Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Peimine Inhibits MCF-7 Breast Cancer Cell Growth by Modulating Inflammasome Activation: Critical Roles of MAPK and NF-κB Signaling

Author(s): Jingqiu Sun*, Jing Li, Xin Kong and Qingfeng Guo

Volume 23, Issue 3, 2023

Published on: 23 September, 2022

Page: [317 - 327] Pages: 11

DOI: 10.2174/1871520622666220324100510

Price: $65

conference banner
Abstract

Objective: Peimine (PM) is a bioactive compound obtained from Fritillaria. It has been documented that PM exhibits potent antitumor properties against multiple cancers. However, the antitumor properties of PM in breast cancer and its associated mechanisms have not been clarified.

Methods: Proliferation and apoptosis of MCF-7 and MCF-10A cells were detected by CCK8, colony formation, and flow cytometry assays. Cytotoxicity was measured by Lactate dehydrogenase (LDH) leakage assay. The level of IL-1β and IL-18 were detected with ELISA kits. Western blotting and real-time Polymerase Chain Reaction were performed to analyze the expression of proteins and genes related to the NLRP3 inflammasome pathway and Endoplasmic reticulum stress.

Results: The doses of PM (5, 10, and 20 μM) inhibited cell viability significantly, apoptotic induction, and inflammasome activation in breast cancer cells in vitro. Inflammasome components were decreased, including the apoptosisassociated speck like protein containing a CARD (ASC) and NOD-like receptor pyrindomain-containing protein3 (NLRP3), as well as the inhibition of caspase-1 and interleukin-1β activation. Moreover, inflammasome inhibitors suppressed cell growth and induced apoptosis, implying that PM suppresses the growth of breast cancer cells through regulating inflammasome. Mechanistically, PM inhibited the activity of inflammasome by alleviating endoplasmic reticulum (ER) stress and by down-regulating the expression of multiple proteins in transcription factor nuclear factor- κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways.

Conclusion: These findings show that PM suppresses the growth of breast cancer cells by inhibiting inflammasome activation, to a certain extent, by primarily acting on the MAPK/NF-κB pathway's inactivation-dependent mechanisms.

Keywords: Peimine, breast cancer, inflammasomes, NF-κB, MAPK, MCF-7.

[1]
Anaya-Eugenio, G.D.; Blanco Carcache, P.J.; Ninh, T.N.; Ren, Y.; Soejarto, D.D.; Kinghorn, A.D. A pentamethoxylated flavone from Glycosmis ovoidea promotes apoptosis through the intrinsic pathway and inhibits migration of MCF-7 breast cancer cells. Phytother. Res., 2021, 35(3), 1634-1645.
[http://dx.doi.org/10.1002/ptr.6930] [PMID: 33124130]
[2]
Wei, C.; Li, X. Verteporfin inhibits cell proliferation and induces apoptosis in different subtypes of breast cancer cell lines without light activation. BMC Cancer, 2020, 20(1), 1042.
[http://dx.doi.org/10.1186/s12885-020-07555-0] [PMID: 33121449]
[3]
Zhang, Y. The root cause of drug resistance in HER2-positive breast cancer and the therapeutic approaches to overcoming the resistance. Pharmacol. Ther., 2021, 218, 107677.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107677] [PMID: 32898548]
[4]
Amaral, M.E.A.; Nery, L.R.; Leite, C.E.; de Azevedo, Junior, W.F.; Campos, M.M. Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest. New Drugs, 2018, 36(5), 782-796.
[http://dx.doi.org/10.1007/s10637-018-0568-y] [PMID: 29392539]
[5]
Mishra, S.R.; Mahapatra, K.K.; Behera, B.P.; Bhol, C.S.; Praharaj, P.P.; Panigrahi, D.P.; Patra, S.; Singh, A.; Patil, S.; Dhiman, R.; Patra, S.K.; Bhutia, S.K. Inflammasomes in cancer: Effect of epigenetic and autophagic modulations. Semin Cancer Biol, 2020, S1044-579X(20), 30205-4.
[http://dx.doi.org/10.1016/j.semcancer.2020.09.013]
[6]
Wang, H.; Luo, Q.; Feng, X.; Zhang, R.; Li, J.; Chen, F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer, 2018, 18(1), 500.
[http://dx.doi.org/10.1186/s12885-018-4403-9] [PMID: 29716544]
[7]
Chauhan, D.; Vande Walle, L.; Lamkanfi, M. Therapeutic modulation of inflammasome pathways. Immunol. Rev., 2020, 297(1), 123-138.
[http://dx.doi.org/10.1111/imr.12908] [PMID: 32770571]
[8]
Xue, Y.; Enosi Tuipulotu, D.; Tan, W.H.; Kay, C.; Man, S.M. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol., 2019, 40(11), 1035-1052.
[http://dx.doi.org/10.1016/j.it.2019.09.005] [PMID: 31662274]
[9]
Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158.
[http://dx.doi.org/10.1186/s12943-018-0900-3] [PMID: 30447690]
[10]
Ershaid, N.; Sharon, Y.; Doron, H.; Raz, Y.; Shani, O.; Cohen, N.; Monteran, L.; Leider-Trejo, L.; Ben-Shmuel, A.; Yassin, M.; Gerlic, M.; Ben-Baruch, A.; Pasmanik-Chor, M.; Apte, R.; Erez, N. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat. Commun., 2019, 10(1), 4375.
[http://dx.doi.org/10.1038/s41467-019-12370-8] [PMID: 31558756]
[11]
Chen, L.; Lu, X.; Liang, X.; Hong, D.; Guan, Z.; Guan, Y.; Zhu, W. Mechanistic studies of the transport of peimine in the Caco-2 cell model. Acta Pharm. Sin. B, 2016, 6(2), 125-131.
[http://dx.doi.org/10.1016/j.apsb.2016.01.006] [PMID: 27006896]
[12]
Chen, K.; Lv, Z.T.; Zhou, C.H.; Liang, S.; Huang, W.; Wang, Z.G.; Zhu, W.T.; Wang, Y.T.; Jing, X.Z.; Lin, H.; Guo, F.J.; Cheng, P.; Chen, A.M. Peimine suppresses interleukin-1β-induced inflammation via MAPK downregulation in chondrocytes. Int. J. Mol. Med., 2019, 43(5), 2241-2251.
[http://dx.doi.org/10.3892/ijmm.2019.4141] [PMID: 30896805]
[13]
Liu, S.; Yang, T.; Ming, T.W.; Gaun, T.K.W.; Zhou, T.; Wang, S.; Ye, B. Isosteroid alkaloids with different chemical structures from Fritillariae cirrhosae bulbus alleviate LPS-induced inflammatory response in RAW 264.7 cells by MAPK signaling pathway. Int. Immunopharmacol., 2020, 78, 106047.
[http://dx.doi.org/10.1016/j.intimp.2019.106047] [PMID: 31816576]
[14]
Tan, H.; Zhang, G.; Yang, X.; Jing, T.; Shen, D.; Wang, X. Peimine inhibits the growth and motility of prostate cancer cells and induces apoptosis by disruption of intracellular calcium homeostasis through Ca2+/CaMKII/JNK pathway. J. Cell. Biochem., 2020, 121(1), 81-92.
[http://dx.doi.org/10.1002/jcb.28870] [PMID: 31081133]
[15]
Pae, H.O.; Oh, H.; Choi, B.M.; Oh, G.S.; Paik, S.G.; Jeong, S.; Hwang, K.M.; Yun, Y.G.; Chung, H.T. Differentiation-inducing effects of verticinone, an isosteroidal alkaloid isolated from the bulbus of Fritillaria ussuriensis, on human promyelocytic leukemia HL-60 cells. Biol. Pharm. Bull., 2002, 25(11), 1409-1411.
[http://dx.doi.org/10.1248/bpb.25.1409] [PMID: 12419949]
[16]
Liang, D.; Zhou, Q.; Zhang, J.; Gong, W.; Xu, C.; Li, B.; Wang, Y.; Li, J. A novel chenodeoxycholic acid-verticinone ester induces apoptosis and cell cycle arrest in HepG2 cells. Steroids, 2012, 77(13), 1381-1390.
[http://dx.doi.org/10.1016/j.steroids.2012.08.013] [PMID: 22974827]
[17]
Bolomsky, A.; Vogler, M.; Köse, M.C.; Heckman, C.A.; Ehx, G.; Ludwig, H.; Caers, J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J. Hematol. Oncol., 2020, 13(1), 173.
[http://dx.doi.org/10.1186/s13045-020-01007-9] [PMID: 33308268]
[18]
Grilo, A.L.; Mantalaris, A. Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol. Adv., 2019, 37(3), 459-475.
[http://dx.doi.org/10.1016/j.biotechadv.2019.02.012] [PMID: 30797096]
[19]
Schenk, R.L.; Strasser, A.; Dewson, G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem. Biophys. Res. Commun., 2017, 482(3), 459-469.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.100] [PMID: 28212732]
[20]
Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov., 2017, 16(4), 273-284.
[http://dx.doi.org/10.1038/nrd.2016.253] [PMID: 28209992]
[21]
Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J., 2018, 285(3), 416-431.
[http://dx.doi.org/10.1111/febs.14186] [PMID: 28755482]
[22]
Deng, Q.; Geng, Y.; Zhao, L.; Li, R.; Zhang, Z.; Li, K.; Liang, R.; Shao, X.; Huang, M.; Zuo, D.; Wu, Y.; Ma, Q. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver. Cancer Lett., 2019, 442, 21-30.
[http://dx.doi.org/10.1016/j.canlet.2018.10.030] [PMID: 30392787]
[23]
Kopalli, S.R.; Kang, T.B.; Lee, K.H.; Koppula, S. NLRP3 inflammasome activation inhibitors in inflammation-associated cancer immunotherapy: An update on the recent patents. Recent Pat. Anticancer Drug Discov., 2018, 13(1), 106-117.
[http://dx.doi.org/10.2174/1574892812666171027102627] [PMID: 29076433]
[24]
Hamarsheh, S.; Zeiser, R. NLRP3 inflammasome activation in cancer: A double-edged sword. Front. Immunol., 2020, 11, 1444.
[http://dx.doi.org/10.3389/fimmu.2020.01444] [PMID: 32733479]
[25]
Weber, A.N.R.; Bittner, Z.A.; Shankar, S.; Liu, X.; Chang, T.H.; Jin, T.; Tapia-Abellán, A. Recent insights into the regulatory networks of NLRP3 inflammasome activation. J. Cell Sci., 2020, 133(23), jcs248344.
[http://dx.doi.org/10.1242/jcs.248344] [PMID: 33273068]
[26]
McKee, C.M.; Coll, R.C. NLRP3 inflammasome priming: A riddle wrapped in a mystery inside an enigma. J. Leukoc. Biol., 2020, 108(3), 937-952.
[http://dx.doi.org/10.1002/JLB.3MR0720-513R] [PMID: 32745339]
[27]
Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci., 2019, 20(13), 3328.
[http://dx.doi.org/10.3390/ijms20133328] [PMID: 31284572]
[28]
Chow, M.T.; Tschopp, J.; Möller, A.; Smyth, M.J. NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. Immunol. Cell Biol., 2012, 90(10), 983-986.
[http://dx.doi.org/10.1038/icb.2012.46] [PMID: 23010873]
[29]
Sharma, A.; Choi, J.S.Y.; Stefanovic, N.; Sharea, A.A.; Simpson, D.S.; Mukhamedova, N.; Jandeleit-Dahm, K.; Murphy, A.J.; Sviridov, D.; Vince, J.E. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes, 2020, 70(3), 772-787.
[http://dx.doi.org/10.2337/db20-0357] [PMID: 33323396]
[30]
Zhang, F.; Wang, L.; Wang, J.J.; Luo, P.F.; Wang, X.T.; Xia, Z.F. The caspase-1 inhibitor AC-YVAD-CMK attenuates acute gastric injury in mice: Involvement of silencing NLRP3 inflammasome activities. Sci. Rep., 2016, 6(1), 24166.
[http://dx.doi.org/10.1038/srep24166] [PMID: 27053298]
[31]
Liu, C.Y.; Hsu, C.C.; Huang, T.T.; Lee, C.H.; Chen, J.L.; Yang, S.H.; Jiang, J.K.; Chen, W.S.; Lee, K.D.; Teng, H.W. ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis of colon cancer. Mol. Oncol., 2018, 12(10), 1706-1717.
[http://dx.doi.org/10.1002/1878-0261.12365] [PMID: 30063110]
[32]
Lin, Y.; Jiang, M.; Chen, W.; Zhao, T.; Wei, Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother., 2019, 118, 109249.
[http://dx.doi.org/10.1016/j.biopha.2019.109249] [PMID: 31351428]
[33]
Alasiri, G.; Fan, L.Y.; Zona, S.; Goldsbrough, I.G.; Ke, H.L.; Auner, H.W.; Lam, E.W. ER stress and cancer: The FOXO forkhead transcription factor link. Mol. Cell. Endocrinol., 2018, 462(Pt B), 67-81.
[http://dx.doi.org/10.1016/j.mce.2017.05.027] [PMID: 28572047]
[34]
Li, W.; Cao, T.; Luo, C.; Cai, J.; Zhou, X.; Xiao, X.; Liu, S. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation. Appl. Microbiol. Biotechnol., 2020, 104(14), 6129-6140.
[http://dx.doi.org/10.1007/s00253-020-10614-y] [PMID: 32447438]
[35]
Kim, S.H.; Kwon, D.; Lee, S.; Ki, S.H.; Jeong, H.G.; Hong, J.T.; Lee, Y.H.; Jung, Y.S. Polyhexamethyleneguanidine phosphate-induced cytotoxicity in liver cells is alleviated by tauroursodeoxycholic Acid (TUDCA) via a reduction in endoplasmic reticulum stress. Cells, 2019, 8(9), 1023.
[http://dx.doi.org/10.3390/cells8091023] [PMID: 31484321]
[36]
Lu, M.; Wang, Y.; Zhan, X. The MAPK pathway-based drug therapeutic targets in pituitary adenomas. Front. Endocrinol. (Lausanne), 2019, 10, 330.
[http://dx.doi.org/10.3389/fendo.2019.00330] [PMID: 31231308]
[37]
Wang, Q.; Liu, W.; Yue, Y.; Sun, C.; Zhang, Q. Proteoglycan from Bacillus sp. BS11 inhibits the inflammatory response by suppressing the MAPK and NF-κB pathways in lipopolysaccharide-induced RAW264.7 Macrophages. Mar. Drugs, 2020, 18(12), 585.
[http://dx.doi.org/10.3390/md18120585] [PMID: 33255264]
[38]
Ji, Y.; Han, J.; Lee, N.; Yoon, J.H.; Youn, K.; Ha, H.J.; Yoon, E.; Kim, D.H.; Jun, M. Neuroprotective effects of baicalein, wogonin, and oroxylin A on amyloid beta-induced toxicity via NF-κB/MAPK pathway modulation. Molecules, 2020, 25(21), 5087.
[http://dx.doi.org/10.3390/molecules25215087] [PMID: 33147823]
[39]
Hu, H.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Liu, X.; Sun, H. Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-κB and GRP78/PERK pathways in human aorta endothelial cells. Inflammation, 2019, 42(1), 64-80.
[http://dx.doi.org/10.1007/s10753-018-0873-9] [PMID: 30315526]
[40]
Yuan, S.; Liu, H.; Yuan, D.; Xu, J.; Chen, Y.; Xu, X.; Xu, F.; Liang, H. PNPLA3 I148M mediates the regulatory effect of NF-kB on inflammation in PA-treated HepG2 cells. J. Cell. Mol. Med., 2020, 24(2), 1541-1552.
[http://dx.doi.org/10.1111/jcmm.14839] [PMID: 31793207]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy