Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Approach to Pharmacological Targets of Pyrrole Family From Medicinal Chemistry Viewpoint

Author(s): Ebrahim Saeedian Moghadam, Katayoon Mireskandari, Raid Abdel-Jalil and Mohsen Amini*

Volume 22, Issue 19, 2022

Published on: 14 June, 2022

Page: [2486 - 2561] Pages: 76

DOI: 10.2174/1389557522666220325150531

Price: $65

conference banner
Abstract

Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole-based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biological targets for pyrrole-containing compounds easily. This review explains around seventy different biologic targets for pyrrole-based derivatives, so it is helpful for medicinal chemists in the design and development of novel bioactive compounds for different diseases. This review presents an extensive, meaningful structure-activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.

Keywords: Biological activity, drug design, heterocycles, medicinal chemistry, nitrogen, pyrrole, synthesis.

« Previous
Graphical Abstract

[1]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7(1), 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[2]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[3]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011]
[4]
Li, Z.; Xiao, S.; Yang, Y.; Chen, C.; Lu, T.; Chen, Z.; Jiang, H.; Chen, S.; Luo, C.; Zhou, B. Discovery of 8-methyl-pyrrolo[1,2-a]pyrazin-1(2H)-one Derivatives as highly potent and selective Bromodomain and Extra-Terminal (BET) bromodomain inhibitors. J. Med. Chem., 2020, 63(8), 3956-3975.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01784] [PMID: 32208600]
[5]
Fidanze, S.D.; Liu, D.; Mantei, R.A.; Hasvold, L.A.; Pratt, J.K.; Sheppard, G.S.; Wang, L.; Holms, J.H.; Dai, Y.; Aguirre, A.; Bogdan, A.; Dietrich, J.D.; Marjanovic, J.; Park, C.H.; Hutchins, C.W.; Lin, X.; Bui, M.H.; Huang, X.; Wilcox, D.; Li, L.; Wang, R.; Kovar, P.; Magoc, T.J.; Rajaraman, G.; Albert, D.H.; Shen, Y.; Kati, W.M.; McDaniel, K.F. Discovery and optimization of novel constrained pyrrolopyridone BET family inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(10), 1804-1810.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.020] [PMID: 29678460]
[6]
Sheppard, G.S.; Wang, L.; Fidanze, S.D.; Hasvold, L.A.; Liu, D.; Pratt, J.K.; Park, C.H.; Longenecker, K.; Qiu, W.; Torrent, M.; Kovar, P.J.; Bui, M.; Faivre, E.; Huang, X.; Lin, X.; Wilcox, D.; Zhang, L.; Shen, Y.; Albert, D.H.; Magoc, T.J.; Rajaraman, G.; Kati, W.M.; McDa-niel, K.F. Discovery of N-ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]-6-methyl-7-oxo-1H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET bromodomain inhibitor with selectivity for the second bromodomain. J. Med. Chem., 2020, 63(10), 5585-5623.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00628] [PMID: 32324999]
[7]
Balandis, B.; Ivanauskaitė, G.; Smirnovienė, J.; Kantminienė, K.; Matulis, D.; Mickevičius, V.; Zubrienė, A. Synthesis and structure-affinity relationship of chlorinated pyrrolidinone-bearing benzenesulfonamides as human carbonic anhydrase inhibitors. Bioorg. Chem., 2020, 97, 103658.
[http://dx.doi.org/10.1016/j.bioorg.2020.103658] [PMID: 32088419]
[8]
Khalil, O.M.; Kamal, A.M.; Bua, S.; El Sayed Teba, H.; Nissan, Y.M.; Supuran, C.T. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur. J. Med. Chem., 2020, 188, 112021.
[http://dx.doi.org/10.1016/j.ejmech.2019.112021] [PMID: 31901743]
[9]
Vaškevičienė, I.; Paketurytė, V.; Pajanok, N.; Žukauskas, Š.; Sapijanskaitė, B.; Kantminienė, K.; Mickevičius, V.; Zubrienė, A.; Matulis, D. Pyrrolidinone-bearing methylated and halogenated benzenesulfonamides as inhibitors of carbonic anhydrases. Bioorg. Med. Chem., 2019, 27(2), 322-337.
[http://dx.doi.org/10.1016/j.bmc.2018.12.011] [PMID: 30553625]
[10]
Ortiz Zacarías, N.V.; van Veldhoven, J.P.D.; Portner, L.; van Spronsen, E.; Ullo, S.; Veenhuizen, M.; van der Velden, W.J.C.; Zweemer, A.J.M.; Kreekel, R.M.; Oenema, K.; Lenselink, E.B.; Heitman, L.H.; IJzerman, A.P. Pyrrolone derivatives as intracellular allosteric modu-lators for chemokine receptors: Selective and dual-targeting inhibitors of CC chemokine receptors 1 and 2. J. Med. Chem., 2018, 61(20), 9146-9161.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00605] [PMID: 30256641]
[11]
Deaton, D.N.; Haffner, C.D.; Henke, B.R.; Jeune, M.R.; Shearer, B.G.; Stewart, E.L.; Stuart, J.D.; Ulrich, J.C. 2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity rela-tionships. Bioorg. Med. Chem., 2018, 26(8), 2107-2150.
[http://dx.doi.org/10.1016/j.bmc.2018.03.021] [PMID: 29576271]
[12]
Kou, X.; Song, L.; Wang, Y.; Yu, Q.; Ju, H.; Yang, A.; Shen, R. Design, synthesis and anti-Alzheimer’s disease activity study of xanthone derivatives based on multi-target strategy. Bioorg. Med. Chem. Lett., 2020, 30(4), 126927.
[http://dx.doi.org/10.1016/j.bmcl.2019.126927] [PMID: 31901382]
[13]
Bai, P.; Wang, K.; Zhang, P.; Shi, J.; Cheng, X.; Zhang, Q.; Zheng, C.; Cheng, Y.; Yang, J.; Lu, X.; Sang, Z. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem., 2019, 183, 111737.
[http://dx.doi.org/10.1016/j.ejmech.2019.111737] [PMID: 31581002]
[14]
Redzicka, A.; Szczukowski, Ł.; Kochel, A.; Wiatrak, B.; Gębczak, K.; Czyżnikowska, Ż. COX-1/COX-2 inhibition activities and molecular docking study of newly designed and synthesized pyrrolo[3,4-c]pyrrole Mannich bases. Bioorg. Med. Chem., 2019, 27(17), 3918-3928.
[http://dx.doi.org/10.1016/j.bmc.2019.07.033] [PMID: 31345747]
[15]
Reale, A.; Brogi, S.; Chelini, A.; Paolino, M.; Di Capua, A.; Giuliani, G.; Cappelli, A.; Giorgi, G.; Chemi, G.; Grillo, A.; Valoti, M.; Sautebin, L.; Rossi, A.; Pace, S.; La Motta, C.; Di Cesare Mannelli, L.; Lucarini, E.; Ghelardini, C.; Anzini, M. Synthesis, biological evalua-tion and molecular modeling of novel selective COX-2 inhibitors: Sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorg. Med. Chem., 2019, 27(19), 115045.
[http://dx.doi.org/10.1016/j.bmc.2019.115045] [PMID: 31427145]
[16]
Szilágyi, B.; Skok, Ž.; Rácz, A.; Frlan, R.; Ferenczy, G.G.; Ilaš, J.; Keserű, G.M. Discovery of d-amino acid oxidase inhibitors based on virtual screening against the lid-open enzyme conformation. Bioorg. Med. Chem. Lett., 2018, 28(10), 1693-1698.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.048] [PMID: 29699925]
[17]
Shah, K.; Lin, X.; Queener, S.F.; Cody, V.; Pace, J.; Gangjee, A. Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic in-fection agents. Bioorg. Med. Chem., 2018, 26(9), 2640-2650.
[http://dx.doi.org/10.1016/j.bmc.2018.04.032] [PMID: 29691153]
[18]
Lamut, A.; Cruz, C.D.; Skok, Ž.; Barančoková, M.; Zidar, N.; Zega, A.; Mašič, L.P.; Ilaš, J.; Tammela, P.; Kikelj, D.; Tomašič, T. Design, synthesis and biological evaluation of novel DNA gyrase inhibitors and their siderophore mimic conjugates. Bioorg. Chem., 2020, 95, 103550.
[http://dx.doi.org/10.1016/j.bioorg.2019.103550] [PMID: 31911309]
[19]
Durcik, M.; Lovison, D.; Skok, Ž.; Durante Cruz, C.; Tammela, P.; Tomašič, T.; Benedetto Tiz, D.; Draskovits, G.; Nyerges, Á.; Pál, C.; Ilaš, J.; Peterlin Mašič, L.; Kikelj, D.; Zidar, N. New N-phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibac-terial activity. Eur. J. Med. Chem., 2018, 154, 117-132.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.011] [PMID: 29778894]
[20]
Zidar, N.; Macut, H.; Tomašič, T.; Peterlin Mašič, L.; Ilaš, J.; Zega, A.; Tammela, P.; Kikelj, D. New N-phenyl-4,5-dibromopyrrolamides as DNA gyrase B inhibitors. MedChemComm, 2019, 10(6), 1007-1017.
[http://dx.doi.org/10.1039/C9MD00224C] [PMID: 31303999]
[21]
Fois, B.; Skok, Ž.; Tomašič, T.; Ilaš, J.; Zidar, N.; Zega, A.; Peterlin Mašič, L.; Szili, P.; Draskovits, G.; Nyerges, Á.; Pál, C.; Kikelj, D. Dual Escherichia coli DNA gyrase A and B inhibitors with antibacterial activity. ChemMedChem, 2020, 15(3), 265-269.
[http://dx.doi.org/10.1002/cmdc.201900607] [PMID: 31721445]
[22]
Tiz, D.B.; Skok, Ž.; Durcik, M.; Tomašič, T.; Mašič, L.P.; Ilaš, J.; Zega, A.; Draskovits, G.; Révész, T.; Nyerges, Á.; Pál, C.; Cruz, C.D.; Tammela, P.; Žigon, D.; Kikelj, D.; Zidar, N. An optimised series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. Eur. J. Med. Chem., 2019, 167, 269-290.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.004] [PMID: 30776691]
[23]
Eto, R.; Misawa, T.; Noguchi-Yachide, T.; Ohoka, N.; Kurihara, M.; Naito, M.; Tanaka, M.; Demizu, Y. Design and synthesis of estrogen receptor ligands with a 4-heterocycle-4-phenylheptane skeleton. Bioorg. Med. Chem., 2018, 26(8), 1638-1642.
[http://dx.doi.org/10.1016/j.bmc.2018.02.010] [PMID: 29525335]
[24]
Chen, J.; Sang, Z.; Jiang, Y.; Yang, C.; He, L. Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer. Chem. Biol. Drug Des., 2019, 93(3), 232-241.
[http://dx.doi.org/10.1111/cbdd.13405] [PMID: 30251407]
[25]
Romanelli, A.; Stazi, G.; Fioravanti, R.; Zwergel, C.; Di Bello, E.; Pomella, S.; Perrone, C.; Battistelli, C.; Strippoli, R.; Tripodi, M.; Del Bufalo, D.; Rota, R.; Trisciuoglio, D.; Mai, A.; Valente, S. Design of first-in-class dual EZH2/HDAC inhibitor: Biochemical activity and biological evaluation in cancer cells. ACS Med. Chem. Lett., 2020, 11(5), 977-983.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00014] [PMID: 32435414]
[26]
Brindisi, M.; Borrelli, G.; Brogi, S.; Grillo, A.; Maramai, S.; Paolino, M.; Benedusi, M.; Pecorelli, A.; Valacchi, G.; Di Cesare Mannelli, L.; Ghelardini, C.; Allarà, M.; Ligresti, A.; Minetti, P.; Campiani, G.; di Marzo, V.; Butini, S.; Gemma, S. Development of potent inhibitors of fatty acid amide hydrolase useful for the treatment of neuropathic pain. ChemMedChem, 2018, 13(19), 2090-2103.
[http://dx.doi.org/10.1002/cmdc.201800397] [PMID: 30085402]
[27]
Grillo, A.; Chemi, G.; Brogi, S.; Brindisi, M.; Relitti, N.; Fezza, F.; Fazio, D.; Castelletti, L.; Perdona, E.; Wong, A.; Lamponi, S.; Pecorelli, A.; Benedusi, M.; Fantacci, M.; Valoti, M.; Valacchi, G.; Micheli, F.; Novellino, E.; Campiani, G.; Butini, S.; Maccarrone, M.; Gemma, S. Development of novel multipotent compounds modulating endocannabinoid and dopaminergic systems. Eur. J. Med. Chem., 2019, 183, 111674.
[http://dx.doi.org/10.1016/j.ejmech.2019.111674] [PMID: 31518969]
[28]
Chrovian, C.C.; Soyode-Johnson, A.; Wall, J.L.; Rech, J.C.; Schoellerman, J.; Lord, B.; Coe, K.J.; Carruthers, N.I.; Nguyen, L.; Jiang, X.; Koudriakova, T.; Balana, B.; Letavic, M.A. 1H-pyrrolo[3,2-b]pyridine GluN2B-selective negative allosteric modulators. ACS Med. Chem. Lett., 2019, 10(3), 261-266.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00542] [PMID: 30891123]
[29]
Kocaoğlu, E.; Talaz, O.; Çavdar, H.; Şentürk, M.; Supuran, C.T.; Ekinci, D. Determination of the inhibitory effects of N-methylpyrrole derivatives on glutathione reductase enzyme. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 51-54.
[http://dx.doi.org/10.1080/14756366.2018.1520228] [PMID: 30362388]
[30]
Luthra, T.; Banothu, V.; Adepally, U.; Kumar, K.M.S.; Chakrabarti, S.; Maddi, S.R.; Sen, S. Discovery of novel pyrido-pyrrolidine hybrid compounds as alpha-glucosidase inhibitors and alternative agent for control of type 1 diabetes. Eur. J. Med. Chem., 2020, 188, 112034.
[http://dx.doi.org/10.1016/j.ejmech.2020.112034] [PMID: 31927314]
[31]
Tafesse, T.B.; Moghadam, E.S.; Bule, M.H.; Faramarzi, M.A.; Abdollahi, M.; Amini, M. Study on the interaction of 1, 5-diaryl pyrrole derivatives with α-glucosidase; synthesis, molecular docking, and kinetic study. Med. Chem., 2021, 17(5), 545-553.
[http://dx.doi.org/10.2174/1573406415666191206100336] [PMID: 31808390]
[32]
Tafesse, T.B.; Moghadam, E.S.; Bule, M.H.; Abadian, N.; Abdollahi, M.; Faramarzi, M.A.; Amini, M. Synthesis and biological evaluation of 2-(2-methyl-1H-pyrrol-3-yl)-2-oxo-N-(pyridine-3-yl) acetamide derivatives: In vitro α-glucosidase inhibition, and kinetic and molecu-lar docking study. Chem. Pap., 2020, 74(5), 1583-1596.
[http://dx.doi.org/10.1007/s11696-019-00999-0]
[33]
Winters, M.P.; Sui, Z.; Wall, M.; Wang, Y.; Gunnet, J.; Leonard, J.; Hua, H.; Yan, W.; Suckow, A.; Bell, A.; Clapper, W.; Jenkinson, C.; Haug, P.; Koudriakova, T.; Huebert, N.; Murray, W.V. Discovery of N-arylpyrroles as agonists of GPR120 for the treatment of type II diabetes. Bioorg. Med. Chem. Lett., 2018, 28(5), 841-846.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.013] [PMID: 29456108]
[34]
Li, G.; Dong, H.; Ma, Y.; Shao, K.; Li, Y.; Wu, X.; Wang, S.; Shao, Y.; Zhao, W. Structure-activity relationships study of neolamellarin A and its analogues as hypoxia inducible factor-1 (HIF-1) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(16), 2327-2331.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.017] [PMID: 31281016]
[35]
Lillsunde, K.E.; Tomašič, T.; Schult, P.; Lohmann, V.; Kikelj, D.; Tammela, P. Inhibition of hepatitis C replication by targeting the mole-cular chaperone Hsp90: Synthesis and biological evaluation of 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole derivatives. ChemMedChem, 2019, 14(3), 334-342.
[http://dx.doi.org/10.1002/cmdc.201800724] [PMID: 30548820]
[36]
Lamut, A.; Gjorgjieva, M.; Naesens, L.; Liekens, S.; Lillsunde, K.E.; Tammela, P.; Kikelj, D.; Tomašič, T. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg. Chem., 2020, 98, 103733.
[http://dx.doi.org/10.1016/j.bioorg.2020.103733] [PMID: 32171985]
[37]
Grychowska, K.; Kurczab, R.; Śliwa, P.; Satała, G.; Dubiel, K.; Matłoka, M.; Moszczyński-Pętkowski, R.; Pieczykolan, J.; Bojarski, A.J.; Zajdel, P. Pyrroloquinoline scaffold-based 5-HT6R ligands: Synthesis, quantum chemical and molecular dynamic studies, and influence of nitrogen atom position in the scaffold on affinity. Bioorg. Med. Chem., 2018, 26(12), 3588-3595.
[http://dx.doi.org/10.1016/j.bmc.2018.05.033] [PMID: 29853337]
[38]
Liu, X.; Hu, Y.; Gao, A.; Xu, M.; Gao, L.; Xu, L.; Zhou, Y.; Gao, J.; Ye, Q.; Li, J. Synthesis and biological evaluation of 3-aryl-4-indolyl-maleimides as potent mutant isocitrate dehydrogenase-1 inhibitors. Bioorg. Med. Chem., 2019, 27(4), 589-603.
[http://dx.doi.org/10.1016/j.bmc.2018.12.029] [PMID: 30600148]
[39]
Hu, Y.; Gao, A.; Liao, H.; Zhang, M.; Xu, G.; Gao, L.; Xu, L.; Zhou, Y.; Gao, J.; Ye, Q.; Li, J. 3-(7-Azaindolyl)-4-indolylmaleimides as a novel class of mutant isocitrate dehydrogenase-1 inhibitors: Design, synthesis, and biological evaluation. Arch. Pharm. (Weinheim), 2018, 351(10), e1800039.
[http://dx.doi.org/10.1002/ardp.201800039] [PMID: 30113716]
[40]
Serafini, M.; Torre, E.; Aprile, S.; Grosso, E.D.; Gesù, A.; Griglio, A.; Colombo, G.; Travelli, C.; Paiella, S.; Adamo, A.; Orecchini, E.; Coletti, A.; Pallotta, M.T.; Ugel, S.; Massarotti, A.; Pirali, T.; Fallarini, S. Discovery of highly potent benzimidazole derivatives as indolea-mine 2, 3-dioxygenase-1 (IDO1) inhibitors: from structure-based virtual screening to in vivo pharmacodynamic activity. J. Med. Chem., 2020, 63(6), 3047-3065.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01809] [PMID: 32150677]
[41]
Yang, R.; Chen, Y.; Pan, L.; Yang, Y.; Zheng, Q.; Hu, Y.; Wang, Y.; Zhang, L.; Sun, Y.; Li, Z.; Meng, X. Design, synthesis and structure-activity relationship study of novel naphthoindolizine and indolizinoquinoline-5,12-dione derivatives as IDO1 inhibitors. Bioorg. Med. Chem., 2018, 26(17), 4886-4897.
[http://dx.doi.org/10.1016/j.bmc.2018.08.028] [PMID: 30170925]
[42]
Kong, K.M.; Zhang, J.W.; Liu, B.Z.; Meng, G.R.; Zhang, Q. Discovery of 5-(pyridin-3-yl)-1H-indole-4,7-diones as indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(4), 126901.
[http://dx.doi.org/10.1016/j.bmcl.2019.126901] [PMID: 31882299]
[43]
Romussi, A.; Cappa, A.; Vianello, P.; Brambillasca, S.; Cera, M.R.; Dal Zuffo, R.; Fagà, G.; Fattori, R.; Moretti, L.; Trifirò, P.; Villa, M.; Vultaggio, S.; Cecatiello, V.; Pasqualato, S.; Dondio, G.; So, C.W.E.; Minucci, S.; Sartori, L.; Varasi, M.; Mercurio, C. Discovery of rever-sible inhibitors of KDM1A efficacious in acute myeloid leukemia models. ACS Med. Chem. Lett., 2020, 11(5), 754-759.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00604] [PMID: 32435381]
[44]
Verdonck, S.; Pu, S.Y.; Sorrell, F.J.; Elkins, J.M.; Froeyen, M.; Gao, L.J.; Prugar, L.I.; Dorosky, D.E.; Brannan, J.M.; Barouch-Bentov, R.; Knapp, S.; Dye, J.M.; Herdewijn, P.; Einav, S.; De Jonghe, S. Synthesis and structure-activity relationships of 3,5-disubstituted-pyrrolo[2,3- b]pyridines as inhibitors of adaptor-associated kinase 1 with antiviral activity. J. Med. Chem., 2019, 62(12), 5810-5831.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00136] [PMID: 31136173]
[45]
Cho, H.; Shin, I.; Ju, E.; Choi, S.; Hur, W.; Kim, H.; Hong, E.; Kim, N.D.; Choi, H.G.; Gray, N.S.; Sim, T. First SAR study for overriding NRAS mutant driven acute myeloid leukemia. J. Med. Chem., 2018, 61(18), 8353-8373.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00882] [PMID: 30153003]
[46]
Matheson, C.J.; Casalvieri, K.A.; Backos, D.S.; Minhajuddin, M.; Jordan, C.T.; Reigan, P. Substituted oxindol-3-ylidenes as AMP-activated protein kinase (AMPK) inhibitors. Eur. J. Med. Chem., 2020, 197, 112316.
[http://dx.doi.org/10.1016/j.ejmech.2020.112316] [PMID: 32334266]
[47]
Ju, Y.; Wu, J.; Yuan, X.; Zhao, L.; Zhang, G.; Li, C.; Qiao, R. Design and evaluation of potent EGFR inhibitors through the incorporation of macrocyclic polyamine moieties into the 4-anilinoquinazoline scaffold. J. Med. Chem., 2018, 61(24), 11372-11383.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01612] [PMID: 30508379]
[48]
Reiersølmoen, A.C.; Aarhus, T.I.; Eckelt, S.; Nørsett, K.G.; Sundby, E.; Hoff, B.H. Potent and selective EGFR inhibitors based on 5-aryl-7H-pyrrolopyrimidin-4-amines. Bioorg. Chem., 2019, 88, 102918.
[http://dx.doi.org/10.1016/j.bioorg.2019.102918] [PMID: 30999245]
[49]
Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of N4-phenylsubstituted-7H-pyrrolo[2,3-d]pyrimidin-4-amines as dual inhibitors of aurora kinase A and epidermal growth factor receptor kinase. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 74-84.
[http://dx.doi.org/10.1080/14756366.2017.1376666] [PMID: 29115879]
[50]
Pinzi, L.; Anighoro, A.; Bajorath, J.; Rastelli, G. Identification of 4-aryl-1H-pyrrole[2,3-b]pyridine derivatives for the development of new B-Raf inhibitors. Chem. Biol. Drug Des., 2018, 92(1), 1382-1386.
[http://dx.doi.org/10.1111/cbdd.13185] [PMID: 29469983]
[51]
Abdel-Maksoud, M.S.; Ali, E.M.H.; Ammar, U.M.; Mersal, K.I.; Yoo, K.H.; Oh, C.H. Design and synthesis of novel pyrrolo[2,3-b]pyridine derivatives targeting V600EBRAF. Bioorg. Med. Chem., 2020, 28(11), 115493.
[http://dx.doi.org/10.1016/j.bmc.2020.115493] [PMID: 32340792]
[52]
Xue, Y.; Song, P.; Song, Z.; Wang, A.; Tong, L.; Geng, M.; Ding, J.; Liu, Q.; Sun, L.; Xie, H.; Zhang, A. Discovery of 4,7-diamino-5-(4-phenoxyphenyl)-6-methylene-pyrimido[5,4- b]pyrrolizines as novel Bruton’s tyrosine kinase inhibitors. J. Med. Chem., 2018, 61(10), 4608-4627.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00441] [PMID: 29715023]
[53]
Crawford, J.J.; Johnson, A.R.; Misner, D.L.; Belmont, L.D.; Castanedo, G.; Choy, R.; Coraggio, M.; Dong, L.; Eigenbrot, C.; Erickson, R.; Ghilardi, N.; Hau, J.; Katewa, A.; Kohli, P.B.; Lee, W.; Lubach, J.W.; McKenzie, B.S.; Ortwine, D.F.; Schutt, L.; Tay, S.; Wei, B.; Reif, K.; Liu, L.; Wong, H.; Young, W.B. Discovery of GDC-0853: A potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J. Med. Chem., 2018, 61(6), 2227-2245.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01712] [PMID: 29457982]
[54]
Wang, X.; Yu, C.; Wang, C.; Ma, Y.; Wang, T.; Li, Y.; Huang, Z.; Zhou, M.; Sun, P.; Zheng, J.; Yang, S.; Fan, Y.; Xiang, R. Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer. Eur. J. Med. Chem., 2019, 181, 111535.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.038] [PMID: 31376566]
[55]
Ji, D.; Zhang, L.; Zhu, Q.; Bai, Y.; Wu, Y.; Xu, Y. Discovery of potent, orally bioavailable ERK1/2 inhibitors with isoindolin-1-one struc-ture by structure-based drug design. Eur. J. Med. Chem., 2019, 164, 334-341.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.040] [PMID: 30605831]
[56]
Boga, S.B.; Alhassan, A.B.; Cooper, A.B.; Doll, R.; Shih, N.Y.; Shipps, G.; Deng, Y.; Zhu, H.; Nan, Y.; Sun, R.; Zhu, L.; Desai, J.; Patel, M.; Muppalla, K.; Gao, X.; Wang, J.; Yao, X.; Kelly, J.; Gudipati, S.; Paliwal, S.; Tsui, H.C.; Wang, T.; Sherborne, B.; Xiao, L.; Hruza, A.; Buevich, A.; Zhang, L.K.; Hesk, D.; Samatar, A.A.; Carr, D.; Long, B.; Black, S.; Dayananth, P.; Windsor, W.; Kirschmeier, P.; Bishop, R. Discovery of 3(S)-thiomethyl pyrrolidine ERK inhibitors for oncology. Bioorg. Med. Chem. Lett., 2018, 28(11), 2029-2034.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.063] [PMID: 29748051]
[57]
Wang, Y.; Zhi, Y.; Jin, Q.; Lu, S.; Lin, G.; Yuan, H.; Yang, T.; Wang, Z.; Yao, C.; Ling, J.; Guo, H.; Li, T.; Jin, J.; Li, B.; Zhang, L.; Chen, Y.; Lu, T. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J. Med. Chem., 2018, 61(4), 1499-1518.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01261] [PMID: 29357250]
[58]
Yuan, X.; Chen, Y.; Zhang, W.; He, J.; Lei, L.; Tang, M.; Liu, J.; Li, M.; Dou, C.; Yang, T.; Yang, L.; Yang, S.; Wei, Y.; Peng, A.; Niu, T.; Xiang, M.; Ye, H.; Chen, L. Identification of pyrrolo [2, 3-d] pyrimidine-based derivatives as potent and orally effective FMS-like tyrosi-ne receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. J. Med. Chem., 2019, 62(8), 4158-4173.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00223] [PMID: 30939008]
[59]
Scott, J.S.; Degorce, S.L.; Anjum, R.; Culshaw, J.; Davies, R.D.M.; Davies, N.L.; Dillman, K.S.; Dowling, J.E.; Drew, L.; Ferguson, A.D.; Groombridge, S.D.; Halsall, C.T.; Hudson, J.A.; Lamont, S.; Lindsay, N.A.; Marden, S.K.; Mayo, M.F.; Pease, J.E.; Perkins, D.R.; Pink, J.H.; Robb, G.R.; Rosen, A.; Shen, M.; McWhirter, C.; Wu, D. Discovery and optimization of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) for the treatment of mutant MYD88L265P diffuse large B-cell lymphoma. J. Med. Chem., 2017, 60(24), 10071-10091.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01290] [PMID: 29172502]
[60]
Degorce, S.L.; Anjum, R.; Dillman, K.S.; Drew, L.; Groombridge, S.D.; Halsall, C.T.; Lenz, E.M.; Lindsay, N.A.; Mayo, M.F.; Pink, J.H.; Robb, G.R.; Scott, J.S.; Stokes, S.; Xue, Y. Optimization of permeability in a series of pyrrolotriazine inhibitors of IRAK4. Bioorg. Med. Chem., 2018, 26(4), 913-924.
[http://dx.doi.org/10.1016/j.bmc.2018.01.008] [PMID: 29398441]
[61]
Casimiro-Garcia, A.; Trujillo, J.I.; Vajdos, F.; Juba, B.; Banker, M.E.; Aulabaugh, A.; Balbo, P.; Bauman, J.; Chrencik, J.; Coe, J.W.; Czer-winski, R.; Dowty, M.; Knafels, J.D.; Kwon, S.; Leung, L.; Liang, S.; Robinson, R.P.; Telliez, J.B.; Unwalla, R.; Yang, X.; Thorarensen, A. Identification of cyanamide-based Janus Kinase 3 (JAK3) covalent inhibitors. J. Med. Chem., 2018, 61(23), 10665-10699.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01308] [PMID: 30423248]
[62]
Yao, L.; Ohlson, S.; Dymock, B.W. Design and synthesis of triple inhibitors of Janus Kinase (JAK), Histone Deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorg. Med. Chem. Lett., 2018, 28(8), 1357-1362.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.009] [PMID: 29545103]
[63]
Shi, L.; Zhong, Z.; Li, X.; Zhou, Y.; Pan, Z. Discovery of an orally available Janus kinase 3 selective covalent inhibitor. J. Med. Chem., 2019, 62(2), 1054-1066.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01823] [PMID: 30615446]
[64]
Noji, S.; Hara, Y.; Miura, T.; Yamanaka, H.; Maeda, K.; Hori, A.; Yamamoto, H.; Obika, S.; Inoue, M.; Hase, Y.; Orita, T.; Doi, S.; Adachi, T.; Tanimoto, A.; Oki, C.; Kimoto, Y.; Ogawa, Y.; Negoro, T.; Hashimoto, H.; Shiozaki, M. Discovery of a Janus kinase inhibitor bearing a highly three-dimensional spiro scaffold: JTE-052 (delgocitinib) as a new dermatological agent to treat inflammatory skin disorders. J. Med. Chem., 2020, 63(13), 7163-7185.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00450] [PMID: 32511913]
[65]
Forster, M.; Chaikuad, A.; Dimitrov, T.; Döring, E.; Holstein, J.; Berger, B.T.; Gehringer, M.; Ghoreschi, K.; Müller, S.; Knapp, S.; Laufer, S.A. Development, optimization, and structure–activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic imidazo [5, 4-d] pyrrolo [2, 3-b] pyridine scaffold. J. Med. Chem., 2018, 61(12), 5350-5366.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00571] [PMID: 29852068]
[66]
Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jus-sif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutylpropane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune disea-ses. J. Med. Chem., 2018, 61(3), 1130-1152.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01598] [PMID: 29298069]
[67]
Zhao, J.; Zhang, D.; Zhang, W.; Stashko, M.A.; DeRyckere, D.; Vasileiadi, E.; Parker, R.E.; Hunter, D.; Liu, Q.; Zhang, Y.; Norris-Drouin, J.; Li, B.; Drewry, D.H.; Kireev, D.; Graham, D.K.; Earp, H.S.; Frye, S.V.; Wang, X. Highly selective MERTK inhibitors achieved by a sin-gle methyl group. J. Med. Chem., 2018, 61(22), 10242-10254.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01229] [PMID: 30347155]
[68]
Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z. Function of the c-Met receptor tyrosine ki-nase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 1-14.
[http://dx.doi.org/10.1186/s12943-017-0753-1] [PMID: 29304823]
[69]
Wang, W.; Xu, S.; Duan, Y.; Liu, X.; Li, X.; Wang, C.; Zhao, B.; Zheng, P.; Zhu, W. Synthesis and bioevaluation and doking study of 1H-pyrrolo[2,3-b]pyridine derivatives bearing aromatic hydrazone moiety as c-Met inhibitors. Eur. J. Med. Chem., 2018, 145, 315-327.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.078] [PMID: 29331754]
[70]
Velcicky, J.; Schlapbach, A.; Heng, R.; Revesz, L.; Pflieger, D.; Blum, E.; Hawtin, S.; Huppertz, C.; Feifel, R.; Hersperger, R. Modulating ADME properties by fluorination: MK2 inhibitors with improved oral exposure. ACS Med. Chem. Lett., 2018, 9(4), 392-396.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00098] [PMID: 29670707]
[71]
Li, Z.; Li, X.; Su, M.B.; Gao, L.X.; Zhou, Y.B.; Yuan, B.; Lyu, X.; Yan, Z.; Hu, C.; Zhang, H.; Luo, C.; Chen, Z.; Li, J.; Zhao, Y. Disco-very of a potent and selective NF-κB-Inducing Kinase (NIK) inhibitor that has anti-inflammatory effects in vitro and in vivo. J. Med. Chem., 2020, 63(8), 4388-4407.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00396] [PMID: 32216342]
[72]
Zhu, Y.; Ma, Y.; Zu, W.; Song, J.; Wang, H.; Zhong, Y.; Li, H.; Zhang, Y.; Gao, Q.; Kong, B.; Xu, J.; Jiang, F.; Wang, X.; Li, S.; Liu, C.; Liu, H.; Lu, T.; Chen, Y. Identification of N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as novel, potent, and selective NF-κB Inducing Kinase (NIK) inhibitors for the treatment of psoriasis. J. Med. Chem., 2020, 63(13), 6748-6773.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00055] [PMID: 32479083]
[73]
Jia, H.; Dai, G.; Su, W.; Xiao, K.; Weng, J.; Zhang, Z.; Wang, Q.; Yuan, T.; Shi, F.; Zhang, Z.; Chen, W.; Sai, Y.; Wang, J.; Li, X.; Cai, Y.; Yu, J.; Ren, P.; Venable, J.; Rao, T.; Edwards, J.P.; Bembenek, S.D. Discovery, optimization, and evaluation of potent and highly selective PI3Kγ–PI3Kδ dual inhibitors. J. Med. Chem., 2019, 62(10), 4936-4948.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02014] [PMID: 31033293]
[74]
Kwiatkowski, J.; Liu, B.; Tee, D.H.Y.; Chen, G.; Ahmad, N.H.B.; Wong, Y.X.; Poh, Z.Y.; Ang, S.H.; Tan, E.S.W.; Ong, E.H. Nurul Dinie; Poulsen, A.; Pendharkar, V.; Sangthongpitag, K.; Lee, M.A.; Sepramaniam, S.; Ho, S.Y.; Cherian, J.; Hill, J.; Keller, T.H.; Hung, A.W. Fragment-based drug discovery of potent protein kinase C iota inhibitors. J. Med. Chem., 2018, 61(10), 4386-4396.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00060] [PMID: 29688013]
[75]
Liu, B.; Yuan, X.; Xu, B.; Zhang, H.; Li, R.; Wang, X.; Ge, Z.; Li, R. Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors. Eur. J. Med. Chem., 2019, 170, 1-15.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.003] [PMID: 30878825]
[76]
Bandarage, U.K.; Cao, J.; Come, J.H.; Court, J.J.; Gao, H.; Jacobs, M.D.; Marhefka, C.; Nanthakumar, S.; Green, J. ROCK inhibitors 3: Design, synthesis and structure-activity relationships of 7-azaindole-based Rho kinase (ROCK) inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(15), 2622-2626.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.040] [PMID: 30082069]
[77]
Jain, R.; Mathur, M.; Lan, J.; Costales, A.; Atallah, G.; Ramurthy, S.; Subramanian, S.; Setti, L.; Feucht, P.; Warne, B.; Doyle, L.; Basham, S.; Jefferson, A.B.; Appleton, B.A.; Lindvall, M.; Shafer, C.M. Design and synthesis of potent RSK inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(19), 3197-3201.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.020] [PMID: 30170943]
[78]
Yang, H.; Li, Y.; Chai, H.; Yakura, T.; Liu, B.; Yao, Q. Synthesis and biological evaluation of 2-epi-jaspine B analogs as selective sphin-gosine kinase 1 inhibitors. Bioorg. Chem., 2020, 98, 103369.
[http://dx.doi.org/10.1016/j.bioorg.2019.103369] [PMID: 31703810]
[79]
Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo[2,3-d]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.001] [PMID: 30248512]
[80]
Hu, S.; Zhao, Z.; Yan, H. Discovery and optimization of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives as mTORC1/mTORC2 dual inhibitors. Bioorg. Chem., 2019, 92, 103232.
[http://dx.doi.org/10.1016/j.bioorg.2019.103232] [PMID: 31526911]
[81]
Al-Sabi, A.; Daly, D.; Rooney, M.; Hughes, C.; Kinsella, G.K.; Kaza, S.K.; Nolan, K.; Oliver Dolly, J. Development of a selective inhibitor for Kv1.1 channels prevalent in demyelinated nerves. Bioorg. Chem., 2020, 100, 103918.
[http://dx.doi.org/10.1016/j.bioorg.2020.103918] [PMID: 32428746]
[82]
Xie, F.; Yang, F.; Liang, Y.; Li, L.; Xia, Y.; Jiang, F.; Liu, W.; Qi, Y.; Chowdhury, S.R.; Xie, D.; Fu, L. Investigation of stereoisomeric bisarylethenesulfonic acid esters for discovering potent and selective PTP1B inhibitors. Eur. J. Med. Chem., 2019, 164, 408-422.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.032] [PMID: 30611982]
[83]
Hazeldine, S.; Pachaiyappan, B.; Steinbergs, N.; Nowotarski, S.; Hanson, A.S.; Casero, R.A., Jr; Woster, P.M. Low molecular weight ami-doximes that act as potent inhibitors of lysine-specific demethylase 1. J. Med. Chem., 2012, 55(17), 7378-7391.
[http://dx.doi.org/10.1021/jm3002845] [PMID: 22876979]
[84]
Varkhedkar, R.; Dogra, S.; Tiwari, D.; Hussain, Y.; Yadav, P.N.; Pandey, G. Discovery of novel muscarinic receptor modulators by inte-grating a natural product framework and a bioactive molecule. ChemMedChem, 2018, 13(4), 384-395.
[http://dx.doi.org/10.1002/cmdc.201800001] [PMID: 29319226]
[85]
Dallagnol, J.C.C.; Khajehali, E.; van der Westhuizen, E.T.; Jörg, M.; Valant, C.; Gonçalves, A.G.; Capuano, B.; Christopoulos, A.; Scam-mells, P.J. Synthesis and pharmacological evaluation of heterocyclic carboxamides: Positive allosteric modulators of the M1 muscarinic acetylcholine receptor with weak agonist activity and diverse modulatory profiles. J. Med. Chem., 2018, 61(7), 2875-2894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01812] [PMID: 29544056]
[86]
Altintop, M.D.; Sever, B.; Osmaniye, D.; Sağlık, B.N.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of new pyrrole deri-vatives as monoamine oxidase inhibitors. Arch. Pharm. (Weinheim), 2018, 351(7), e1800082.
[http://dx.doi.org/10.1002/ardp.201800082] [PMID: 29963739]
[87]
Tzvetkov, N.T.; Stammler, H.G.; Hristova, S.; Atanasov, A.G.; Antonov, L. (Pyrrolo-pyridin-5-yl)benzamides: BBB permeable monoami-ne oxidase B inhibitors with neuroprotective effect on cortical neurons. Eur. J. Med. Chem., 2019, 162, 793-809.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.009] [PMID: 30522087]
[88]
Wu, M.; Puddifoot, C.A.; Taylor, P.; Joiner, W.J. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family. J. Biol. Chem., 2015, 290(40), 24509-24518.
[http://dx.doi.org/10.1074/jbc.M115.647248] [PMID: 26276394]
[89]
Weltzin, M.M.; George, A.A.; Lukas, R.J.; Whiteaker, P. Distinctive single-channel properties of α4β2-nicotinic acetylcholine receptor isoforms. PLoS One, 2019, 14(3), e0213143.
[http://dx.doi.org/10.1371/journal.pone.0213143] [PMID: 30845161]
[90]
Sinha, N.; Karche, N.P.; Verma, M.K.; Walunj, S.S.; Nigade, P.B.; Jana, G.; Kurhade, S.P.; Hajare, A.K.; Tilekar, A.R.; Jadhav, G.R.; Thu-be, B.R.; Shaikh, J.S.; Balgude, S.; Singh, L.B.; Mahimane, V.; Adurkar, S.K.; Hatnapure, G.; Raje, F.; Bhosale, Y.; Bhanage, D.; Sachchi-danand, S.; Dixit, R.; Gupta, R.; Bokare, A.M.; Dandekar, M.; Bharne, A.; Chatterjee, M.; Desai, S.; Koul, S.; Modi, D.; Mehta, M.; Patil, V.; Singh, M.; Gundu, J.; Goel, R.N.; Shah, C.; Sharma, S.; Bakhle, D.; Kamboj, R.K.; Palle, V.P. Discovery of novel, potent, brain-permeable, and orally efficacious positive allosteric modulator of α7 nicotinic acetylcholine receptor [4-(5-(4-chlorophenyl)-4-methyl-2-propionylthiophen-3-yl)benzenesulfonamide]: Structure-activity relationship and preclinical characterization. J. Med. Chem., 2020, 63(3), 944-960.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01569] [PMID: 31755711]
[91]
Xue, Y.; He, X.; Yang, T.; Wang, Y.; Liu, Z.; Zhang, G.; Wang, Y.; Wang, K.; Zhang, L.; Zhang, L. Discovery of fused heterocyclic car-boxamide derivatives as novel α7-nAChR agonists: Synthesis, preliminary SAR and biological evaluation. Eur. J. Med. Chem., 2019, 182, 111618.
[http://dx.doi.org/10.1016/j.ejmech.2019.111618] [PMID: 31434041]
[92]
Nirogi, R.; Mohammed, A.R.; Shinde, A.K.; Ravella, S.R.; Bogaraju, N.; Subramanian, R.; Mekala, V.R.; Palacharla, R.C.; Muddana, N.; Thentu, J.B.; Bhyrapuneni, G.; Abraham, R.; Jasti, V. Discovery and development of 3-(6-chloropyridine-3-yloxymethyl)-2-azabicyclo[3.1.0]hexane hydrochloride (SUVN-911): A novel, potent, selective, and orally active neuronal nicotinic acetylcholine α4β2 receptor antagonist for the treatment of depression. J. Med. Chem., 2020, 63(6), 2833-2853.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00790] [PMID: 32026697]
[93]
Miyazawa, Y.; Yamaguchi, T.; Yamaguchi, M.; Tago, K.; Tamura, A.; Sugiyama, D.; Aburatani, T.; Nishizawa, T.; Kurikawa, N.; Kono, K. Discovery of novel pyrrole derivatives as potent agonists for the niacin receptor GPR109A. Bioorg. Med. Chem. Lett., 2020, 30(10), 127105.
[http://dx.doi.org/10.1016/j.bmcl.2020.127105] [PMID: 32199732]
[94]
Frantz, M.C.; Pellissier, L.P.; Pflimlin, E.; Loison, S.; Gandía, J.; Marsol, C.; Durroux, T.; Mouillac, B.; Becker, J.A.J.; Le Merrer, J.; Va-lencia, C.; Villa, P.; Bonnet, D.; Hibert, M. LIT-001, the first nonpeptide oxytocin receptor agonist that improves social interaction in a mouse model of autism. J. Med. Chem., 2018, 61(19), 8670-8692.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00697] [PMID: 30199637]
[95]
Vaupel, A.; Holzer, P.; Ferretti, S.; Guagnano, V.; Kallen, J.; Mah, R.; Masuya, K.; Ruetz, S.; Rynn, C.; Schlapbach, A.; Stachyra, T.; Stutz, S.; Todorov, M.; Jeay, S.; Furet, P. in vitro and in vivo characterization of a novel, highly potent p53-MDM2 inhibitor. Bioorg. Med. Chem. Lett., 2018, 28(20), 3404-3408.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.027] [PMID: 30217415]
[96]
Gollner, A.; Weinstabl, H.; Fuchs, J.E.; Rudolph, D.; Garavel, G.; Hofbauer, K.S.; Karolyi-Oezguer, J.; Gmaschitz, G.; Hela, W.; Kerres, N.; Grondal, E.; Werni, P.; Ramharter, J.; Broeker, J.; McConnell, D.B. Targeted synthesis of complex spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-ones by intramolecular cyclization of azomethine ylides: Highly potent MDM2-p53 inhibitors. ChemMedChem, 2019, 14(1), 88-93.
[http://dx.doi.org/10.1002/cmdc.201800617] [PMID: 30458062]
[97]
Vadukoot, A.K.; Sharma, S.; Aretz, C.D.; Kumar, S.; Gautam, N.; Alnouti, Y.; Aldrich, A.L.; Heim, C.E.; Kielian, T.; Hopkins, C.R. Synt-hesis and SAR studies of 1H-pyrrolo[2,3-b]pyridine-2-carboxamides as phosphodiesterase 4B (PDE4B) inhibitors. ACS Med. Chem. Lett., 2020, 11(10), 1848-1854.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00369] [PMID: 33062163]
[98]
Zhu, B.; Strada, S.J. The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmo-nary/cardiovascular vessels. Curr. Top. Med. Chem., 2007, 7(4), 437-454.
[http://dx.doi.org/10.2174/156802607779941198] [PMID: 17305584]
[99]
Wu, D.; Huang, Y.; Chen, Y.; Huang, Y.Y.; Geng, H.; Zhang, T.; Zhang, C.; Li, Z.; Guo, L.; Chen, J.; Luo, H.B. Optimization of chromeno[2,3- c]pyrrol-9(2 H)-ones as highly potent, selective, and orally bioavailable PDE5 inhibitors: Structure-activity relationship, X-ray crystal structure, and pharmacodynamic effect on pulmonary arterial hypertension. J. Med. Chem., 2018, 61(18), 8468-8473.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01209] [PMID: 30148362]
[100]
Shen, Y.; Li, F.; Szewczyk, M.M.; Halabelian, L.; Park, K.S.; Chau, I.; Dong, A.; Zeng, H.; Chen, H.; Meng, F.; Barsyte-Lovejoy, D.; Arrowsmith, C.H.; Brown, P.J.; Liu, J.; Vedadi, M.; Jin, J. Discovery of a first-in-class protein arginine methyltransferase 6 (PRMT6) co-valent inhibitor. J. Med. Chem., 2020, 63(10), 5477-5487.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00406] [PMID: 32367723]
[101]
Budke, B.; Tueckmantel, W.; Miles, K.; Kozikowski, A.P.; Connell, P.P. Optimization of drug candidates that inhibit the D-loop activity of RAD51. ChemMedChem, 2019, 14(10), 1031-1040.
[http://dx.doi.org/10.1002/cmdc.201900075] [PMID: 30957434]
[102]
Messore, A.; Corona, A.; Madia, V.N.; Saccoliti, F.; Tudino, V.; De Leo, A.; Scipione, L.; De Vita, D.; Amendola, G.; Di Maro, S.; Nove-llino, E.; Cosconati, S.; Métifiot, M.; Andreola, M.L.; Valenti, P.; Esposito, F.; Grandi, N.; Tramontano, E.; Costi, R.; Di Santo, R. Pyrrolyl pyrazoles as non-diketo acid inhibitors of the HIV-1 ribonuclease H function of reverse transcriptase. ACS Med. Chem. Lett., 2020, 11(5), 798-805.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00617] [PMID: 32435387]
[103]
Marcoux, D.; Duan, J.J.W.; Shi, Q.; Cherney, R.J.; Srivastava, A.S.; Cornelius, L.; Batt, D.G.; Liu, Q.; Beaudoin-Bertrand, M.; Weigelt, C.A.; Khandelwal, P.; Vishwakrishnan, S.; Selvakumar, K.; Karmakar, A.; Gupta, A.K.; Basha, M.; Ramlingam, S.; Manjunath, N.; Van-teru, S.; Karmakar, S.; Maddala, N.; Vetrichelvan, M.; Gupta, A.; Rampulla, R.A.; Mathur, A.; Yip, S.; Li, P.; Wu, D.R.; Khan, J.; Ruzanov, M.; Sack, J.S.; Wang, J.; Yarde, M.; Cvijic, M.E.; Li, S.; Shuster, D.J.; Borowski, V.; Xie, J.H.; McIntyre, K.W.; Obermeier, M.T.; Fura, A.; Stefanski, K.; Cornelius, G.; Hynes, J., Jr; Tino, J.A.; Macor, J.E.; Salter-Cid, L.; Denton, R.; Zhao, Q.; Carter, P.H.; Dhar, T.G.M. Rationa-lly designed, conformationally constrained inverse agonists of RORγt-identification of a potent, selective series with biologic-like in vivo efficacy. J. Med. Chem., 2019, 62(21), 9931-9946.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01369] [PMID: 31638797]
[104]
Meijer, F.A.; Doveston, R.G.; de Vries, R.M.J.M.; Vos, G.M.; Vos, A.A.A.; Leysen, S.; Scheepstra, M.; Ottmann, C.; Milroy, L.G.; Bruns-veld, L. Ligand-based design of allosteric retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists. J. Med. Chem., 2020, 63(1), 241-259.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01372] [PMID: 31821760]
[105]
Abbott, J.R.; Hodges, T.R.; Daniels, R.N.; Patel, P.A.; Kennedy, J.P.; Howes, J.E.; Akan, D.T.; Burns, M.C.; Sai, J.; Sobolik, T.; Beesetty, Y.; Lee, T.; Rossanese, O.W.; Phan, J.; Waterson, A.G.; Fesik, S.W. Discovery of aminopiperidine indoles that activate the guanine nucleo-tide exchange factor SOS1 and modulate RAS signaling. J. Med. Chem., 2018, 61(14), 6002-6017.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00360] [PMID: 29856609]
[106]
Su, J.C.; Chang, C.H.; Wu, S.H.; Shiau, C.W. Novel imidazopyridine suppresses STAT3 activation by targeting SHP-1. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1248-1255.
[http://dx.doi.org/10.1080/14756366.2018.1497019] [PMID: 30261753]
[107]
Harikrishnan, L.S.; Warrier, J.; Tebben, A.J.; Tonukunuru, G.; Madduri, S.R.; Baligar, V.; Mannoori, R.; Seshadri, B.; Rahaman, H.; Aru-nachalam, P.N.; Dikundwar, A.G.; Fink, B.E.; Fargnoli, J.; Fereshteh, M.; Fan, Y.; Lippy, J.; Ho, C.P.; Wautlet, B.; Sheriff, S.; Ruzanov, M.; Borzilleri, R.M. Heterobicyclic inhibitors of transforming growth factor beta receptor I (TGFβRI). Bioorg. Med. Chem., 2018, 26(5), 1026-1034.
[http://dx.doi.org/10.1016/j.bmc.2018.01.014] [PMID: 29422332]
[108]
Fukuda, T.; Nanjo, Y.; Fujimoto, M.; Yoshida, K.; Natsui, Y.; Ishibashi, F.; Okazaki, F.; To, H.; Iwao, M. Lamellarin-inspired potent to-poisomerase I inhibitors with the unprecedented benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-one scaffold. Bioorg. Med. Chem., 2019, 27(2), 265-277.
[http://dx.doi.org/10.1016/j.bmc.2018.11.037] [PMID: 30553626]
[109]
Halder, N.; Dzhemileva, L.U.; Ramazanov, I.R.; D’yakonov, V.A.; Dzhemilev, U.M.; Rath, H. Comparative in vitro studies of the topoi-somerase I inhibition and anticancer activities of metallated N-confused porphyrins and metallated porphyrins. ChemMedChem, 2020, 15(7), 632-642.
[http://dx.doi.org/10.1002/cmdc.201900633] [PMID: 32154640]
[110]
Delgado, J.L.; Lentz, S.R.C.; Kulkarni, C.A.; Chheda, P.R.; Held, H.A.; Hiasa, H.; Kerns, R.J. Probing structural requirements for human topoisomerase I inhibition by a novel N1-Biphenyl fluoroquinolone. Eur. J. Med. Chem., 2019, 172, 109-130.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.040] [PMID: 30959322]
[111]
Liu, Y.; Yang, D.; Hong, Z.; Guo, S.; Liu, M.; Zuo, D.; Ge, D.; Qin, M.; Sun, D. Synthesis and biological evaluation of 4,6-diphenyl-2-(1H-pyrrol-1-yl)nicotinonitrile analogues of crolibulin and combretastatin A-4. Eur. J. Med. Chem., 2018, 146, 185-193.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.052] [PMID: 29407949]
[112]
Abdelbaset, M.S.; Abuo-Rahma, G.E.A.; Abdelrahman, M.H.; Ramadan, M.; Youssif, B.G.M.; Bukhari, S.N.A.; Mohamed, M.F.A.; Abdel-Aziz, M. Novel pyrrol-2(3H)-ones and pyridazin-3(2H)-ones carrying quinoline scaffold as anti-proliferative tubulin polymerization inhi-bitors. Bioorg. Chem., 2018, 80, 151-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.003] [PMID: 29920422]
[113]
Dasari, R.; Błauż, A.; Medellin, D.C.; Kassim, R.M.; Viera, C.; Santarosa, M.; van der Westhuyzen, A.E.; van Otterlo, W.A.L.; Olivas, T.; Yildiz, T.; Betancourt, T.; Shuster, C.B.; Rogelj, S.; Rychlik, B.; Hudnall, T.; Frolova, L.V.; Kornienko, A. Microtubule-targeting 7-deazahypoxanthines derived from marine alkaloid rigidins: Exploration of the N3 and N9 positions and interaction with multidrug-resistance proteins. ChemMedChem, 2019, 14(3), 322-333.
[http://dx.doi.org/10.1002/cmdc.201800658] [PMID: 30562414]
[114]
Pavana, R.K.; Shah, K.; Gentile, T.; Dybdal-Hargreaves, N.F.; Risinger, A.L.; Mooberry, S.L.; Hamel, E.; Gangjee, A. Sterically induced conformational restriction: Discovery and preclinical evaluation of novel pyrrolo[3,2-d]pyrimidines as microtubule targeting agents. Bioorg. Med. Chem., 2018, 26(20), 5470-5478.
[http://dx.doi.org/10.1016/j.bmc.2018.09.025] [PMID: 30297118]
[115]
Brindisi, M.; Ulivieri, C.; Alfano, G.; Gemma, S.; de Asís Balaguer, F.; Khan, T.; Grillo, A.; Chemi, G.; Menchon, G.; Prota, A.E.; Olieric, N.; Lucena-Agell, D.; Barasoain, I.; Diaz, J.F.; Nebbioso, A.; Conte, M.; Lopresti, L.; Magnano, S.; Amet, R.; Kinsella, P.; Zisterer, D.M.; Ibrahim, O.; O’Sullivan, J.; Morbidelli, L.; Spaccapelo, R.; Baldari, C.; Butini, S.; Novellino, E.; Campiani, G.; Altucci, L.; Steinmetz, M.O.; Brogi, S. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur. J. Med. Chem., 2019, 162, 290-320.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.004] [PMID: 30448418]
[116]
Puxeddu, M.; Shen, H.; Bai, R.; Coluccia, A.; Nalli, M.; Mazzoccoli, C.; Da Pozzo, E.; Cavallini, C.; Martini, C.; Orlando, V.; Biagioni, S.; Mazzoni, C.; Coluccia, A.M.L.; Hamel, E.; Liu, T.; Silvestri, R.; La Regina, G. Structure-activity relationship studies and in vitro and in vi-vo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. Eur. J. Med. Chem., 2020, 185, 111828.
[http://dx.doi.org/10.1016/j.ejmech.2019.111828] [PMID: 31727471]
[117]
Bortolozzi, R.; Carta, D.; Prà, M.D.; Antoniazzi, G.; Mattiuzzo, E.; Sturlese, M.; Di Paolo, V.; Calderan, L.; Moro, S.; Hamel, E.; Quintieri, L.; Ronca, R.; Viola, G.; Ferlin, M.G. Evaluating the effects of fluorine on biological properties and metabolic stability of some antitubulin 3-substituted 7-phenyl-pyrroloquinolinones. Eur. J. Med. Chem., 2019, 178, 297-314.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.092] [PMID: 31195171]
[118]
Kıbrız, İ.E.; Saçmacı, M.; Yıldırım, İ.; Abbas Ali Noma, S.; Taşkın Tok, T.; Ateş, B. Xanthine oxidase inhibitory activity of new pyrrole carboxamide derivatives: In vitro and in silico studies. Arch. Pharm. (Weinheim), 2018, 351(10), e1800165.
[http://dx.doi.org/10.1002/ardp.201800165] [PMID: 30168852]
[119]
Wang, C.; Wang, B.; Hou, S.; Xue, L.; Kang, Z.; Du, J.; Li, Y.; Liu, X.; Wang, Q.; Zhang, C. Discovery of novel nonsteroidal VDR agonists with novel diarylmethane skeleton for the treatment of breast cancer. Eur. J. Med. Chem., 2019, 163, 787-803.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.024] [PMID: 30579121]
[120]
Wang, C.; Wang, B.; Xue, L.; Kang, Z.; Hou, S.; Du, J.; Zhang, C. Design, synthesis, and antifibrosis activity in liver of nonsecosteroidal vitamin D receptor agonists with phenyl-pyrrolyl pentane skeleton. J. Med. Chem., 2018, 61(23), 10573-10587.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01165] [PMID: 30350999]
[121]
Hao, M.; Hou, S.; Xue, L.; Yuan, H.; Zhu, L.; Wang, C.; Wang, B.; Tang, C.; Zhang, C. Further developments of the phenyl-pyrrolyl pen-tane series of nonsteroidal vitamin D receptor modulators as anticancer agents. J. Med. Chem., 2018, 61(7), 3059-3075.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00106] [PMID: 29518319]
[122]
Kang, Z.S.; Wang, C.; Han, X.L.; Wang, B.; Yuan, H.L.; Hou, S.Y.; Hao, M.X.; Du, J.J.; Li, Y.Y.; Zhou, A.W.; Zhang, C. Sulfonyl-containing phenyl-pyrrolyl pentane analogues: Novel non-secosteroidal vitamin D receptor modulators with favorable physicochemical properties, pharmacokinetic properties and anti-tumor activity. Eur. J. Med. Chem., 2018, 157, 1174-1191.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.085] [PMID: 30193216]
[123]
Hangeland, J.J.; Abell, L.M.; Adam, L.P.; Jiang, J.; Friends, T.J.; Haque, L.E.; Neels, J.; Onorato, J.M.; Chen, A.Y.A.; Taylor, D.S.; Yin, X.; Harrity, T.W.; Basso, M.D.; Yang, R.; Sleph, P.G.; Gordon, D.A.; Huang, C.S.; Wexler, R.R.; Finlay, H.J.; Lawrence, R.M. PK/PD discon-nect observed with a reversible endothelial lipase inhibitor. ACS Med. Chem. Lett., 2018, 9(7), 673-678.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00138] [PMID: 30034599]
[124]
Huang, W.; Sun, X.; Li, Y.; He, Z.; Li, L.; Deng, Z.; Huang, X.; Han, S.; Zhang, T.; Zhong, J.; Wang, Z.; Xu, Q.; Zhang, J.; Deng, X. Disco-very and identification of small molecules as methuosis inducers with in vivo antitumor activities. J. Med. Chem., 2018, 61(12), 5424-5434.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00753] [PMID: 29878764]
[125]
Kopinathan, A.; Draper-Joyce, C.; Szabo, M.; Christopoulos, A.; Scammells, P.J.; Lane, J.R.; Capuano, B. Subtle modifications to the indo-le-2-carboxamide motif of the negative allosteric modulator N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1 H)-yl)ethyl)cyclohexyl)-1 H-indole-2-carboxamide (SB269652) yield dramatic changes in pharmacological activity at the dopamine D2 recep-tor. J. Med. Chem., 2019, 62(1), 371-377.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00192] [PMID: 29890071]
[126]
Mohd Faudzi, S.M.; Abdullah, M.A.; Abdull Manap, M.R.; Ismail, A.Z.; Rullah, K.; Mohd Aluwi, M.F.F.; Mazila Ramli, A.N.; Abas, F.; Lajis, N.H. Inhibition of nitric oxide and prostaglandin E2 production by pyrrolylated-chalcones: Synthesis, biological activity, crystal structure analysis, and molecular docking studies. Bioorg. Chem., 2020, 94, 103376-103376.
[http://dx.doi.org/10.1016/j.bioorg.2019.103376] [PMID: 31677861]
[127]
Rasal, N.K.; Sonawane, R.B.; Jagtap, S.V. Potential 2,4-dimethyl-1H-pyrrole-3-carboxamide bearing benzimidazole template: Design, synthesis, in vitro anticancer and in silico ADME study. Bioorg. Chem., 2020, 97, 103660.
[http://dx.doi.org/10.1016/j.bioorg.2020.103660] [PMID: 32086056]
[128]
Xiang, H.Y.; Chen, Y.H.; Wang, Y.; Zhang, X.; Ding, J.; Meng, L.H.; Yang, C.H. Design, synthesis and antiproliferative activity evaluation of a series of pyrrolo[2,1-f][1,2,4]triazine derivatives. Bioorg. Med. Chem. Lett., 2020, 30(12), 127194.
[http://dx.doi.org/10.1016/j.bmcl.2020.127194] [PMID: 32317209]
[129]
Abd El Hameid, M.K.; Mohammed, M.R. Design, synthesis, and cytotoxicity screening of 5-aryl-3-(2-(pyrrolyl) thiophenyl)-1, 2, 4-oxadiazoles as potential antitumor molecules on breast cancer MCF-7 cells. Bioorg. Chem., 2019, 86, 609-623.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.067] [PMID: 30807934]
[130]
Tikhomirov, A.S.; Litvinova, V.A.; Andreeva, D.V.; Tsvetkov, V.B.; Dezhenkova, L.G.; Volodina, Y.L.; Kaluzhny, D.N.; Treshalin, I.D.; Schols, D.; Ramonova, A.A.; Moisenovich, M.M.; Shtil, A.A.; Shchekotikhin, A.E. Amides of pyrrole- and thiophene-fused anthraquino-ne derivatives: A role of the heterocyclic core in antitumor properties. Eur. J. Med. Chem., 2020, 199, 112294.
[http://dx.doi.org/10.1016/j.ejmech.2020.112294] [PMID: 32428792]
[131]
Ai, J.; Lv, M.; Li, X.; Chen, Z.; Hu, G.; Li, Q. Synthesis, anti-lung cancer activity and molecular docking study of 3-methylene-2-oxoindoline-5-carboxamide derivatives. Med. Chem. Res., 2018, 27(1), 161-170.
[http://dx.doi.org/10.1007/s00044-017-2050-3]
[132]
Kilic-Kurt, Z.; Bakar-Ates, F.; Aka, Y.; Kutuk, O. Design, synthesis and in vitro apoptotic mechanism of novel pyrrolopyrimidine deriva-tives. Bioorg. Chem., 2019, 83, 511-519.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.060] [PMID: 30458413]
[133]
Seo, Y.; Lee, J.H.; Park, S.H.; Namkung, W.; Kim, I. Expansion of chemical space based on a pyrrolo[1,2-a]pyrazine core: Synthesis and its anticancer activity in prostate cancer and breast cancer cells. Eur. J. Med. Chem., 2020, 188, 111988.
[http://dx.doi.org/10.1016/j.ejmech.2019.111988] [PMID: 31901746]
[134]
Hizartzidis, L.; Gilbert, J.; Gordon, C.P.; Sakoff, J.A.; McCluskey, A. Synthesis and cytotoxicity of octahydroepoxyisoindole-7-carboxylic acids and norcantharidin-amide hybrids as norcantharidin analogues. ChemMedChem, 2019, 14(12), 1152-1161.
[http://dx.doi.org/10.1002/cmdc.201900180] [PMID: 30938091]
[135]
Parrino, B.; Ullo, S.; Attanzio, A.; Cascioferro, S.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Cirrincione, G.; Tesoriere, L.; Dia-na, P. Synthesis of 5H-pyrido[3,2-b]pyrrolizin-5-one tripentone analogs with antitumor activity. Eur. J. Med. Chem., 2018, 158, 236-246.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.017] [PMID: 30218909]
[136]
Volodina, Y.L.; Dezhenkova, L.G.; Tikhomirov, A.S.; Tatarskiy, V.V.; Kaluzhny, D.N.; Moisenovich, A.M.; Moisenovich, M.M.; Isagu-lieva, A.K.; Shtil, A.A.; Tsvetkov, V.B.; Shchekotikhin, A.E. New anthra[2,3-b]furancarboxamides: A role of positioning of the carboxa-mide moiety in antitumor properties. Eur. J. Med. Chem., 2019, 165, 31-45.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.068] [PMID: 30659997]
[137]
Kaur, J.; Kaur, B.; Singh, P. Rational modification of semaxanib and sunitinib for developing a tumor growth inhibitor targeting ATP bin-ding site of tyrosine kinase. Bioorg. Med. Chem. Lett., 2018, 28(2), 129-133.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.049] [PMID: 29208523]
[138]
Nichol, R.J.O.; Khalaf, A.I.; Sooda, K.; Hussain, O.; Griffiths, H.B.S.; Phillips, R.; Javid, F.A.; Suckling, C.J.; Allison, S.J.; Scott, F.J. Se-lective in vitro anti-cancer activity of non-alkylating minor groove binders. MedChemComm, 2019, 10(9), 1620-1634.
[http://dx.doi.org/10.1039/C9MD00268E] [PMID: 32952999]
[139]
Chang, S.M.; Jain, V.; Chen, T.L.; Patel, A.S.; Pidugu, H.B.; Lin, Y.W.; Wu, M.H.; Huang, J.R.; Wu, H.C.; Shah, A.; Su, T.L.; Lee, T.C. Design and synthesis of 1, 2-bis (hydroxymethyl) pyrrolo [2, 1-a] phthalazine hybrids as potent anticancer agents that inhibit angiogene-sis and induce DNA interstrand cross-links. J. Med. Chem., 2019, 62(5), 2404-2418.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01689] [PMID: 30776229]
[140]
Shyamsivappan, S.; Vivek, R.; Saravanan, A.; Arasakumar, T.; Subashini, G.; Suresh, T.; Shankar, R.; Mohan, P.S. Synthesis and X-ray study of dispiro 8-nitroquinolone analogues and their cytotoxic properties against human cervical cancer HeLa cells. MedChemComm, 2019, 10(3), 439-449.
[http://dx.doi.org/10.1039/C8MD00482J] [PMID: 31015907]
[141]
Khalilpour, A.; Asghari, S. Synthesis, characterization and evaluation of cytotoxic and antioxidant activities of dihydropyrimidone substi-tuted pyrrole derivatives. Med. Chem. Res., 2018, 27(1), 15-22.
[http://dx.doi.org/10.1007/s00044-017-2041-4]
[142]
Deng, Y.; Wang, X.Z.; Huang, S.H.; Li, C.H. Antibacterial activity evaluation of synthetic novel pleuromutilin derivatives in vitro and in experimental infection mice. Eur. J. Med. Chem., 2019, 162, 194-202.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.006] [PMID: 30445267]
[143]
Lopes, S.M.M.; Novais, J.S.; Costa, D.C.S.; Castro, H.C.; Figueiredo, A.M.S.; Ferreira, V.F.; Pinho, E. Melo, T.M.V.D.; da Silva, F.C. Hete-ro-Diels-Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,2,3-triazoles with antibacterial profile. Eur. J. Med. Chem., 2018, 143, 1010-1020.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.052] [PMID: 29232578]
[144]
Odagiri, T.; Inagaki, H.; Nagamochi, M.; Kitamura, T.; Komoriya, S.; Takahashi, H. Design, synthesis, and biological evaluation of novel 7-[(3 aS,7 aS)-3 a-aminohexahydropyrano[3,4- c]pyrrol-2(3 h)-yl]-8-methoxyquinolines with potent antibacterial activity against respira-tory pathogens. J. Med. Chem., 2018, 61(16), 7234-7244.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00644] [PMID: 30063826]
[145]
Baral, N.; Mishra, D.R.; Mishra, N.P.; Mohapatra, S.; Raiguru, B.P.; Panda, P.; Nayak, S.; Nayak, M.; Kumar, P.S. Microwave‐assisted rapid and efficient synthesis of chromene‐fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial acti-vity with molecular docking investigation. J. Heterocycl. Chem., 2020, 57(2), 575-589.
[http://dx.doi.org/10.1002/jhet.3773]
[146]
Shehab, W.S. EL-Farargy, A.F.; Abdelhamid, A.O.; Aziz, M.A. Synthesis and biological application of pyranopyrimidine derivatives ca-talyzed by efficient nanoparticles and their nucleoside analogues. Synth. Commun., 2019, 49(24), 3560-3572.
[http://dx.doi.org/10.1080/00397911.2019.1679538]
[147]
Elkanzi, N.A.; Bakr, R.B.; Ghoneim, A.A. Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano [2, 3‐b] pyridine and pyrrolo [2, 3‐b] pyrano [2.3‐d] pyridine derivatives. J. Het. Chem., 2019, 56(2), 406-416.
[148]
Picconi, P.; Hind, C.K.; Nahar, K.S.; Jamshidi, S.; Di Maggio, L.; Saeed, N.; Evans, B.; Solomons, J.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. New broad-spectrum antibiotics containing a pyrrolobenzodiazepine ring with activity against multidrug-resistant gram-negative bac-teria. J. Med. Chem., 2020, 63(13), 6941-6958.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00328] [PMID: 32515951]
[149]
Raimondi, M.V.; Listro, R.; Cusimano, M.G.; La Franca, M.; Faddetta, T.; Gallo, G.; Schillaci, D.; Collina, S.; Leonchiks, A.; Barone, G. Pyrrolomycins as antimicrobial agents. Microwave-assisted organic synthesis and insights into their antimicrobial mechanism of action. Bioorg. Med. Chem., 2019, 27(5), 721-728.
[http://dx.doi.org/10.1016/j.bmc.2019.01.010] [PMID: 30711310]
[150]
Masci, D.; Hind, C.; Islam, M.K.; Toscani, A.; Clifford, M.; Coluccia, A.; Conforti, I.; Touitou, M.; Memdouh, S.; Wei, X.; La Regina, G.; Silvestri, R.; Sutton, J.M.; Castagnolo, D. Switching on the activity of 1,5-diaryl-pyrrole derivatives against drug-resistant ESKAPE bacte-ria: Structure-activity relationships and mode of action studies. Eur. J. Med. Chem., 2019, 178, 500-514.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.087] [PMID: 31202995]
[151]
Liu, P.; Yang, Y.; Ju, Y.; Tang, Y.; Sang, Z.; Chen, L.; Yang, T.; An, Q.; Zhang, T.; Luo, Y. Design, synthesis and biological evaluation of novel pyrrole derivatives as potential ClpP1P2 inhibitor against Mycobacterium tuberculosis. Bioorg. Chem., 2018, 80, 422-432.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.004] [PMID: 30005200]
[152]
Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2-a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett., 2018, 28(11), 2084-2090.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.043] [PMID: 29748048]
[153]
Joshi, S.D.; Kumar, S.P.; Patil, S.; Vijayakumar, M.; Kulkarni, V.H.; Nadagouda, M.N.; Badiger, A.M.; Lherbet, C.; Aminabhavi, T.M. Chemical synthesis, molecular modeling and pharmacophore mapping of new pyrrole derivatives as inhibitors of InhA enzyme and My-cobacterium tuberculosis growth. Med. Chem. Res., 2019, 28(11), 1838-1863.
[http://dx.doi.org/10.1007/s00044-019-02418-1]
[154]
Bodige, S.; Ravula, P.; Gulipalli, K.C.; Endoori, S.; Cherukumalli, P.K.R.; Jn, N.S.C.; Seelam, N. Design, synthesis, antitubercular and antibacterial activities of pyrrolo [3, 2-b] pyridine-3-carboxamide linked 2-methoxypyridine derivatives and in silico docking studies. Synth. Commun., 2019, 49(17), 2219-2234.
[http://dx.doi.org/10.1080/00397911.2019.1618874]
[155]
Touitou, M.; Manetti, F.; Ribeiro, C.M.; Pavan, F.R.; Scalacci, N.; Zrebna, K.; Begum, N.; Semenya, D.; Gupta, A.; Bhakta, S.; McHugh, T.D.; Senderowitz, H.; Kyriazi, M.; Castagnolo, D. Improving the potency of N-Aryl-2, 5-dimethylpyrroles against multidrug-resistant and intracellular mycobacteria. ACS Med. Chem. Lett., 2019, 11(5), 638-644.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00515] [PMID: 32435364]
[156]
Poce, G.; Cocozza, M.; Alfonso, S.; Consalvi, S.; Venditti, G.; Fernandez-Menendez, R.; Bates, R.H.; Barros Aguirre, D.; Ballell, L.; De Logu, A.; Vistoli, G.; Biava, M. In vivo potent BM635 analogue with improved drug-like properties. Eur. J. Med. Chem., 2018, 145, 539-550.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.075] [PMID: 29335214]
[157]
Lv, K.; Wang, A.; Tao, Z.; Fu, L.; Liu, H.; Wang, B.; Ma, C.; Wang, H.; Ma, X.; Han, B.; Wang, A.; Zhang, K.; Liu, M.; Lu, Y. hERG opti-mizations of IMB1603, discovery of alternative benzothiazinones as new antitubercular agents. Eur. J. Med. Chem., 2019, 179, 208-217.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.053] [PMID: 31254922]
[158]
Joshi, S.D.; Dixit, S.R.; Basha, J.; Kulkarni, V.H.; Aminabhavi, T.M.; Nadagouda, M.N.; Lherbet, C. Pharmacophore mapping, molecular docking, chemical synthesis of some novel pyrrolyl benzamide derivatives and evaluation of their inhibitory activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Bioorg. Chem., 2018, 81, 440-453.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.035] [PMID: 30223149]
[159]
Shiva Raju, K. AnkiReddy, S.; Sabitha, G.; Siva Krishna, V.; Sriram, D.; Bharathi Reddy, K.; Rao Sagurthi, S. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 284-290.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.036] [PMID: 30497913]
[160]
Liu, T.; Dai, C.; Sang, H.; Chen, F.; Huang, Y.; Liao, H.; Liu, S.; Zhu, Q.; Yang, J. Discovery of dihydropyrrolidones as novel inhibitors against influenza A virus. Eur. J. Med. Chem., 2020, 199, 112334.
[http://dx.doi.org/10.1016/j.ejmech.2020.112334] [PMID: 32408213]
[161]
Xiong, J.; Wang, J.; Hu, G.; Zhao, W.; Li, J. Design, synthesis and biological evaluation of novel, orally bioavailable pyrimidine-fused heterocycles as influenza PB2 inhibitors. Eur. J. Med. Chem., 2019, 162, 249-265.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.015] [PMID: 30448415]
[162]
Cheng, Z.; Wang, W.; Wu, C.; Zou, X.; Fang, L.; Su, W.; Wang, P. Novel pyrrole-imidazole polyamide Hoechst conjugate suppresses Eps-tein-Barr virus replication and virus-positive tumor growth. J. Med. Chem., 2018, 61(15), 6674-6684.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00496] [PMID: 30008213]
[163]
Kazmierski, W.M.; Baskaran, S.; Walker, J.T.; Miriyala, N.; Meesala, R.; Beesu, M.; Adjabeng, G.; Grimes, R.M.; Hamatake, R.; Leivers, M.R.; Crosby, R.; Xia, B.; Remlinger, K. GSK2818713, a novel biphenylene scaffold-based hepatitis C NS5A replication complex inhibi-tor with broad genotype coverage. J. Med. Chem., 2020, 63(8), 4155-4170.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02176] [PMID: 32202782]
[164]
Tokarenko, A.; Lišková, B.; Smoleń, S.; Táborská, N.; Tichý, M.; Gurská, S.; Perlíková, P.; Frydrych, I.; Tloušt’ová, E.; Znojek, P.; Mertlíková-Kaiserová, H.; Poštová Slavětínská, L.; Pohl, R.; Klepetářová, B.; Khalid, N.U.; Wenren, Y.; Laposa, R.R.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and cytotoxic and antiviral profiling of pyrrolo- and furo-fused 7-deazapurine ribonucleosides. J. Med. Chem., 2018, 61(20), 9347-9359.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01258] [PMID: 30281308]
[165]
Gogoi, P.; Ganar, K.; Kumar, S. Avian paramyxovirus: A brief review. Transbound. Emerg. Dis., 2017, 64(1), 53-67.
[http://dx.doi.org/10.1111/tbed.12355] [PMID: 25924108]
[166]
Balaraman, S.; Nayak, N.; Subbiah, M.; Elango, K.P. Synthesis and antiviral study of novel 4-(2-(6-amino-4-oxo-4, 5-dihydro-1H-pyrrolo [2, 3-d] pyrimidin-3-yl) ethyl) benzamide derivatives. Med. Chem. Res., 2018, 27(11), 2538-2546.
[http://dx.doi.org/10.1007/s00044-018-2256-z]
[167]
Curreli, F.; Belov, D.S.; Ahmed, S.; Ramesh, R.R.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Synthesis, antiviral activity, and structure-activity relationship of 1, 3-benzodioxolyl pyrrole-based entry inhibitors targeting the Phenyl43 cavity in HIV-1 gp120. ChemMedChem, 2018, 13(21), 2332-2348.
[http://dx.doi.org/10.1002/cmdc.201800534] [PMID: 30257071]
[168]
Curreli, F.; Belov, D.S.; Kwon, Y.D.; Ramesh, R.; Furimsky, A.M.; O’Loughlin, K.; Byrge, P.C.; Iyer, L.V.; Mirsalis, J.C.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur. J. Med. Chem., 2018, 154, 367-391.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.062] [PMID: 29860061]
[169]
Curreli, F.; Ahmed, S.; Benedict Victor, S.M.; Iusupov, I.R.; Belov, D.S.; Markov, P.O.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Preclini-cal optimization of gp120 entry antagonists as anti-HIV-1 agents with improved cytotoxicity and adme properties through rational design, synthesis, and antiviral evaluation. J. Med. Chem., 2020, 63(4), 1724-1749.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02149] [PMID: 32031803]
[170]
Kang, D.; Wang, Z.; Zhang, H.; Wu, G.; Zhao, T.; Zhou, Z.; Huo, Z.; Huang, B.; Feng, D.; Ding, X.; Zhang, J.; Zuo, X.; Jing, L.; Luo, W.; Guma, S.; Daelemans, D.; Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Further exploring solvent-exposed tolerant regions of allosteric binding pocket for novel HIV-1 NNRTIs discovery. ACS Med. Chem. Lett., 2018, 9(4), 370-375.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00054] [PMID: 29670703]
[171]
Ciaco, S.; Humbert, N.; Real, E.; Boudier, C.; Francesconi, O.; Roelens, S.; Nativi, C.; Seguin-Devaux, C.; Mori, M.; Mély, Y. A class of potent inhibitors of the HIV-1 nucleocapsid protein based on aminopyrrolic scaffolds. ACS Med. Chem. Lett., 2020, 11(5), 698-705.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00558] [PMID: 32435373]
[172]
Montoir, D.; Guillon, R.; Gazzola, S.; Ourliac-Garnier, I.; Soklou, K.E.; Tonnerre, A.; Picot, C.; Planchat, A.; Pagniez, F.; Le Pape, P.; Lo-gé, C. New azole antifungals with a fused triazinone scaffold. Eur. J. Med. Chem., 2020, 189, 112082.
[http://dx.doi.org/10.1016/j.ejmech.2020.112082] [PMID: 32000050]
[173]
Hu, C.; Su, H.; Luo, J.; Han, L.; Liu, Q.; Wu, W.; Mu, Y.; Guan, P.; Sun, T.; Huang, X. Design, synthesis and antifungal evaluation of borrelidin derivatives. Bioorg. Med. Chem., 2018, 26(23-24), 6035-6049.
[http://dx.doi.org/10.1016/j.bmc.2018.11.005] [PMID: 30442507]
[174]
Yang, G.Z.; Zhang, J.; Peng, J.W.; Zhang, Z.J.; Zhao, W.B.; Wang, R.X.; Ma, K.Y.; Li, J.C.; Liu, Y.Q.; Zhao, Z.M.; Shang, X.F. Discovery of luotonin A analogues as potent fungicides and insecticides: Design, synthesis and biological evaluation inspired by natural alkaloid. Eur. J. Med. Chem., 2020, 194, 112253.
[http://dx.doi.org/10.1016/j.ejmech.2020.112253] [PMID: 32222678]
[175]
Wang, X.; Ren, Z.; Mei, Y.; Liu, M.; Chen, M.; Si, W.; Yang, C.; Song, Y. Design, synthesis, and antifungal activity of 3‐(thiophen‐2‐yl)‐1, 5‐dihydro‐2h‐pyrrol‐2‐one derivatives bearing a carbonic ester group. J. Heterocycl. Chem., 2019, 56(1), 165-171.
[http://dx.doi.org/10.1002/jhet.3391]
[176]
Fatahala, S.S.; Mahgub, S.; Taha, H.; Abd-El Hameed, R.H. Synthesis and evaluation of novel spiro derivatives for pyrrolopyrimidines as anti-hyperglycemia promising compounds. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 809-817.
[http://dx.doi.org/10.1080/14756366.2018.1461854] [PMID: 29708461]
[177]
Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Costi, R.; Di Santo, R. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. Eur. J. Med. Chem., 2018, 156, 53-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.063] [PMID: 30006174]
[178]
Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Pepe, G.; Cirilli, R.; Faggi, C.; Di Marco, A.; Battista, M.R.; Summa, V.; Costi, R.; Di Santo, R. Design, synthesis, and biological evaluation of new 1-(Aryl-1 H-pyrrolyl)(phenyl) methyl-1 H-imidazole derivatives as antiprotozoal agents. J. Med. Chem., 2019, 62(3), 1330-1347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01464] [PMID: 30615444]
[179]
Aguiar, A.C.C.; Panciera, M.; Simão Dos Santos, E.F.; Singh, M.K.; Garcia, M.L.; de Souza, G.E.; Nakabashi, M.; Costa, J.L.; Garcia, C.R.S.; Oliva, G.; Correia, C.R.D.; Guido, R.V.C. Discovery of marinoquinolines as potent and fast-acting Plasmodium falciparum inhibi-tors with in vivo activity. J. Med. Chem., 2018, 61(13), 5547-5568.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00143] [PMID: 29879353]
[180]
Kokkonda, S.; Deng, X.; White, K.L.; El Mazouni, F.; White, J.; Shackleford, D.M.; Katneni, K.; Chiu, F.C.K.; Barker, H.; McLaren, J.; Crighton, E.; Chen, G.; Angulo-Barturen, I.; Jimenez-Diaz, M.B.; Ferrer, S.; Huertas-Valentin, L.; Martinez-Martinez, M.S.; Lafuente-Monasterio, M.J.; Chittimalla, R.; Shahi, S.P.; Wittlin, S.; Waterson, D.; Burrows, J.N.; Matthews, D.; Tomchick, D.; Rathod, P.K.; Palmer, M.J.; Charman, S.A.; Phillips, M.A. Lead optimization of a pyrrole-Based dihydroorotate dehydrogenase inhibitor series for the treatment of malaria. J. Med. Chem., 2020, 63(9), 4929-4956.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00311] [PMID: 32248693]
[181]
Zhang, C.; Bourgeade Delmas, S.; Fernández Álvarez, Á.; Valentin, A.; Hemmert, C.; Gornitzka, H. Synthesis, characterization, and anti-leishmanial activity of neutral N-heterocyclic carbenes gold(I) complexes. Eur. J. Med. Chem., 2018, 143, 1635-1643.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.060] [PMID: 29133045]
[182]
Giordani, F.; Khalaf, A.I.; Gillingwater, K.; Munday, J.C.; de Koning, H.P.; Suckling, C.J.; Barrett, M.P.; Scott, F.J. Novel minor groove binders cure animal African trypanosomiasis in an in vivo mouse model. J. Med. Chem., 2019, 62(6), 3021-3035.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01847] [PMID: 30763102]
[183]
Franco, J.; Scarone, L.; Comini, M.A. Novel distamycin analogues that block the cell cycle of African trypanosomes with high selectivity and potency. Eur. J. Med. Chem., 2020, 189, 112043.
[http://dx.doi.org/10.1016/j.ejmech.2020.112043] [PMID: 31978782]
[184]
Xu, M.; Wang, Y.; Yang, F.; Wu, C.; Wang, Z.; Ye, B.; Jiang, X.; Zhao, Q.; Li, J.; Liu, Y.; Zhang, J.; Tian, G.; He, Y.; Shen, J.; Jiang, H. Synthesis and biological evaluation of a series of multi-target N-substituted cyclic imide derivatives with potential antipsychotic effect. Eur. J. Med. Chem., 2018, 145, 74-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.099] [PMID: 29324345]
[185]
Kundu, T.; Bhattacharjee, B.; Hazra, S.; Ghosh, A.K.; Bandyopadhyay, D.; Pramanik, A. Synthesis and biological assessment of pyrrolo-benzoxazine scaffold as a potent antioxidant. J. Med. Chem., 2019, 62(13), 6315-6329.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00717] [PMID: 31246452]
[186]
Kundu, T.; Pramanik, A. Expeditious and eco-friendly synthesis of new multifunctionalized pyrrole derivatives and evaluation of their antioxidant property. Bioorg. Chem., 2020, 98, 103734.
[http://dx.doi.org/10.1016/j.bioorg.2020.103734] [PMID: 32171990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy