of antibacterial and antifungal activities. J. Mol. Struct., 2019, 1178, 544-553.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.061]
[87]
Karadeniz, Ş.; Ataol, C.Y.; Özen, T.; Demir, R.; Öğütçü, H.; Bati, H. Synthesis, characterization and biological activities of Ni(II), Cu(II) and UO 2 (VI) complexes of N′-((2Z,3E)-3-(Hydroxyimino)Butan-2-Ylidene)-2-Phenylacetohydrazide. J. Mol. Struct., 2019, 1175, 39-48.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.060]
[88]
Fousiamol, M.M.; Sithambaresan, M.; Damodaran, K.K.; Kurup, M.R.P. Syntheses, spectral aspects and biological studies of bromide and azide bridged box dimer copper(ii) complexes of an NNO donor aroylhydrazone. Inorg. Chim. Acta, 2020, 501, 119301.
[http://dx.doi.org/10.1016/j.ica.2019.119301]
[89]
Santiago, P.H.O.; Santiago, M.B.; Martins, C.H.G.; Gatto, C.C. Copper(II) and Zinc(II) complexes with hydrazone: Synthesis, crystal struc-ture, hirshfeld surface and antibacterial activity. Inorg. Chim. Acta, 2020, 508, 119632.
[http://dx.doi.org/10.1016/j.ica.2020.119632]
[90]
Shukla, S.N.; Gaur, P.; Raidas, M.L.; Chaurasia, B.; Bagri, S.S. Novel NNO pincer type Schiff base ligand and its complexes of Fe(III), Co(II) and Ni(II): Synthesis, spectroscopic characterization, DFT, antibacterial and anticorrosion study. J. Mol. Struct., 2021, 1240, 130582.
[http://dx.doi.org/10.1016/j.molstruc.2021.130582]
[91]
Jiang, J.H.; Lei, Y.H.; Li, X.; Pi, Y.; Zhu, H.; Li, Q.G.; Li, C.H. New Cobalt(II) schiff base complex: Synthesis, characterization, DFT cal-culation and antimicrobial activity. Inorg. Chem. Commun., 2021, 127, 108350.
[http://dx.doi.org/10.1016/j.inoche.2020.108350]
[92]
Júnior, W.B.; Alexandre-Moreira, M.S.; Alves, M.A.; Perez-Rebolledo, A.; Parrilha, G.L.; Castellano, E.E.; Piro, O.E.; Barreiro, E.J.; Lima, L.M.; Beraldo, H. Analgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salic-ylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their zinc(II) complexes. Molecules, 2011, 16(8), 6902-6915.
[http://dx.doi.org/10.3390/molecules16086902] [PMID: 21844840]
[93]
Chimmalagi, G.H.; Kendur, U.; Patil, S.M.; Frampton, C.S.; Gudasi, K.B.; Barretto, D.A.; Mangannavar, C.V.; Muchchandi, I.S. Mononu-clear Co(III), Ni(II) and Cu(II) Complexes of 2-(2,4-Dichlorobenzamido)-N′-(3,5-Di-Tert-Butyl-2-Hydroxybenzylidene)Benzohydrazide: Structural insight and biological assay. Appl. Organomet. Chem., 2019, 33(1), 1-13.
[http://dx.doi.org/10.1002/aoc.4557]
[94]
Chimmalagi, G.H.; Kendur, U.; Patil, S.M.; Gudasi, K.B.; Frampton, C.S.; Budri, M.B.; Mangannavar, C.V.; Muchchandi, I.S. Mononuclear Co(III), Ni(II) and Cu(II) complexes of tridentate di-tert-butylphenylhydrazone: Synthesis, characterization, x-ray crystal structures, hirshfeld surface analysis, molecular docking and in vivo anti-inflammatory activity. Appl. Organomet. Chem., 2018, 32(6), 1-16.
[http://dx.doi.org/10.1002/aoc.4337]
[95]
Kendur, U.; Chimmalagi, G.H.; Patil, S.M.; Gudasi, K.B.; Frampton, C.S.; Mangannavar, C.V.; Muchchandi, I.S. Mononuclear late first row transition metal complexes of ONO donor hydrazone ligand: Synthesis, characterization, crystallographic insight, in vivo and in vitro anti-inflammatory activity. J. Mol. Struct., 2018, 1153, 299-310.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.022]
[96]
Liu, Z.C.; Wang, B.D.; Li, B.; Wang, Q.; Yang, Z.Y.; Li, T.R.; Li, Y. Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases. Eur. J. Med. Chem., 2010, 45(11), 5353-5361.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.060] [PMID: 20833453]
[97]
Raja, D.S.; Bhuvanesh, N.S.P.; Natarajan, K. Structure-activity relationship study of copper(II) complexes with 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (4′-methylbenzoyl) hydrazone: Synthesis, structures, DNA and protein interaction studies, antioxidative and cytotoxic activity. Eur. J. Biochem., 2012, 17(2), 223-237.
[http://dx.doi.org/10.1007/s00775-011-0844-1] [PMID: 21932155]
[98]
Chang, H.Q.; Jia, L.; Xu, J.; Xu, Z.Q.; Chen, R.H.; Wu, W.N.; Bie, H.Y.; Zhu, T.F.; Ma, T.L.; Wang, Y. Syntheses, characterizations, anti-tumor activities and cell apoptosis induction of cu(ii), zn(ii) and cd(ii) complexes with hydrazone Schiff base derived from isonicotinohy-drazide. Inorg. Chem. Commun., 2015, 57, 8-10.
[http://dx.doi.org/10.1016/j.inoche.2015.04.010]
[99]
Fekri, R.; Salehi, M.; Asadi, A.; Kubicki, M. Synthesis, characterization, anticancer and antibacterial evaluation of schiff base ligands de-rived from hydrazone and their transition metal complexes. Inorg. Chim. Acta, 2019, 484, 245-254.
[http://dx.doi.org/10.1016/j.ica.2018.09.022]
[100]
Burgos-Lopez, Y.; Del Plá, J.; Balsa, L.M.; León, I.E.; Echeverría, G.A.; Piro, O.E.; García-Tojal, J.; Pis-Diez, R.; González-Baró, A.C.; Parajón-Costa, B.S. Synthesis, Crystal structure and cytotoxicity assays of a copper(ii) nitrate complex with a tridentate ONO acylhydra-zone ligand. Spectroscopic and theoretical studies of the complex and its ligand. Inorg. Chim. Acta, 2019, 487, 31-40.
[http://dx.doi.org/10.1016/j.ica.2018.11.039]
[101]
Hou, B.; Li, Z.; Zhang, Q.; Chen, P.; Liu, J. Novel water-soluble cu(ii) complexes based on acylhydrazone porphyrin ligands for DNA binding and: In Vitro anticancer activity as potential therapeutic targeting candidates. New J. Chem., 2020, 44(36), 15387-15395.
[http://dx.doi.org/10.1039/D0NJ02842H]
[102]
Dasgupta, S.; Karim, S.; Banerjee, S.; Saha, M.; Das Saha, K.; Das, D. Designing of novel zinc(ii) Schiff base complexes having acyl hy-drazone linkage: Study of phosphatase and anti-cancer activities. Dalton Trans., 2020, 49(4), 1232-1240.
[http://dx.doi.org/10.1039/C9DT04636D] [PMID: 31903474]
[103]
Neethu, K.S.; Sivaselvam, S.; Theetharappan, M.; Ranjitha, J.; Bhuvanesh, N.S.P.; Ponpandian, N.; Neelakantan, M.A.; Kaveri, M.V. In Vitro evaluations of biomolecular interactions, antioxidant and anticancer activities of nickel(ii) and copper(ii) complexes with 1:2 coordi-nation of anthracenyl hydrazone ligands. Inorg. Chim. Acta, 2021, 524, 120419.
[http://dx.doi.org/10.1016/j.ica.2021.120419]
[104]
Xu, Z.H.; Chen, F.J.; Xi, P.X.; Liu, X.H.; Zeng, Z.Z. Synthesis, characterization, and DNA-binding properties of the cobalt(ii) and nick-el(ii) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone. J. Photochem. Photobiol. Chem., 2008, 196(1), 77-83.
[http://dx.doi.org/10.1016/j.jphotochem.2007.11.017]
[105]
Krishnamoorthy, P.; Sathyadevi, P.; Cowley, A.H.; Butorac, R.R.; Dharmaraj, N. Evaluation of DNA binding, DNA cleavage, protein bind-ing and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur. J. Med. Chem., 2011, 46(8), 3376-3387.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.001] [PMID: 21600679]
[106]
Gökçe, C.; Gup, R. Copper(II) complexes of acylhydrazones: Synthesis, characterization and dna interaction. Appl. Organomet. Chem., 2013, 27(5), 263-268.
[http://dx.doi.org/10.1002/aoc.2955]
[107]
Gup, R.; Gökçe, C.; Aktürk, S. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 484-492.
[http://dx.doi.org/10.1016/j.saa.2014.06.133] [PMID: 25048283]
[108]
Alagesan, M.; Bhuvanesh, N.S.P.; Dharmaraj, N. Potentially cytotoxic new copper(II) hydrazone complexes: Synthesis, crystal structure and biological properties. Dalton Trans., 2013, 42(19), 7210-7223.
[http://dx.doi.org/10.1039/c3dt50371b] [PMID: 23529726]
[109]
Mondal, S.; Pakhira, B.; Blake, A.J.; Drew, M.G.B.; Chattopadhyay, S.K. Co(III) and Ni(II) complexes of an anthracene appended aroyl hydrazone: Synthesis, crystal structures, dna binding and catecholase activity. Polyhedron, 2016, 117, 327-337.
[http://dx.doi.org/10.1016/j.poly.2016.05.052]
[110]
Aboafia, S.A.; Elsayed, S.A.; El-Sayed, A.K.A.; El-Hendawy, A.M. New transition metal complexes of 2,4-dihydroxybenzaldehyde ben-zoylhydrazone schiff base (H2dhbh): Synthesis, spectroscopic characterization, DNA binding/cleavage and antioxidant activity. J. Mol. Struct., 2018, 1158, 39-50.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.008]
[111]
Li, Z.; Zhang, Q.; Liu, H.; Wang, G.; Liu, J. DNA binding and in vitro antineoplastic activity of neotype water-soluble Cu (II)-complexes based on fluorinated benzoylhydrazone porphyrin ligands. Dyes Pigments, 2019, 163, 647-655.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.056]
[112]
Li, Y.; Li, Y.; Liu, X.; Yang, Y.; Lin, D.; Gao, Q. The synthesis, characterization, dna/protein interaction, molecular docking and cate-cholase activity of two co(ii) complexes constructed from the aroylhydrazone ligand. J. Mol. Struct., 2020, 1202, 127229.
[http://dx.doi.org/10.1016/j.molstruc.2019.127229]
[113]
Liu, J.J.; Liu, X.R.; Zhao, S.S.; Yang, Z.W.; Yang, Z. Syntheses, crystal structures, thermal stabilities, CT-DNA, and BSA binding charac-teristics of a new acylhydrazone and its co(ii), cu(ii), and zn(ii) complexes. J. Coord. Chem., 2020, 73(7), 1159-1176.
[http://dx.doi.org/10.1080/00958972.2020.1758316]
[114]
Yang, J.; Liu, X.; Yu, M.; Yang, W.; Yang, Z.; Zhao, S. sheng, Co. Complexes with 2-acetylpyridine-4-hydroxy phenylacetyl acylhydra-zone: Synthesis, crystal structures, CT-DNA/BSA binding behaviors, antibacterial activities and molecular docking studies. Polyhedron, 2020, 187, 114619.
[http://dx.doi.org/10.1016/j.poly.2020.114619]
[115]
Rodríguez, M.R.; Balsa, L.M.; Piro, O.E.; Etcheverría, G.A.; García-Tojal, J.; Pis-Diez, R.; León, I.E.; Parajón-Costa, B.P.; González-Baró, A.C. Synthesis, crystal structure, spectroscopic characterization, DFT calculations and cytotoxicity assays of a new Cu(II) complex with an acylhydrazone ligand derived from thiophene. Inorganics (Basel), 2021, 9(2), 1-15.
[http://dx.doi.org/10.3390/inorganics9020009]
[116]
Wang, Y.; Yang, Z.Y.; Wang, B.D. Synthesis, characterization and anti-oxidative activity of cobalt(ii), nickel(ii) and iron(ii) schiff base complexes. Trans. Met. Chem. (Weinh.), 2005, 30(7), 879-883.
[http://dx.doi.org/10.1007/s11243-005-6166-9]
[117]
Sathyadevi, P.; Krishnamoorthy, P.; Jayanthi, E.; Butorac, R.R.; Cowley, A.H.; Dharmaraj, N. Studies on the effect of metal ions of hydra-zone complexes on interaction with nucleic acids, bovine serum albumin and antioxidant properties. Inorg. Chim. Acta, 2012, 384, 83-96.
[http://dx.doi.org/10.1016/j.ica.2011.11.033]
[118]
Patole, J.; Sandbhor, U.; Padhye, S.; Deobagkar, D.N.; Anson, C.E.; Powell, A. Structural chemistry and in vitro antitubercular activity of acetylpyridine benzoyl hydrazone and its copper complex against Mycobacterium smegmatis. Bioorg. Med. Chem. Lett., 2003, 13(1), 51-55.
[http://dx.doi.org/10.1016/S0960-894X(02)00855-7] [PMID: 12467615]
[119]
Hunoor, R.S.; Patil, B.R.; Badiger, D.S.; Vadavi, R.S.; Gudasi, K.B.; Chandrashekhar, V.M.; Muchchandi, I.S. Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetylcoumarin-isonicotinoylhydrazone and their antimicrobial and an-ti-tubercular activity evaluation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77(4), 838-844.
[http://dx.doi.org/10.1016/j.saa.2010.08.015] [PMID: 20833102]
[120]
Badiger, D.S.; Hunoor, R.S.; Patil, B.R.; Vadavi, R.S.; Mangannavar, C.V.; Muchchandi, I.S.; Patil, Y.P.; Nethaji, M.; Gudasi, K.B. Synthe-sis, spectroscopic properties and biological evaluation of transition metal complexes of salicylhydrazone of anthranilhydrazide: X-ray crystal structure of copper complex. Inorg. Chim. Acta, 2012, 384, 197-203.
[http://dx.doi.org/10.1016/j.ica.2011.11.063]
[121]
Shingnapurkar, D.; Dandawate, P.; Anson, C.E.; Powell, A.K.; Afrasiabi, Z.; Sinn, E.; Pandit, S.; Venkateswara Swamy, K.; Franzblau, S.; Padhye, S. Synthesis and characterization of pyruvate-isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(9), 3172-3176.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.047] [PMID: 22475559]
[122]
Firmino, G.S.S.; de Souza, M.V.N.; Pessoa, C.; Lourenco, M.C.S.; Resende, J.A.L.C.; Lessa, J.A. Synthesis and evaluation of copper(II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents. Biometals, 2016, 29(6), 953-963.
[http://dx.doi.org/10.1007/s10534-016-9968-7] [PMID: 27591998]
[123]
Hegde, G.S.; Netalkar, S.P.; Revankar, V.K. Copper (II) complexes of 3,5-di-tert-butyl-2-hydroxybenzoylhydrazones of 2-formyl-pyridine and 2-acetylpyridine, with tautomeric azine-scaffold-based architecture: Synthesis, crystal structures, the effect of counteranions on complexation, and their anti-m. Appl. Organomet. Chem., 2019, 33(7), 1-15.
[http://dx.doi.org/10.1002/aoc.4840]
[124]
Shaikh, I.; Jadeja, R.N.; Patel, R.; Mevada, V.; Gupta, V.K. 4-Acylhydrazone-5-Pyrazolones and their zinc(ii) metal complexes: Synthesis, characterization, crystal feature and antimalarial activity. J. Mol. Struct., 2021, 1232, 130051.
[http://dx.doi.org/10.1016/j.molstruc.2021.130051]
[125]
Rogolino, D.; Carcelli, M.; Bacchi, A.; Compari, C.; Contardi, L.; Fisicaro, E.; Gatti, A.; Sechi, M.; Stevaert, A.; Naesens, L. A versatile salicyl hydrazonic ligand and its metal complexes as antiviral agents. J. Inorg. Biochem., 2015, 150, 9-17.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.05.013] [PMID: 26047528]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy