Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

lncRNA H22954 Inhibits Angiogenesis in Acute Myeloid Leukemia through a PDGFA-dependent Mechanism

Author(s): Xuewei Li, Jianjie Rong, Tianyu Li, Yujing Zhou and Xiaofei Qi*

Volume 17, Issue 4, 2022

Published on: 27 April, 2022

Page: [427 - 434] Pages: 8

DOI: 10.2174/1871526522666220321154949

Price: $65

Abstract

Background: Angiogenesis is a hallmark of cancer, which is regulated by diverse factors, including long non-coding RNAs (lncRNAS). Our previous study showed that the long non-coding RNA H22954 inhibits tumor growth, albeit whether it is involved in the angiogenesis of cancer re-mains unknown.

Objectives: This study aimed to investigate the role of lncRNA H22954 in angiogenesis of acute myeloid leukemia (AML) and the underlying molecular mechanism.

Methods: Bioinformatics analysis was conducted to screen the targeted molecule of H22954. Western blot and ELISA analysis detected PDGFA protein expression, and RT-qPCR detected H22954 and PDGFA expression in cell lines and AML samples. Dual-luciferase reporter gene assay and half-life assay were applied to validate the relationship between H22954 and PDGFA. The functional experi-ment was conducted to investigate the role of H22954 in tube formation.

Results: Overexpression of H22954 inhibited angiogenesis in mouse xenograft tumors and cultured acute myeloid leukemia (AML) cells. Bioinformatics analysis and luciferase assay revealed that H22954 targeted the 3’ untranslated region (UTR) of the platelet-derived growth factor subunit A (PDGFA) gene. In transfected cells, H22954 overexpression reduced PDGFA expression and protein levels. Tube formation was rescued following the addition of exogenous human PDGFA to the con-ditioned medium from cells overexpressing H22954. The expression of H22954 in K562 cells re-duced the half-life of PDGFA mRNA. Furthermore, H22954 expression was inversely correlated with PDGFA expression in patient samples.

Conclusion: These findings indicate that H22954 inhibits angiogenesis in AML through the down-regulation of PDGFA expression. Administering recombinant lncRNA H22954 may be a therapeutic approach for patients with AML.

Keywords: Hematological malignancies, angiogenesis, PDGFA, H22954, long non-coding RNA, acute myeloid leukemia.

[1]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[2]
Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol 2009; 19(5): 329-37.
[http://dx.doi.org/10.1016/j.semcancer.2009.05.003] [PMID: 19482086]
[3]
Ding W, Knox TR, Tschumper RC, et al. Platelet-derived growth factor (PDGF)-PDGF receptor inter-action activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: Implications for an angiogenic switch. Blood 2010; 116(16): 2984-93.
[http://dx.doi.org/10.1182/blood-2010-02-269894] [PMID: 20606160]
[4]
Dong J, Grunstein J, Tejada M, et al. VEGF-null cells require PDGFR alpha signaling-mediated stro-mal fibroblast recruitment for tumorigenesis. EMBO J 2004; 23(14): 2800-10.
[http://dx.doi.org/10.1038/sj.emboj.7600289] [PMID: 15229650]
[5]
Hu F, Li H, Liu L, et al. Histone demethylase KDM4D promotes gastrointestinal stromal tumor pro-gression through HIF1β/VEGFA signalling. Mol Cancer 2018; 17(1): 107.
[http://dx.doi.org/10.1186/s12943-018-0861-6] [PMID: 30060750]
[6]
Li S, Song C, Yang S, et al. Supercritical CO2 foamed composite scaffolds incorporating bioactive li-pids promote vascularized bone regeneration via Hif-1 upregulation and enhanced type H vessel formation. Acta Biomater 2019; 94: 253-67.
[http://dx.doi.org/10.1016/j.actbio.2019.05.066] [PMID: 31154054]
[7]
Li WL, Yamada Y, Ueno M, Nishikawa S, Nishikawa S, Takakura N. Platelet derived growth factor receptor alpha is essential for establishing a microenvironment that supports definitive erythropoiesis. J Biochem 2006; 140(2): 267-73.
[http://dx.doi.org/10.1093/jb/mvj151] [PMID: 16845124]
[8]
Boström H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibro-blast development and alveogenesis. Cell 1996; 85(6): 863-73.
[http://dx.doi.org/10.1016/S0092-8674(00)81270-2] [PMID: 8681381]
[9]
Qi X, Jiao Y, Cheng C, Qian F, Chen Z, Wu Q. H22954, a novel long non-coding RNA down-regulated in AML, inhibits cancer growth in a BCL-2-dependent mechanism. Cancer Lett 2019; 454: 26-36.
[http://dx.doi.org/10.1016/j.canlet.2019.03.055] [PMID: 30959078]
[10]
Kopp HG, Ramos CA, Rafii S. Contribution of endothelial progenitors and proangiogenic hemato-poietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 2006; 13(3): 175-81.
[http://dx.doi.org/10.1097/01.moh.0000219664.26528.da] [PMID: 16567962]
[11]
Koster A, Raemaekers JM. Angiogenesis in malignant lymphoma. Curr Opin Oncol 2005; 17(6): 611-6.
[http://dx.doi.org/10.1097/01.cco.0000181404.83084.b5] [PMID: 16224242]
[12]
Podar K, Anderson KC. Emerging therapies targeting tumor vasculature in multiple myeloma and other hematologic and solid malignancies. Curr Cancer Drug Targets 2011; 11(9): 1005-24.
[http://dx.doi.org/10.2174/156800911798073113] [PMID: 21933109]
[13]
Xiao Z, Wang Y, Lu L, et al. Anti-angiogenesis effects of meisoindigo on chronic myelogenous leu-kemia in vitro. Leuk Res 2006; 30(1): 54-9.
[http://dx.doi.org/10.1016/j.leukres.2005.05.012] [PMID: 15982734]
[14]
Mirshahi P, Rafii A, Vincent L, et al. Vasculogenic mimicry of acute leukemic bone marrow stromal cells. Leukemia 2009; 23(6): 1039-48.
[http://dx.doi.org/10.1038/leu.2009.10] [PMID: 19340002]
[15]
Yang R, Han ZC. Angiogenesis in hematologic malignancies and its clinical implications. Int J Hematol 2002; 75(3): 246-56.
[http://dx.doi.org/10.1007/BF02982037] [PMID: 11999351]
[16]
Bonasio R, Shiekhattar R. Regulation of transcription by long noncoding RNAs. Annu Rev Genet 2014; 48(1): 433-55.
[http://dx.doi.org/10.1146/annurev-genet-120213-092323] [PMID: 25251851]
[17]
Huang JL, Zheng L, Hu YW, Wang Q. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis 2014; 35(3): 507-14.
[http://dx.doi.org/10.1093/carcin/bgt405] [PMID: 24296588]
[18]
Lin J, Cao S, Wang Y, et al. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-79/023 signalling in hepatocellu-lar carcinoma. J Exp Clin Cancer Res 2018; 37(1): 113.
[http://dx.doi.org/10.1186/s13046-018-0727-1] [PMID: 29866133]
[19]
Tee AE, Liu B, Song R, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogen-esis by up-regulating pro-angiogenic gene expression. Oncotarget 2016; 7(8): 8663-75.
[http://dx.doi.org/10.18632/oncotarget.6675] [PMID: 26848616]
[20]
Kai H, Wu Q, Yin R, et al. LncRNA NORAD Promotes vascular endothelial cell injury and athero-sclerosis through suppressing VEGF gene transcription via enhancing H3K9 deacetylation by recruit-ing HDAC6. Front Cell Dev Biol 2021; 9701628
[http://dx.doi.org/10.3389/fcell.2021.701628] [PMID: 34307380]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy