Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Review Article

Seeing Through the Walls with Wireless Technology: A Review

Author(s): Gautam Verma* and Dolly Sharma

Volume 12, Issue 4, 2022

Published on: 21 June, 2022

Page: [255 - 271] Pages: 17

DOI: 10.2174/2210327912666220325161625

Price: $65

Abstract

Background: Wireless technology has made a great impact on the whole world by providing us with 5G cellular to backscatter networking, from long-range wireless power to low-power wide-area networks. The ability to see through the walls via wireless signals has ushered in a new era. This technology has a wide range of applications, such as military, law enforcement, medicine, and games.

Objective: This paper has concisely analyzed recent advances in the field of see-through-the-wall technology to improve a definitive knowledge of existing models and methodologies as well as provide recommendations for future directions. One of the most recent models is the Xaver ™ LR80, which is the first gadget that detects objects across a distance of more than 100 metres.

Methods: The dry lab technique for the comparison of existing models for frequency, power, model, detection ability, accuracy, localization feature, and applications has been used. Further comparison is based on the multipath effect. Their applications, the challenges that they need to face, and eventually suggestions for future work have been elaborated.

Conclusion: In general, the paper outlines the current level of knowledge in the field of see-through the wall technology. It establishes a foundation for comprehending the issue by examining the findings of contemporary research in the field.

Keywords: See-through the wall technology, radiofrequency signals, wireless, tracking, antenna array, machine learning, CNN.

Next »
Graphical Abstract

[1]
Millar M, Johnson D, Plunkett K. Superman. Red Son 2004.
[2]
Montgomery C, Gray R, Dicke H, Purcell EM. Principles of microwave circuits.NASA STI/Recon Technical Report A. 1987; pp. 1-223.
[http://dx.doi.org/10.1049/PBEW025E]
[3]
Zou Y, Liu W, Wu K, Ni LM. Wi-Fi radar: Recognizing human behavior with commodity Wi-Fi. IEEE Commun Mag 2017; 55(10): 105-11.
[http://dx.doi.org/10.1109/MCOM.2017.1700170]
[4]
Wu D, Zhang D, Xu C, Wang H, Li X. Device-free WiFi human sensing: From pattern-based to model-based approaches. IEEE Commun Mag 2017; 55(10): 91-7.
[http://dx.doi.org/10.1109/MCOM.2017.1700143]
[5]
Yousefi S, Narui H, Dayal S, Ermon S, Valaee S. A survey of human activity recognition using wifi CSI. arXiv 2017.
[6]
Al-Qaness MAA, Abd Elaziz M, Kim S, et al. Channel state information from pure communication to sense and track human motion: A survey. Sensors (Basel) 2019; 19(15): 3329.
[http://dx.doi.org/10.3390/s19153329] [PMID: 31362425]
[7]
Wang Z, Jiang K, Hou Y, et al. A survey on human behavior recognition using channel state information. IEEE Access 2019; 7: 155986-6024.
[http://dx.doi.org/10.1109/ACCESS.2019.2949123]
[8]
Ma Y, Zhou G, Wang S. WiFi sensing with channel state information: A survey. ACM Comput Surv 2019; 52(3): 1-36. [CSUR].
[http://dx.doi.org/10.1145/3310194]
[9]
Nanani GK, Kantipudi MV. A study of Wi-Fi based system for moving object detection through the wall. Int J Comput Appl 2013; 79(7): 975-8887.
[10]
Yousefi S, Narui H, Dayal S, Ermon S, Valaee S. A survey on behavior recognition using WiFi channel state information. IEEE Commun Mag 2017; 55(10): 98-104.
[http://dx.doi.org/10.1109/MCOM.2017.1700082]
[11]
Yang Z, Zhou Z, Liu Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput Surv 2013; 46(2): 1-32. [CSUR].
[http://dx.doi.org/10.1145/2543581.2543592]
[12]
Xiao J, Zhou Z, Yi Y, Ni LM. A survey on wireless indoor localization from the device perspective. ACM Comput Surv 2016; 49(2): 1-31. [CSUR].
[http://dx.doi.org/10.1145/2933232]
[13]
Nkwari PK, Sinha S, Ferreira HC. Through-the-wall radar imaging: A review. IETE Tech Rev 2018; 35(6): 631-9.
[http://dx.doi.org/10.1080/02564602.2017.1364146]
[14]
Raha K, Ray KP. Through wall imaging radar antenna with a focus on opening new research avenues. Def Sci J 2021; 71(5): 670-81.
[http://dx.doi.org/10.14429/dsj.71.16592]
[15]
Ferris DD Jr, Currie NC. Survey of current technologies for Through-The-Wall Surveillance (TWS). Insensors, C3I, Information, and training technologies for law enforcement. Int Soci Opti Photon 1999; 3577: 62-72.
[16]
Cai C, Zheng R, Hu M. A survey on acoustic sensing. arXiv 2019.
[17]
Wang Z, Jiang K, Hou Y, et al. A survey on CSI-based human behavior recognition in through-the-wall scenario. IEEE Access 2019; 7: 78772-93.
[http://dx.doi.org/10.1109/ACCESS.2019.2922244]
[18]
Vrigkas M, Nikou C, Kakadiaris IA. A review of human activity recognition methods. Front Robot AI 2015; 2: 28.
[http://dx.doi.org/10.3389/frobt.2015.00028]
[19]
Lara OD, Labrador MA. A survey on human activity recognition using wearable sensors. IEEE Comm Surv and Tutor 2012; 15(3): 1192-209.
[http://dx.doi.org/10.1109/SURV.2012.110112.00192]
[20]
Yu H, Yang X, Zhang Y, Zhong X, Chen Y. A review on the recognition of mid-air gestures. Sci Technol Rev 2017; 35(16): 64-73.
[21]
Borges PV, Conci N, Cavallaro A. Video-based human behavior understanding: A survey. IEEE Trans Circ Syst Video Tech 2013; 23(11): 1993-2008.
[http://dx.doi.org/10.1109/TCSVT.2013.2270402]
[22]
Liu J, Liu H, Chen Y, Wang Y, Wang C. Wireless sensing for human activity: A survey. IEEE Comm Surv and Tutor 2019; 22(3): 1629-45.
[http://dx.doi.org/10.1109/COMST.2019.2934489]
[23]
Liu J, Teng G, Hong F. Human activity sensing with wireless signals: A survey. Sensors (Basel) 2020; 20(4): 1210-0.
[http://dx.doi.org/10.3390/s20041210] [PMID: 32098392]
[24]
[25]
Adib F, Katabi D. See through walls with WiFi!. Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. 75-86.
[http://dx.doi.org/10.1145/2486001.2486039]
[26]
Cushman I, Rawat DB, Bhimraj A, Fraser M. Experimental approach for seeing through walls using Wi-Fi enabled software defined radio technology. Dig Commun Net 2016; 2(4): 245-55.
[http://dx.doi.org/10.1016/j.dcan.2016.09.001]
[27]
Maggiori E, Tarabalka Y, Charpiat G, Alliez P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens 2016; 55(2): 645-57.
[http://dx.doi.org/10.1109/TGRS.2016.2612821]
[28]
Adib F, Kabelac Z, Katabi D, Miller RC. 3D tracking via body radio reflections. In: 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI’14). Seattle, WA, USA 2014; pp. 317-29.
[29]
Wang Z, Xiao F, Ye N, Wang R, Yang P. A see-through- wall system for device-free human motion sensing based on battery-free RFID. ACM Trans Embed Comput Syst 2017; 17(1): 1-21.
[30]
Yang L, Lin Q, Li X, Liu T, Liu Y. See through walls with COTS RFID system!. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. 2015 Sept 7; Paris, France. 2015; pp. 487-99.
[http://dx.doi.org/10.1145/2789168.2790100]
[31]
Pahlavan K, Krishnamurthy P. Evolution and impact of Wi-Fi technology and applications: A historical perspective. Int J Wirel Inf Netw 2021; 28(1): 3-19.
[http://dx.doi.org/10.1007/s10776-020-00501-8]
[32]
Li X, Zhang D, Lv Q, et al. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017; 11(3): 1-22.
[http://dx.doi.org/10.1145/3130940] [PMID: 30417164]
[33]
Kılıç A, Babaoğlu İ, Babalık A. Through-wall radar classification of human posture using convolutional neural networks. Int J Antennas Propag 2019; 2019: Article ID 7541814.
[34]
Zhao M, Li T, Alsheikh MA. Through-wall human pose estimation using radio signals. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018 June 18-23; Salt Lake City, UT, USA. 2018; pp. 7356-65.
[http://dx.doi.org/10.1109/CVPR.2018.00768]
[35]
Zhao M, Tian Y, Zhao H, et al. RF-based 3D skeletons. Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. 2018 Aug 7; Budapest, Hungary. 2018; pp. 267-81.
[http://dx.doi.org/10.1145/3230543.3230579]
[36]
Adib F, Kabelac Z, Katabi D. Multi-person localization via {RF} body reflections.12th {USENIX} Symposium on Networked Systems Design and Implementation. 2015 May 4-6; Oakland, CA. 2015. 2015; pp. 279-92.
[37]
Adib F, Hsu CY, Mao H, Katabi D, Durand F. Capturing the human figure through a wall. ACM Trans Graph 2015; 34(6): 1-3.
[http://dx.doi.org/10.1145/2816795.2818072]
[38]
Adib F, Mao H, Kabelac Z, Katabi D, Miller RC. Smart homes that monitor breathing and heart rate. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 2015 April 18; New York, NY, USA. 2015; pp. 837-46.
[http://dx.doi.org/10.1145/2702123.2702200]
[39]
Li T, Fan L, Zhao M, Liu Y, Katabi D. Making the invisible visible: Action recognition through walls and occlusions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2019 Oct 27. Seoul, Korea (South) 2019; pp. 872-81.
[http://dx.doi.org/10.1109/ICCV.2019.00096]
[40]
Unique Micro Design - Inpinj Speedway R420 Fixed UHF RFID Reader/Writer, Clayton, Vic: Monash Precint. Available from: https://www.umd.com.au/itd/products/impinj_r420.html
[41]
Camero Xaver LR80 [Internet] Youtube Available from: https://youtu.be/f30eY10UroA
[42]
Liu C, Hu Y, Li Y, Song S, Liu J. Pku-mmd: A large scale benchmark for continuous multi-modal human action understanding. arXiv 2017.
[43]
Zheng K, Lin Y, Zhou Y. Video-based action detection using multiple wearable cameras. European Conference on Computer Vision. 727-41.
[44]
Merriaux P, Dupuis Y, Boutteau R, Vasseur P, Savatier X. A study of vicon system positioning performance. Sensors (Basel) 2017; 17(7): 1591.
[http://dx.doi.org/10.3390/s17071591] [PMID: 28686213]
[45]
Annual report 2004-2005 departments of internal security, Jammu & Kashmir affairs, border management, states and home New Delhi [internet], New Delhi, India: Ministry of home affairs (GoI). Available from: https://www.mha.gov.in/sites/default/files/AnnualReport_ 04_05.pdf
[46]
Ray PC, Chattoraj SL, Bisht MP, Kannaujiya S, Pandey K, Goswami A. Kedarnath disaster 2013: Causes and consequences using remote sensing inputs. Nat Hazards 2016; 81(1): 227-43.
[http://dx.doi.org/10.1007/s11069-015-2076-0]
[47]
Liang F, Li H, Liu M, Wang P, Wang J. Autofocusing method for through- the-wall bioradar imagery of human vital signs. J Eng (Stevenage) 2019; 2019(21): 7597-600.
[http://dx.doi.org/10.1049/joe.2019.0540]
[48]
Zheng C, Xi X, Song Z. Through the wall radar clutter mitigation using stepped frequency signal. Electron Lett 2019; 55(1): 53-5.
[http://dx.doi.org/10.1049/el.2018.5004]
[49]
Tian Y, Lee GH, He H, Hsu CY, Katabi D. RF-based fall monitoring using convolutional neural networks. Proc ACM Interact Mob Wearable Ubiquitous Technol 2018; 2(3): 1-24.
[http://dx.doi.org/10.1145/3264947]
[50]
Krishnaswamy B, Usha G. Falls in older people. Chennai: Madras Medical College 2003.
[51]
Yang D, Zhu Z, Zhang J, Liang B. The overview of human localization and vital sign signal measurement using handheld IR-UWB through-wall radar. Sensors (Basel) 2021; 21(2): 402.
[http://dx.doi.org/10.3390/s21020402] [PMID: 33430061]
[52]
Zhang L, Ruan X, Wang J. WiVi: A ubiquitous violence detection system with commercial WiFi devices. IEEE Access 2019; 8: 6662-72.
[http://dx.doi.org/10.1109/ACCESS.2019.2962813]
[53]
Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE Trans Pattern Anal Mach Intell 2021; 43(1): 172-86.
[http://dx.doi.org/10.1109/TPAMI.2019.2929257] [PMID: 31331883]
[54]
Hiranandani V. Under-explored threats to privacy: See- Through-wall technologies and electro-magnetic radiations. Surveill Soc 2010; 8(1): 93-8.
[http://dx.doi.org/10.24908/ss.v8i1.3476]
[55]
Akeila E, Salcic Z, Swain A. Indoor positioning using WSN and INS sensor fusion. Int J Sensors Wirel Commun Control 2014; 4(1): 35-45.
[http://dx.doi.org/10.2174/2210327905666150203233309]
[56]
RANGE-R® 2D Handheld, portable through-wall radar. Available from: https://www.l3harris.com/sites/default/files/2021-07/as- pes-resource-cyterra-Range-R-2D.pdf
[57]
Puckett BA. Mighty Morphin’power range-r: The intersection of the fourth amendment and evolving police technology. Elon L Rev 2016; 8: 555.
[58]
Khamis A. Retraction notice: Robustness speaker recognition based on feature space in clean and noisy condition. Int J Sensors Wirel Commun Control 2019; 9(4)
[59]
Sobolewski JS. Encyclopedia of Physical Science and Technology. 2003; pp. 277-303.
[60]
Sheikh TA, Bora J, Hussain M. Combined user and antenna selection in massive MIMO using precoding technique. Int J Sensors Wirel Commun Control 2019; 9(2): 214-23.
[http://dx.doi.org/10.2174/2210327908666181112144939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy