Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Circumstantial Insights into the Potential of Traditional Chinese Medicinal Plants as a Therapeutic Approach in Rheumatoid Arthritis

Author(s): Twinkle Sharma, Parth Sharma, Parteek Chandel, Sukhbir Singh, Neelam Sharma, Tanveer Naved, Saurabh Bhatia, Ahmed Al-Harrasi, Simona Bungau and Tapan Behl*

Volume 28, Issue 26, 2022

Published on: 25 May, 2022

Page: [2140 - 2149] Pages: 10

DOI: 10.2174/1381612828666220324124720

Price: $65

Abstract

The advanced era has invited a plethora of chronic and autoimmune infirmities unmistakably dominated by rheumatoid arthritis, occurring because of equivocal causes, including ecological factors, genetic variations, etc. Unfortunately, it is winning pretty much in every stratum of the society in the undefined age group of the population. Engineered drugs are accessible for the treatment; however, they do experience adverse effects as the treatment requires a prolonged duration worsened by noncompliance. To overwhelm it, certain pharmacological and molecular pathways are explored in the wake of Chinese herbs that prompted the prevention of this deteriorating autoimmune disease. The alcoholic extracts and decoctions are procured from Chinese herbs, such as Paeonia lactiflora, Glycyrrhiza uralensis, Tripterygium wilfordii, etc., which have been proved to manifest constructive pharmacological actions. The activities that were exhibited by extracts are significantly innocuous, non-toxic, and potent to fix the affliction in contrast with the chemosynthetic drugs. Therefore, these Chinese herbs bring forth potent anti-inflammatory, immune-suppressing, anti-nociceptive, anti-neovascularizing, free radical scavenging activities, and various other benefits to withstand several pathological events that usually endure infirmity. It can be abridged that Chinese herbs possess assorted and selective therapeutic properties with profound safety and viability to treat this rheumatic disorder. Thus, this review aims to shed light on naturally originated treatment that is pertinent to providing invulnerable therapy exonerating from adverse effects by restraining joint deformities, production of auto-antibodies, and inflammation.

Keywords: Anti-inflammatory, anti-neovascularising, anti-nociceptive, Glycyrrhiza uralensis, Paeonia lactiflora, Sinomenium acutum, Tripterygium wilfordii.

[1]
Zhang L, Cao Z, Yang Y, Tan X, Mao J, Su L. Traditional Chinese medicine on treating active rheumatoid arthritis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99(24): e20642.
[http://dx.doi.org/10.1097/MD.0000000000020642] [PMID: 32541503]
[2]
Moudgil KD, Berman BM. Traditional Chinese medicine: Potential for clinical treatment of rheumatoid arthritis. Expert Rev Clin Immunol 2014; 10(7): 819-22.
[http://dx.doi.org/10.1586/1744666X.2014.917963] [PMID: 24820012]
[3]
Wang W, Zhou H, Liu L. The role of Chinese herbal medicine in the management of adverse drug reactions of leflunomide in treating rheumatoid arthritis. Phyto med 2020; 68: 1-60.
[http://dx.doi.org/10.1016/j.phymed.2019.153136]
[4]
Tobón GJ, Youinou P, Saraux A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. Autoimmun Rev 2010; 9(5): A288-92.
[http://dx.doi.org/10.1016/j.autrev.2009.11.019] [PMID: 19944780]
[5]
Xia X, May BH, Zhang AL, et al. Chinese herbal medicines for rheumatoid arthritis: Text-mining the classical literature for potentially effective natural products. Evid Based Complement Alternat Med 2020; 2020: 7531967.
[http://dx.doi.org/10.1155/2020/7531967] [PMID: 32419824]
[6]
Liu J, Huang CB, Wang Y, et al. Chinese herbal medicine Xinfeng Capsule in treatment of rheumatoid arthritis: Study protocol of a multicenter randomized controlled trial. J Integr Med 2013; 11(6): 428-34.
[http://dx.doi.org/10.3736/jintegrmed2013059] [PMID: 24299607]
[7]
Pan HD, Xiao Y, Wang WY, Ren RT, Leung EL, Liu L. Traditional Chinese medicine as a treatment for rheumatoid arthritis: From empirical practice to evidence-based therapy. Engineering (Beijing) 2019; 5(5): 895-906.
[http://dx.doi.org/10.1016/j.eng.2019.01.018]
[8]
Xie J, Li Y, Wang N, Xin L, Fang Y, Liu J. Feature selection and syndrome classification for rheumatoid arthritis patients with traditional Chinese medicine treatment. Eur J Integr Med 2020; 34(101059): R717-15.
[http://dx.doi.org/10.1016/j.eujim.2020.101059]
[9]
Chen YB, Tong XF, Ren J, Yu CQ, Cui YL. Current research trends in traditional Chinese medicine formula: A bibliometric review from 2000 to 2016. Evid Based Complement Alternat Med 2019; 2019: 3961395.
[http://dx.doi.org/10.1155/2019/3961395] [PMID: 30941195]
[10]
Xu H, Zhang Y, Wang P, et al. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm Sin B 2021; 11(6): 1379-99.
[http://dx.doi.org/10.1016/j.apsb.2021.03.024] [PMID: 34221858]
[11]
Hu J, Liu B. The basic theory, diagnostic, and therapeutic system of traditional Chinese medicine and the challenges they bring to statistics. Stat Med 2012; 31(7): 602-5.
[http://dx.doi.org/10.1002/sim.4409] [PMID: 22238066]
[12]
Feng Y, Wu Z, Zhou X, Zhou Z, Fan W. Knowledge discovery in traditional Chinese medicine: State of the art and perspectives. Artif Intell Med 2006; 38(3): 219-36.
[http://dx.doi.org/10.1016/j.artmed.2006.07.005] [PMID: 16930966]
[13]
Yu F, Takahashi T, Moriya J, et al. Traditional Chinese medicine and kampo: A review from the distant past for the future. J Int Med Res 2006; 34(3): 231-9.
[http://dx.doi.org/10.1177/147323000603400301] [PMID: 16866016]
[14]
Cooles FA, Isaacs JD. Pathophysiology of rheumatoid arthritis. Curr Opin Rheumatol 2011; 23(3): 233-40.
[http://dx.doi.org/10.1097/BOR.0b013e32834518a3] [PMID: 21427580]
[15]
Catalán Martina D, Aravena O, Sabugo F, et al. B cells from rheumatoid arthritis patients show important alterations in the expression of CD86 and FcγRIIb, which are modulated by anti-tumor necrosis factor therapy. Arthritis Res Ther 2010; 12(2): 1-11.
[http://dx.doi.org/10.1186/ar2985]
[16]
Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 2016; 455: 161-71.
[http://dx.doi.org/10.1016/j.cca.2016.02.010] [PMID: 26883280]
[17]
Zwerina J, Redlich K, Schett G, Smolen JS. Pathogenesis of rheumatoid arthritis: Targeting cytokines. Ann N Y Acad Sci 2005; 1051(1): 716-29.
[http://dx.doi.org/10.1196/annals.1361.116] [PMID: 16127012]
[18]
Steiner G, Smolen J. Autoantibodies in rheumatoid arthritis and their clinical significance. Arthritis Res 2002; 4(2)(Suppl. 2): S1-5.
[http://dx.doi.org/10.1186/ar551] [PMID: 12110150]
[19]
Hashizume M, Mihara M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis (Egypt) 2011; 2011: 765624.
[http://dx.doi.org/10.1155/2011/765624] [PMID: 22046525]
[20]
Arend WP. Cytokine imbalance in the pathogenesis of rheumatoid arthritis: The role of interleukin-1 receptor antagonist. Semin Arthritis Rheum 2001; 30(5)(Suppl. 2): 1-6.
[http://dx.doi.org/10.1053/sarh.2001.23693] [PMID: 11357165]
[21]
Song YJ, Li G, He JH, Guo Y, Yang L. Bioinformatics-based identification of micro RNA-regulated and rheumatoid arthritis-associated genes. PLoS One 2015; 10(9): e0137551.
[http://dx.doi.org/10.1371/journal.pone.0137551] [PMID: 26359667]
[22]
Koch AE. Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis 2003; 62(Suppl. 2): ii60-7.
[http://dx.doi.org/10.1136/ard.62.suppl_2.ii60] [PMID: 14532152]
[23]
He MF, Liu L, Ge W, et al. Antiangiogenic activity of Tripterygium wilfordii and its terpenoids. J Ethnopharmacol 2009; 121(1): 61-8.
[http://dx.doi.org/10.1016/j.jep.2008.09.033] [PMID: 18996177]
[24]
Fiedler U, Augustin HG. Angiopoietins: A link between angiogenesis and inflammation. Trends Immunol 2006; 27(12): 552-8.
[http://dx.doi.org/10.1016/j.it.2006.10.004] [PMID: 17045842]
[25]
Boissier MC, Semerano L, Challal S, Saidenberg-Kermanac’h N, Falgarone G. Rheumatoid arthritis: From autoimmunity to synovitis and joint destruction. J Autoimmun 2012; 39(3): 222-8.
[http://dx.doi.org/10.1016/j.jaut.2012.05.021] [PMID: 22704962]
[26]
Ernst E. Panax ginseng: An overview of the clinical evidence. J Ginseng Res 2010; 34(4): 259-63.
[http://dx.doi.org/10.5142/jgr.2010.34.4.259]
[27]
Yi YS. Ameliorative effects of ginseng and ginsenosides on rheumatic diseases. J Ginseng Res 2019; 43(3): 335-41.
[http://dx.doi.org/10.1016/j.jgr.2018.04.004] [PMID: 31308803]
[28]
Zhang X, Li S, Sun L, et al. Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng. Carbohydr Polym 2012; 89(2): 519-25.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.039] [PMID: 24750753]
[29]
Ru W, Wang D, Xu Y, et al. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 2015; 9(1): 23-32.
[http://dx.doi.org/10.5582/ddt.2015.01004] [PMID: 25788049]
[30]
Kang S, Min H. Ginseng, the’immunity boost’: The effects of Panax ginseng on immune system. J Ginseng Res 2012; 36(4): 354-68.
[http://dx.doi.org/10.5142/jgr.2012.36.4.354] [PMID: 23717137]
[31]
Chen J, Wu H, Wang Q, et al. Ginsenoside metabolite compound k alleviates adjuvant-induced arthritis by suppressing T cell activation. Inflammation 2014; 37(5): 1608-15.
[http://dx.doi.org/10.1007/s10753-014-9887-0] [PMID: 24736881]
[32]
Zhang W, Dai SM. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. Int J Immunopharmacol 2012; 14(1): 27-31.
[http://dx.doi.org/10.1016/j.intimp.2012.06.001] [PMID: 22705050]
[33]
He DY, Dai SM. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora pall., a traditional Chinese herbal medicine. Front Pharmacol 2011; 2: 10.
[http://dx.doi.org/10.3389/fphar.2011.00010] [PMID: 21687505]
[34]
Kobayashi M, Ueda C, Aoki S, Tajima K, Tanaka N, Yamahara J. Anticholinergic action of Paeony root and its active constituents. Yakugaku Zasshi 1990; 110(12): 964-8.
[http://dx.doi.org/10.1248/yakushi1947.110.12_964] [PMID: 2074542]
[35]
Xiang N, Li XM, Zhang MJ, et al. Total glucosides of Paeony can reduce the hepatotoxicity caused by methotrexate and leflunomide combination treatment of active rheumatoid arthritis. Int Immunopharmacol 2015; 28(1): 802-7.
[http://dx.doi.org/10.1016/j.intimp.2015.08.008] [PMID: 26292180]
[36]
Zhang XJ, Chen HL, Li Z, et al. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway. Pharmacol Biochem Behav 2009; 94(1): 88-97.
[http://dx.doi.org/10.1016/j.pbb.2009.07.013] [PMID: 19664651]
[37]
Zheng YQ, Wei W, Zhu L, Liu JX. Effects and mechanisms of paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflamm Res 2007; 56(5): 182-8.
[http://dx.doi.org/10.1007/s00011-006-6002-5] [PMID: 17588133]
[38]
Chen T, Guo ZP, Jiao XY, et al. Peoniflorin suppresses tumor necrosis factor-α induced chemokine production in human dermal microvascular endothelial cells by blocking nuclear factor-κB and ERK pathway. Arch Dermatol Res 2011; 303(5): 351-60.
[http://dx.doi.org/10.1007/s00403-010-1116-6] [PMID: 21190116]
[39]
Zhou YY, Xia X, Peng WK, et al. The effectiveness and safety of Tripterygium wilfordii hook. f extracts in rheumatoid arthritis: A systematic review and meta-analysis. Front Pharmacol 2018; 9: 356.
[http://dx.doi.org/10.3389/fphar.2018.00356] [PMID: 29713281]
[40]
Tao X, Lipsky PE. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii hook f. Rheum Dis Clin North Am 2000; 26(1): 29-50, viii.
[http://dx.doi.org/10.1016/S0889-857X(05)70118-6] [PMID: 10680192]
[41]
Wang J, Chen N, Fang L, et al. A systematic review about the efficacy and safety of Tripterygium wilfordii hook. f. preparations used for the management of rheumatoid arthritis. Evid Based Complement Alternat Med 2018; 2018: 1567463.
[http://dx.doi.org/10.1155/2018/1567463] [PMID: 29576791]
[42]
Lv H, Jiang L, Zhu M, et al. The genus Tripterygium: A phytochemistry and pharmacological review. Fitoterpia 2019; 137: 104190.
[http://dx.doi.org/10.1016/j.fitote.2019.104190] [PMID: 31163199]
[43]
Marks WH. Tripterygium wilfordii Hook f. versus sulfasalazine in the treatment of rheumatoid arthritis: A well-designed clinical trial of a botanical demonstrating effectiveness. Fitoterapia 2011; 82(1): 85-7.
[http://dx.doi.org/10.1016/j.fitote.2010.11.024] [PMID: 21126560]
[44]
Fu Q, Li Z, Sun C, et al. Rapid and simultaneous analysis of sesquiterpene pyridine alkaloids from Tripterygium wilfordii Hook. f. Using supercritical fluid chromatography-diode array detectortandem mass spectrometry. J Supercrit Fluids 2015; 104: 85-93.
[http://dx.doi.org/10.1016/j.supflu.2015.05.006]
[45]
Fan D, Zhou S, Zheng Z, et al. New abietane and kaurane type diterpenoids from the stems of Tripterygium regelii. Int J Mol Sci 2017; 18(1): 147.
[http://dx.doi.org/10.3390/ijms18010147] [PMID: 28098763]
[46]
Chen BJ. Triptolide, a novel immunosuppressive and antiinflammatory agent purified from a Chinese herb Tripterygium wilfordii Hook f. Leuk Lymphoma 2001; 42(3): 253-65.
[http://dx.doi.org/10.3109/10428190109064582] [PMID: 11699390]
[47]
Zhang W, Li F, Gao W. Tripterygium wilfordii inhibiting angiogenesis for rheumatoid arthritis treatment. J Natl Med Assoc 2017; 109(2): 142-8.
[http://dx.doi.org/10.1016/j.jnma.2017.02.007] [PMID: 28599756]
[48]
Jacobs BP, Browner WS. Ginkgo biloba: A living fossil. Am J Med 2000; 108(4): 341-2.
[http://dx.doi.org/10.1016/S0002-9343(00)00290-4] [PMID: 11014729]
[49]
Singh B, Kaur P, Gopichand , Singh RD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79(6): 401-18.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[50]
Wang HY, Zhang YQ. The main active constituents and detoxification process of Ginkgo biloba seeds and their potential use in functional health foods. J Food Compos Anal 2019; 83: 1-11.
[http://dx.doi.org/10.1016/j.jfca.2019.103247]
[51]
Mahadevan S, Park Y. Multifaceted therapeutic benefits of Ginkgo biloba l.: Chemistry, efficacy, safety, and uses. J Food Sci 2008; 73(1): R14-9.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00597.x] [PMID: 18211362]
[52]
Xie C, Jiang J, Liu J, Yuan G, Zhao Z. Ginkgolide B attenuates collagen-induced rheumatoid arthritis and regulates fibroblast-like synoviocytes-mediated apoptosis and inflammation. Ann Transl Med 2020; 8(22): 1497-06.
[http://dx.doi.org/10.21037/atm-20-6420] [PMID: 33313242]
[53]
Malik N, Dhiman P, Sobarzo-Sanchez E, Khatkar A. Flavonoids and anthranquinones as xanthine oxidase and monoamine oxidase inhibitors: A new approach towards inflammation and oxidative stress. Curr Top Med Chem 2018; 18(25): 2154-64.
[http://dx.doi.org/10.2174/1568026619666181120143050] [PMID: 30465507]
[54]
Sun YW, Bao Y, Yu H, et al. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. Int Immunopharmacol 2020; 83: 106384.
[http://dx.doi.org/10.1016/j.intimp.2020.106384] [PMID: 32199350]
[55]
Singh S, Singh TG, Mahajan K, Dhiman S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J Pharm Pharmacol 2020; 72(10): 1306-27.
[http://dx.doi.org/10.1111/jphp.13326] [PMID: 32812250]
[56]
Diamond BJ, Bailey MR. Ginkgo biloba: Indications, mechanisms, and safety. Psychiatr Clin North Am 2013; 36(1): 73-83.
[http://dx.doi.org/10.1016/j.psc.2012.12.006] [PMID: 23538078]
[57]
Wang Q, Li XK. Immunosuppressive and anti-inflammatory activities of sinomenine. Int Immunopharmacol 2011; 11(3): 373-6.
[http://dx.doi.org/10.1016/j.intimp.2010.11.018] [PMID: 21109035]
[58]
Zhao Z, Xiao J, Wang J, Dong W, Peng Z, An D. Anti-inflammatory effects of novel sinomenine derivatives. Int Immunopharmacol 2015; 29(2): 354-60.
[http://dx.doi.org/10.1016/j.intimp.2015.10.030] [PMID: 26525983]
[59]
Wang X, Jin H, Li Z, Qin G. 8-demethoxyrunanine from Sinomenium acutum. Fitoterapia 2007; 78(7-8): 593-5.
[http://dx.doi.org/10.1016/j.fitote.2007.03.018] [PMID: 17570615]
[60]
Zhou H, Wong YF, Wang J, Cai X, Liu L. Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats. Biochem Biophys Res Commun 2008; 376(2): 352-7.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.153] [PMID: 18782565]
[61]
Liu W, Zhang Y, Zhu W, et al. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets. Front Immunol 2018; 9: 2228.
[http://dx.doi.org/10.3389/fimmu.2018.02228] [PMID: 30319663]
[62]
Yao RB, Zhao ZM, Zhao LJ, Cai H. Sinomenine inhibits the inflammatory responses of human fibroblast-like synoviocytes via the TLR4/MyD88/NF-κB signaling pathway in rheumatoid arthritis. Pharmazie 2017; 72(6): 355-60.
[http://dx.doi.org/10.1691/ph.2017.6946] [PMID: 29442025]
[63]
Zhao XX, Peng C, Zhang H, Qin LP. Sinomenium acutum: A review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm Biol 2012; 50(8): 1053-61.
[http://dx.doi.org/10.3109/13880209.2012.656847] [PMID: 22775422]
[64]
Min YD, Choi SU, Lee KR. Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum. Arch Pharm Res 2006; 29(8): 627- 32.
[http://dx.doi.org/10.1007/BF02968246] [PMID: 16964757]
[65]
Wang Y, Fang Y, Huang W, et al. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J Ethnopharmacol 2005; 98(1-2): 37-43.
[http://dx.doi.org/10.1016/j.jep.2004.12.022] [PMID: 15763362]
[66]
Kim IS, Park YJ, Yoon SJ, Lee HB. Ephedrannin A and B from roots of Ephedra sinica inhibit lipopolysaccharide-induced inflammatory mediators by suppressing nuclear factor-κB activation in RAW 264.7 macrophages. Int Immunopharmacol 2010; 10(12): 1616-25.
[http://dx.doi.org/10.1016/j.intimp.2010.09.019] [PMID: 20939997]
[67]
Andraws R, Chawla P, Brown DL. Cardiovascular effects of ephedra alkaloids: A comprehensive review. Prog Cardiovasc Dis 2005; 47(4): 217-25.
[http://dx.doi.org/10.1016/j.pcad.2004.07.006] [PMID: 15991150]
[68]
Ma G, Bavadekar SA, Davis YM, et al. Pharmacological effects of ephedrine alkaloids on human α(1)- and α(2)-adrenergic receptor subtypes. J Pharmacol Exp Ther 2007; 322(1): 214-21.
[http://dx.doi.org/10.1124/jpet.107.120709] [PMID: 17405867]
[69]
Wang Q, Shu Z, Xing N, et al. A pure polysaccharide from Ephedra sinica treating on arthritis and inhibiting cytokines expression. Int J Biol Macromol 2016; 86: 177-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.010] [PMID: 26835987]
[70]
Yeom MJ, Lee HC, Kim GH, et al. Anti-arthritic effects of Ephedra sinica STAPF herb-acupuncture: Inhibition of lipopolysaccharide-induced inflammation and adjuvant-induced polyarthritis. J Pharmacol Sci 2006; 100(1): 41-50.
[http://dx.doi.org/10.1254/jphs.FP0050637] [PMID: 16404132]
[71]
Aoki K, Yamakuni T, Yoshida M, Ohizumi Y. Ephedorae herba decreases lipopolysaccharide-induced cyclooxgenase-2 protein expression and NF-kappaB-dependent transcription in C6 rat glioma cells. J Pharmacol Sci 2005; 98(3): 327-30.
[http://dx.doi.org/10.1254/jphs.SC0050118] [PMID: 16006736]
[72]
Zhao W, Deng AJ, Du GH, Zhang JL, Li ZH, Qin HL. Chemical constituents of the stems of Ephedra sinica. J Asian Nat Prod Res 2009; 11(2): 168-71.
[http://dx.doi.org/10.1080/10286020802573552] [PMID: 19219730]
[73]
Kim JY, Park SJ, Yun KJ, Cho YW, Park HJ, Lee KT. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages. Eur J Pharmacol 2008; 584(1): 175-84.
[http://dx.doi.org/10.1016/j.ejphar.2008.01.032] [PMID: 18295200]
[74]
Sidhu P, Shankargouda S, Rath A, Hesarghatta Ramamurthy P, Fernandes B, Kumar Singh A. Therapeutic benefits of liquorice in dentistry. J Ayurveda Integr Med 2020; 11(1): 82-8.
[http://dx.doi.org/10.1016/j.jaim.2017.12.004] [PMID: 30391123]
[75]
Fukai T, Satoh K, Nomura T, Sakagami H. Preliminary evaluation of antinephritis and radical scavenging activities of glabridin from Glycyrrhiza glabra. Fitoterapia 2003; 74(7-8): 624-9.
[http://dx.doi.org/10.1016/S0367-326X(03)00164-3] [PMID: 14630165]
[76]
Tawata M, Aida K, Noguchi T, et al. Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur J Pharmacol 1992; 212(1): 87-92.
[http://dx.doi.org/10.1016/0014-2999(92)90076-G] [PMID: 1555643]
[77]
Cheel J, Van Antwerpen P, Tůmová L, et al. Free radicalscavenging, antioxidant and immunostimulating effects of a licorice infusion (Glycyrrhiza glabra l.). Food Chem 2010; 122(3): 508-17.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.060]
[78]
Won JH, Im HT, Kim YH, et al. Anti-inflammatory effect of buddlejasaponin IV through the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via the NF-kappaB inactivation. Br J Pharmacol 2006; 148(2): 216-25.
[http://dx.doi.org/10.1038/sj.bjp.0706718] [PMID: 16520738]
[79]
Zhai KF, Duan H, Khan GJ, et al. Salicin from Alangiumchinense ameliorates rheumatoid arthritis by modulating the Nrf2-HO-1- ROS pathways. J Agric Food Chem 2018; 66(24): 6073-82.
[http://dx.doi.org/10.1021/acs.jafc.8b02241] [PMID: 29852739]
[80]
Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κ B activation. Mutat Res 2001; 480-481: 243-68.
[http://dx.doi.org/10.1016/S0027-5107(01)00183-X] [PMID: 11506818]
[81]
Takahashi T, Takasuka N, Iigo M, et al. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci 2004; 95(5): 448-53.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03230.x] [PMID: 15132774]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy