Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

New Aspects of the Virus Life Cycle and Clinical Utility of Next Generation Sequencing based HIV-1 Resistance Testing in the Genomic, the Proviral, and the Viral Reservoir of Peripheral Blood Mononuclear Cells

Author(s): Johannes Pröll*, Christian Paar, Ninon Taylor, Matthias Skocic, Andrea Freystetter, Anna Blaimschein, Roland Mayr, Norbert Niklas, Sabine Atzmüller, Edeltraud Raml and Christian Wechselberger

Volume 20, Issue 3, 2022

Published on: 31 May, 2022

Page: [213 - 221] Pages: 9

DOI: 10.2174/1570162X20666220324111418

Price: $65

Abstract

Background: Typically, genotypic resistance testing is recommended at the start of antiretroviral therapy and is even mandatory in cases of virologic failure. The material of choice is plasma viral RNA. However, in patients with low viremia (viral load < 500 copies/ml), resistance testing by population-based sequencing is very difficult.

Objective: Therefore, we aimed to investigate whether next generation sequencing (NGS) from proviral DNA and RNA could be an alternative.

Material and Methods: EDTA blood samples (n = 36) from routine clinical viral load testing were used for the study. Viral loads ranged from 96 to 390,000 copies/mL, with 100% of samples having low viremia. Distribution of subtypes; A (n = 2), B (n = 16), C (n = 4), D (n = 2), G (1), CRF02 AG (n = 5), CRF01 AE (n = 5), undefined/mixed (n = 4). The extracted consensus sequences were uploaded to the Stanford HIV Drug Resistance Data Base and Geno2pheno for online analysis of drug resistance mutations and resistance factors.

Results: A total of 2476 variants or drug resistance mutations (DRMs) were detected with Sanger sequencing, compared with 2892 variants with NGS. An average of 822/1008 variants were identified in plasma viral RNA by Sanger or NGS sequencing, 834/956 in cellular viral RNA, and 820/928 in cellular viral DNA.

Conclusion: Both methods are well suited for the detection of HIV substitutions or drug resistance mutations. Our results suggest that cellular RNA or cellular viral DNA is an informative alternative to plasma viral RNA for variant detection in patients with low viremia, as shown by the high correlation of variants in the different viral pools. We show that by using UDS, a plus of two DRMs per patient becomes visible, which can make a big difference in the assessment of the expected resistance behavior of the virus.

Keywords: HIV, AIDS, viremia, next-generation sequencing, viral latency, drug resistance factor.

Graphical Abstract

[1]
Gonzalez-Serna A, Min JE, Woods C, et al. Performance of HIV-1 drug resistance testing at low-level viremia and its ability to predict future virologic outcomes and viral evolution in treatment-naive individuals. Clin Infect Dis 2014; 58(8): 1165-73.
[http://dx.doi.org/10.1093/cid/ciu019] [PMID: 24429436]
[2]
Paar C, Palmetshofer C, Flieger K, et al. Genotypic antiretroviral resistance testing for human immunodeficiency virus type 1 integrase inhibitors by use of the trugene sequencing system. J Clin Microbiol 2008; 46(12): 4087-90.
[http://dx.doi.org/10.1128/JCM.01246-08] [PMID: 18945845]
[3]
Paar C, Geit M, Stekel H, Berg J. Genotypic prediction of human immunodeficiency virus type 1 tropism by use of plasma and peripheral blood mononuclear cells in the routine clinical laboratory. J Clin Microbiol 2011; 49(7): 2697-9.
[http://dx.doi.org/10.1128/JCM.00336-11] [PMID: 21593266]
[4]
Raymond S, Nicot F, Jeanne N, et al. Performance comparison of next-generation sequencing platforms for determining HIV-1 coreceptor use. Sci Rep 2017; 7: 42215.
[http://dx.doi.org/10.1038/srep42215] [PMID: 28186189]
[5]
Pasternak AO, Jurriaans S, Bakker M, Prins JM, Berkhout B, Lukashov VV. Cellular levels of HIV unspliced RNA from patients on com-bination antiretroviral therapy with undetectable plasma viremia predict the therapy outcome. PLoS One 2009; 4(12): e8490.
[http://dx.doi.org/10.1371/journal.pone.0008490] [PMID: 20046870]
[6]
Pasternak A, Korokhov N, Berkhout B, Lukashov V, Humeau L. Autologous T-cell therapy based on a lentiviral vector expressing long antisense RNA targeted against HIV-1 env gene influences HIV replication and evolution in vivo. Retrovirology 2013; 10(Suppl. 1): O46.
[http://dx.doi.org/10.1186/1742-4690-10-S1-O46]
[7]
Pasternak AO, de Bruin M, Bakker M, Berkhout B, Prins JM. High current CD4+ T cell count predicts suboptimal adherence to antiretrovi-ral therapy. PLoS One 2015; 10(10): e0140791.
[http://dx.doi.org/10.1371/journal.pone.0140791] [PMID: 26468956]
[8]
Pasternak AO, DeMaster LK, Kootstra NA, Reiss P, O’Doherty U, Berkhout B. Minor contribution of chimeric host-HIV readthrough transcripts to the level of HIV cell-associated gag RNA. J Virol 2015; 90(2): 1148-51.
[http://dx.doi.org/10.1128/JVI.02597-15] [PMID: 26559833]
[9]
Rose PP, Korber BT. Detecting hypermutations in viral sequences with an emphasis on G --> A hypermutation. Bioinformatics 2000; 16(4): 400-1.
[http://dx.doi.org/10.1093/bioinformatics/16.4.400] [PMID: 10869039]
[10]
Beerenwinkel N, Däumer M, Oette M, et al. Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 2003; 31(13): 3850-5.
[http://dx.doi.org/10.1093/nar/gkg575] [PMID: 12824435]
[11]
Gega A, Kozal MJ, Chiarella J, et al. Deep sequencing of HIV-1 variants from paired plasma and cerebrospinal fluid during primary HIV infection. J Virus Erad 2015; 1(4): 264-8.
[http://dx.doi.org/10.1016/S2055-6640(20)30926-2] [PMID: 26855971]
[12]
Lataillade M, Chiarella J, Yang R, et al. Virologic failures on initial boosted-PI regimen infrequently possess low-level variants with major PI resistance mutations by ultra-deep sequencing. PLoS One 2012; 7(2): e30118.
[http://dx.doi.org/10.1371/journal.pone.0030118] [PMID: 22355307]
[13]
Simen BB, Braverman MS, Abbate I, et al. An international multicenter study on HIV-1 drug resistance testing by 454 ultra-deep pyrose-quencing. J Virol Methods 2014; 204: 31-7.
[http://dx.doi.org/10.1016/j.jviromet.2014.04.007] [PMID: 24731928]
[14]
St John EP, Simen BB, Turenchalk GS, et al. 454 HIV-1 Alpha Study Group. A follow-up of the multicenter collaborative study on HIV-1 drug resistance and tropism testing using 454 ultra deep pyrosequencing. PLoS One 2016; 11(1): e0146687.
[http://dx.doi.org/10.1371/journal.pone.0146687] [PMID: 26756901]
[15]
Stelzl E, Pröll J, Bizon B, et al. Human immunodeficiency virus type 1 drug resistance testing: Evaluation of a new ultra-deep sequencing-based protocol and comparison with the trugene HIV-1 genotyping kit. J Virol Methods 2011; 178(1-2): 94-7.
[http://dx.doi.org/10.1016/j.jviromet.2011.08.020] [PMID: 21907239]
[16]
Golumbeanu M, Cristinelli S, Rato S, et al. Single-Cell RNA-seq reveals transcriptional heterogeneity in latent and reactivated HIV-infected cells. Cell Rep 2018; 23(4): 942-50.
[http://dx.doi.org/10.1016/j.celrep.2018.03.102] [PMID: 29694901]
[17]
Döring M, Büch J, Friedrich G, et al. Geno2phenongs-freq: A genotypic interpretation system for identifying viral drug resistance using next-generation sequencing data. Nucleic Acids Res 2018; 46: W271-7.
[PMID: 29718426]
[18]
Huber M, Metzner KJ, Geissberger FD, et al. MinVar: A rapid and versatile tool for HIV-1 drug resistance genotyping by deep sequencing. J Virol Methods 2017; 240: 7-13.
[http://dx.doi.org/10.1016/j.jviromet.2016.11.008] [PMID: 27867045]
[19]
Vicenti I, Lai A, Giannini A, et al. Performance of geno2pheno[coreceptor] to infer coreceptor use in human immunodeficiency virus type 1 (HIV-1) subtype A. J Clin Virol 2019; 111: 12-8.
[http://dx.doi.org/10.1016/j.jcv.2018.12.007] [PMID: 30594700]
[20]
Bennett DE, Camacho RJ, Otelea D, et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS One 2009; 4(3): e4724.
[http://dx.doi.org/10.1371/journal.pone.0004724] [PMID: 19266092]
[21]
Bennett DE, Jordan MR, Bertagnolio S, et al. HIV drug resistance early warning indicators in cohorts of individuals starting antiretroviral therapy between 2004 and 2009: World health organization global report from 50 countries. Clin Infect Dis 2012; 54(Suppl. 4): S280-9.
[http://dx.doi.org/10.1093/cid/cis207] [PMID: 22544188]
[22]
Vandamme A-M, Camacho RJ, Ceccherini-Silberstein F, et al. European recommendations for the clinical use of HIV drug resistance test-ing: 2011 update. AIDS Rev 2011; 13(2): 77-108.
[PMID: 21587341]
[23]
Caprari S, Metzler S, Lengauer T, Kalinina OV. Sequence and structure analysis of distantly-related viruses reveals extensive gene transfer between viruses and hosts and among viruses. Viruses 2015; 7(10): 5388-409.
[http://dx.doi.org/10.3390/v7102882] [PMID: 26492264]
[24]
Gibellini L, Pecorini S, De Biasi S, et al. Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR. Methods 2018; 134-135: 98-105.
[http://dx.doi.org/10.1016/j.ymeth.2017.11.014] [PMID: 29197654]
[25]
Wagner TA, Tobin NH, McKernan JL, et al. Increased mutations in Env and Pol suggest greater HIV-1 replication in sputum-derived vi-ruses compared with blood-derived viruses. AIDS 2009; 23(8): 923-8.
[http://dx.doi.org/10.1097/QAD.0b013e328329f964] [PMID: 19349849]
[26]
Banks L, Gholamin S, White E, Zijenah L, Katzenstein DA. Comparing peripheral blood mononuclear cell DNA and circulating plasma viral RNA pol genotypes of subtype C HIV-1. J AIDS Clin Res 2012; 3(2): 141-7.
[http://dx.doi.org/10.4172/2155-6113.1000141] [PMID: 23019537]
[27]
Lübke N, Di Cristanziano V, Sierra S, et al. Proviral DNA as a target for HIV-1 resistance analysis. Intervirology 2015; 58(3): 184-9.
[http://dx.doi.org/10.1159/000431093] [PMID: 26139571]
[28]
Vicenti I, Rossetti B, Mariano S, et al. Distribution of different HBV DNA forms in plasma and peripheral blood mononuclear cells (PBMCs) of chronically infected patients with low or undetectable HBV plasma viremia. New Microbiol 2018; 41(4): 302-5.
[PMID: 30252927]
[29]
Fernández-Caballero JA, Chueca N, Poveda E, García F. Minimizing next-generation sequencing errors for HIV drug resistance testing. AIDS Rev 2017; 19(4): 231-8.
[PMID: 28534892]
[30]
Zagordi O, Klein R, Däumer M, Beerenwinkel N. Error correction of next-generation sequencing data and reliable estimation of HIV qua-sispecies. Nucleic Acids Res 2010; 38(21): 7400-9.
[http://dx.doi.org/10.1093/nar/gkq655] [PMID: 20671025]
[31]
Lee GQ, Swenson LC, Poon AFY, et al. Prolonged and substantial discordance in prevalence of raltegravir-resistant HIV-1 in plasma ver-sus PBMC samples revealed by 454 “deep” sequencing. PLoS One 2012; 7(9): e46181.
[http://dx.doi.org/10.1371/journal.pone.0046181] [PMID: 23049972]
[32]
Widera M, Dirks M, Bleekmann B, et al. HIV-1 persistent viremia is frequently followed by episodes of low-level viremia. Med Microbiol Immunol (Berl) 2017; 206(3): 203-15.
[http://dx.doi.org/10.1007/s00430-017-0494-1] [PMID: 28220254]
[33]
Geretti AM, Conibear T, Hill A, et al. Sensitive testing of plasma HIV-1 RNA and sanger sequencing of cellular HIV-1 DNA for the detec-tion of drug resistance prior to starting first-line antiretroviral therapy with etravirine or efavirenz. J Antimicrob Chemother 2014; 69(4): 1090-7.
[http://dx.doi.org/10.1093/jac/dkt474] [PMID: 24284781]
[34]
Beck IA, Payant R, Ngo-Giang-Huong N, et al. Development and validation of an oligonucleotide ligation assay to detect lamivudine re-sistance in hepatitis B virus. J Virol Methods 2016; 233: 51-5.
[http://dx.doi.org/10.1016/j.jviromet.2016.03.014] [PMID: 27025356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy