Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Effects of Increased Glucose Level and Glycolysis on SARS CoV-2 Infection

Author(s): Fatma Ozlem Zurnaci and Mustafa Guzel*

Volume 22, Issue 18, 2022

Published on: 27 April, 2022

Page: [2344 - 2349] Pages: 6

DOI: 10.2174/1389557522666220318115350

Price: $65

Abstract

COVID-19 has entered our lives as an infection with high mortality rates. Although the vaccination process has provided benefits, the death toll remains frightening worldwide. Therefore, drugs and combined therapies that can be used against COVID-19 infection are still being investigated. Most of these antiviral medications are investigational drug candidates that are still in clinical trials. In this context, holistic and different approaches for the treatment of COVID-19, including prophylactic use of natural medicines, are under investigation and may offer potential treatment options due to the fact that this is still an unmet medical need of the world. Thus, inhibiting the increased glycolysis in COVID-19 infection with glycolysis inhibitors may be beneficial for patient survival. This short review highlights the potential benefits of glycolysis inhibition as well as controlling the elevated glucose levels in patients with COVID-19.

Keywords: Antiviral research, SARS-CoV-2, glycolysis inhibition, COVID-19 treatment, diabetes, glucose level.

[1]
Hoseinzadeh, E.; Safoura Javan, M.; Farzadkia, M.; Mohammadi, F.; Hossini, H.; Taghavi, M. An updated min-review on environmental route of the SARS-CoV-2 transmission. Ecotoxicol. Environ. Saf., 2020, 202, 111015.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111015] [PMID: 32800237]
[2]
Das, U. Bioactive lipids-based therapeutic approach to COVID-19 and other similar infections. Arch. Med. Sci., 2021.
[http://dx.doi.org/10.5114/aoms/135703]
[3]
Oberemok, V.V.; Laikova, K.V.; Yurchenko, K.A.; Fomochkina, I.I.; Kubyshkin, A.V. SARS-CoV-2 will continue to circulate in the hu-man population: an opinion from the point of view of the virus-host relationship. Inflamm. Res., 2020, 69(7), 635-640.
[http://dx.doi.org/10.1007/s00011-020-01352-y] [PMID: 32350571]
[4]
Floridi, A.; Paggi, M.G.; Marcante, M.L.; Silvestrini, B.; Caputo, A.; De Martino, C. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J. Natl. Cancer Inst., 1981, 66(3), 497-499.
[http://dx.doi.org/10.1093/jnci/66.3.497] [PMID: 6937706]
[5]
Zhao, J.; Ma, Y.; Zhang, Y.; Fu, B.; Wu, X.; Li, Q.; Cai, G.; Chen, X.; Bai, X.Y. Low-dose 2-deoxyglucose and metformin synergically inhibit proliferation of human polycystic kidney cells by modulating glucose metabolism. Cell Death Discov., 2019, 5(1), 76.
[http://dx.doi.org/10.1038/s41420-019-0156-8] [PMID: 30886744]
[6]
Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol. Res., 2019, 150, 104511.
[http://dx.doi.org/10.1016/j.phrs.2019.104511] [PMID: 31678210]
[7]
Maher, J.C.; Krishan, A.; Lampidis, T.J. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs. aerobic conditions. Cancer Chemother. Pharmacol., 2004, 53(2), 116-122.
[http://dx.doi.org/10.1007/s00280-003-0724-7] [PMID: 14605866]
[8]
Dwarakanath, B.; Jain, V. Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol., 2009, 5(5), 581-585.
[http://dx.doi.org/10.2217/fon.09.44] [PMID: 19519197]
[9]
Shoshan, M.C. 3-Bromopyruvate: Targets and outcomes. J. Bioenerg. Biomembr., 2012, 44(1), 7-15.
[http://dx.doi.org/10.1007/s10863-012-9419-2] [PMID: 22298255]
[10]
Marrache, S.; Dhar, S. The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate. Chem. Sci. (Camb.), 2015, 6(3), 1832-1845.
[http://dx.doi.org/10.1039/C4SC01963F] [PMID: 25709804]
[11]
Belzacq, A.S.; El Hamel, C.; Vieira, H.L.; Cohen, I.; Haouzi, D.; Métivier, D.; Marchetti, P.; Brenner, C.; Kroemer, G. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene, 2001, 20(52), 7579-7587.
[http://dx.doi.org/10.1038/sj.onc.1204953] [PMID: 11753636]
[12]
Nath, K.; Guo, L.; Nancolas, B.; Nelson, D.S.; Shestov, A.A.; Lee, S.C.; Roman, J.; Zhou, R.; Leeper, D.B.; Halestrap, A.P.; Blair, I.A.; Glickson, J.D. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta, 2016, 1866(2), 151-162.
[http://dx.doi.org/10.1016/j.bbcan.2016.08.001] [PMID: 27497601]
[13]
Köhler, E.; Barrach, H.; Neubert, D. Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP. FEBS Lett., 1970, 6(3), 225-228.
[http://dx.doi.org/10.1016/0014-5793(70)80063-1] [PMID: 11947380]
[14]
Lange, K.; Kolbe, H.; Keller, K.; Herken, H. Carbohydrate metabolism in the brain after blockade of the pentose phosphate pathway by 6-aminonicotinic acid amide. Hoppe Seylers Z. Physiol. Chem., 1970, 351(2), 1241-1252.
[http://dx.doi.org/10.1515/bchm2.1970.351.2.1241]
[15]
Caslin, H.L.; Taruselli, M.T.; Haque, T.; Pondicherry, N.; Baldwin, E.A.; Barnstein, B.O.; Ryan, J.J. Inhibiting glycolysis and ATP produc-tion attenuates IL-33-mediated mast cell function and peritonitis. Front. Immunol., 2018, 9, 3026.
[http://dx.doi.org/10.3389/fimmu.2018.03026] [PMID: 30619366]
[16]
Abd-Elsalam, S.; Ahmed, O.A.; Mansour, N.O.; Abdelaziz, D.H.; Salama, M.; Fouad, M.H.A.; Soliman, S.; Naguib, A.M.; Hantera, M.S.; Ibrahim, I.S.; Torky, M.; Dabbous, H.M.; El Ghafar, M.S.A.; Abdul-Baki, E.A.; Elhendawy, M. Remdesivir efficacy in COVID-19 treat-ment: A randomized controlled trial. Am. J. Trop. Med. Hyg., 2021., tpmd210606.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[17]
El-Bendary, M.; Abd-Elsalam, S.; Elbaz, T.; El-Akel, W.; Cordie, A.; Elhadidy, T.; Elalfy, H.; Farid, K.; Elegezy, M.; El-Badrawy, A.; Neamatallah, M.; Abd Elghafar, M.; Salama, M. AbdAllah, M.; Essam, M.; El-Shazly, M.; Esmat, G. Efficacy of combined Sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev. Anti Infect. Ther., 2021, 1-5.
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[18]
Abd-Elsalam, S.; Noor, R.A.; Badawi, R.; Khalaf, M.; Esmail, E.S.; Soliman, S.; Abd El Ghafar, M.S.; Elbahnasawy, M.; Moustafa, E.F.; Hassany, S.M.; Medhat, M.A.; Ramadan, H.K.; Eldeen, M.A.S.; Alboraie, M.; Cordie, A.; Esmat, G. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J. Med. Virol., 2021, 93(10), 5833-5838.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[19]
Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol., 2021, 166(3), 949-954.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[20]
Abd-Elsalam, S.; Soliman, S.; Esmail, E.S.; Khalaf, M.; Mostafa, E.F.; Medhat, M.A.; Ahmed, O.A.; El Ghafar, M.S.A.; Alboraie, M.; Hassany, S.M. Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: A randomized, multicenter trial. Biol. Trace Elem. Res., 2021, 199(10), 3642-3646.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[21]
Mohamed, A.A.; Mohamed, N.; Mohamoud, S.; Zahran, F.E.; Khattab, R.A.; El-Damasy, D.A.; Alsayed, E.; Abd-Elsalam, S. SARS-CoV-2: The path of prevention and control. Infect. Disord. Drug Targets, 2021, 21(3), 358-362.
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]
[22]
Negahdaripour, M. Post-covid-19 hyperglycemia: A concern in selection of therapeutic regimens. Iran. J. Med. Sci., 2021, 46(4), 235-236.
[http://dx.doi.org/10.30476/ijms.2021.47666] [PMID: 34305235]
[23]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Tou-loumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.D.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; La-ne, H.C. Remdesivir for the treatment of Covid-19 - final report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[24]
World Health Organization. COVID-19 Clinical management: living guidance, 25 January 2021; World Health Organization 2021. Available from: https://apps.who.int/iris/handle/10665/338882
[25]
Premji, R.; Roopnarinesingh, N.; Qazi, N.; Nylen, E.S. New-onset diabetes mellitus with exposure to ledipasvir and sofosbuvir. J. Investig. Med. High Impact Case Rep., 2015, 3(4), 2324709615623300.
[http://dx.doi.org/10.1177/2324709615623300] [PMID: 26788529]
[26]
Kaur, R.J.; Charan, J.; Dutta, S.; Sharma, P.; Bhardwaj, P.; Sharma, P.; Lugova, H.; Krishnapillai, A.; Islam, S.; Haque, M.; Misra, S. Favi-piravir use in COVID-19: Analysis of suspected adverse drug events reported in the WHO database. Infect. Drug Resist., 2020, 13, 4427-4438.
[http://dx.doi.org/10.2147/IDR.S287934] [PMID: 33364790]
[27]
Shindo, Y.; Kondoh, Y.; Kada, A.; Doi, Y.; Tomii, K.; Mukae, H.; Murata, N.; Imai, R.; Okamoto, M.; Yamano, Y.; Miyazaki, Y.; Shinoda, M.; Aso, H.; Izumi, S.; Ishii, H.; Ito, R.; Saito, A.M.; Saito, T.I.; Hasegawa, Y. Phase II clinical trial of combination therapy with favipira-vir and methylprednisolone for COVID-19 with non-critical respiratory failure. Infect. Dis. Ther., 2021, 10(4), 2353-2369.
[http://dx.doi.org/10.1007/s40121-021-00512-9] [PMID: 34368914]
[28]
Ardestani, A.; Azizi, Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 112.
[http://dx.doi.org/10.1038/s41392-021-00532-4] [PMID: 33677470]
[29]
Mahrooz, A.; Muscogiuri, G.; Buzzetti, R.; Maddaloni, E. The complex combination of COVID-19 and diabetes: Pleiotropic changes in glucose metabolism. Endocrine, 2021, 72(2), 317-325.
[http://dx.doi.org/10.1007/s12020-021-02729-7] [PMID: 33886062]
[30]
Thompson, E.A.; Cascino, K.; Ordonez, A.A.; Zhou, W.; Vaghasia, A.; Hamacher-Brady, A.; Brady, N.R.; Sun, I.H.; Wang, R.; Rosenberg, A.Z.; Delannoy, M.; Rothman, R.; Fenstermacher, K.; Sauer, L.; Shaw-Saliba, K.; Bloch, E.M.; Redd, A.D.; Tobian, A.A.R.; Horton, M.; Smith, K.; Pekosz, A.; D’Alessio, F.R.; Yegnasubramanian, S.; Ji, H.; Cox, A.L.; Powell, J.D. Metabolic programs define dysfunctional immune responses in severe COVID-19 patients. Cell Rep., 2021, 34(11), 108863.
[http://dx.doi.org/10.1016/j.celrep.2021.108863] [PMID: 33691089]
[31]
Ceriello, A. Hyperglycemia and COVID-19: What was known and what is really new? Diabetes Res. Clin. Pract., 2020, 167, 108383.
[http://dx.doi.org/10.1016/j.diabres.2020.108383] [PMID: 32853690]
[32]
Khunti, K.; Del Prato, S.; Mathieu, C.; Kahn, S.E.; Gabbay, R.A.; Buse, J.B. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care, 2021, 44(12), 2645-2655.
[http://dx.doi.org/10.2337/dc21-1318] [PMID: 34625431]
[33]
Codo, A.; Davanzo, G.; Monteiro, L.; Souza, G.; Muraro, S.; Virgilio-da-Silva, J.; Prodonoff, J.; Corasolla Carregari, V.; Biagi, C. Junior; Crunfli, F.; Restrepo, J.; Vendramini, P.H.; Reis-de-Oliveira, G.; Santos, K.; Toledo-Teixeira, D.A.; Lorencini Parise, P.; Martini, M.; Mar-ques, R.E.; do Carmo, H.; Moraes-Vieira, P.; Mansour, E.; Sposito, A.; Carmo, H.; Ulaf, R.; Benrardes, A.; Nunes, T.; Palma, A.; Agrela, M.; Moretti, M.; Pereira, F.; Velloso, L.; Vinolo, M.; Damasio, A.; Modena, J.; Carvalho, R.; Mori, M.; Martins-de-Souza, D.; Nakaya, H.; Farias, A.; Vieira, P. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1a/glycolysis-dependent axis. Cell Metab., 2020, 32.
[34]
Pouysségur, J.; Mechta-Grigoriou, F. Redox regulation of the hypoxia-inducible factor. Biol. Chem., 2006, 387(10-11), 1337-1346.
[http://dx.doi.org/10.1515/BC.2006.167] [PMID: 17081104]
[35]
Robey, I.F.; Lien, A.D.; Welsh, S.J.; Baggett, B.K.; Gillies, R.J. Hypoxia-inducible factor-1α and the glycolytic phenotype in tumors. Neoplasia, 2005, 7(4), 324-330.
[http://dx.doi.org/10.1593/neo.04430] [PMID: 15967109]
[36]
Afsar, B.; Kanbay, M.; Afsar, R. E Hypoxia inducible factor-1 protects against COVID-19: A hypothesis. Med. Hypotheses, 2020, 143, 109857.
[http://dx.doi.org/10.1016/j.mehy.2020.109857]
[37]
Bojkova, D.; Klann, K.; Koch, B.; Widera, M.; Krause, D.; Ciesek, S.; Cinatl, J.; Münch, C. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 2020, 583(7816), 469-472.
[http://dx.doi.org/10.1038/s41586-020-2332-7] [PMID: 32408336]
[38]
Ben-Shlomo, I.; Kol, S.; Roeder, L.M.; Resnick, C.E.; Hurwitz, A.; Payne, D.W.; Adashi, E.Y. Interleukin (IL)-1β increases glucose uptake and induces glycolysis in aerobically cultured rat ovarian cells: evidence that IL-1β may mediate the gonadotropin-induced midcycle me-tabolic shift. Endocrinology, 1997, 138(7), 2680-2688.
[http://dx.doi.org/10.1210/endo.138.7.5229] [PMID: 9202204]
[39]
Rodriguez, A.E.; Ducker, G.S.; Billingham, L.K.; Martinez, C.A.; Mainolfi, N.; Suri, V.; Friedman, A.; Manfredi, M.G.; Weinberg, S.E.; Rabinowitz, J.D.; Chandel, N.S. Serine metabolism supports macrophage IL-1β production. Cell Metab., 2019, 29(4), 1003-1011.e4.
[http://dx.doi.org/10.1016/j.cmet.2019.01.014] [PMID: 30773464]
[40]
Uehara, I.; Tanaka, N. Role of p53 in the regulation of the inflammatory tumor microenvironment and tumor suppression. Cancers (Basel), 2018, 10(7), E219.
[http://dx.doi.org/10.3390/cancers10070219] [PMID: 29954119]
[41]
Alschuler, L.; Weil, A.; Horwitz, R.; Stamets, P.; Chiasson, A.M.; Crocker, R.; Maizes, V. Integrative considerations during the COVID-19 pandemic. Explore (NY), 2020, 16(6), 354-356.
[http://dx.doi.org/10.1016/j.explore.2020.03.007] [PMID: 32229082]
[42]
Li, S.; Jiang, L.; Li, X.; Lin, F.; Wang, Y.; Li, B.; Jiang, T.; An, W.; Liu, S.; Liu, H.; Xu, P.; Zhao, L.; Zhang, L.; Mu, J.; Wang, H.; Kang, J.; Li, Y.; Huang, L.; Zhu, C.; Zhao, S.; Lu, J.; Ji, J.; Zhao, J. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight, 2020, 5(12), 138070.
[http://dx.doi.org/10.1172/jci.insight.138070] [PMID: 32427582]
[43]
Lake, M.A. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. (Lond.), 2020, 20(2), 124-127.
[http://dx.doi.org/10.7861/clinmed.2019-coron] [PMID: 32139372]
[44]
Reiter, R.J.; Sharma, R.; Ma, Q.; Dominquez-Rodriguez, A.; Marik, P.E.; Abreu-Gonzalez, P. Melatonin inhibits COVID-19-induced cy-tokine storm by reversing aerobic glycolysis in immune cells: A mechanistic analysis. Med. Drug Discov., 2020, 6, 100044.
[http://dx.doi.org/10.1016/j.medidd.2020.100044] [PMID: 32395713]
[45]
Bar-Or, D.; Carrick, M.; Tanner, A., II; Lieser, M.J.; Rael, L.T.; Brody, E. Overcoming the Warburg effect: Is it the key to survival in sep-sis? J. Crit. Care, 2018, 43, 197-201.
[http://dx.doi.org/10.1016/j.jcrc.2017.09.012] [PMID: 28915394]
[46]
Reiter, R.J.; Sharma, R.; Ma, Q.; Rosales-Corral, S.; Acuna-Castroviejo, D.; Escames, G. Inhibition of mitochondrial pyruvate dehydroge-nase kinase: A proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Res., 2019, 2(3), 105-119.
[http://dx.doi.org/10.32794/mr11250033]
[47]
Santos, A.F.; Póvoa, P.; Paixão, P.; Mendonça, A.; Taborda-Barata, L. Changes in glycolytic pathway in SARS-CoV 2 infection and their importance in understanding the severity of COVID-19. Front Chem., 2021, 9, 685196.
[http://dx.doi.org/10.3389/fchem.2021.685196] [PMID: 34568275]
[48]
Ajaz, S.; McPhail, M.J.; Singh, K.K.; Mujib, S.; Trovato, F.M.; Napoli, S.; Agarwal, K. Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. Am. J. Physiol. Cell Physiol., 2021, 320(1), C57-C65.
[http://dx.doi.org/10.1152/ajpcell.00426.2020] [PMID: 33151090]
[49]
Icard, P.; Lincet, H.; Wu, Z.; Coquerel, A.; Forgez, P.; Alifano, M.; Fournel, L. The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response. Biochimie, 2021, 180, 169-177.
[http://dx.doi.org/10.1016/j.biochi.2020.11.010] [PMID: 33189832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy