Review Article

噻唑及其相关杂环系统作为抗癌药物的合成策略、作用机制和SAR研究综述

卷 29, 期 29, 2022

发表于: 10 May, 2022

页: [4958 - 5009] 页: 52

弟呕挨: 10.2174/0929867329666220318100019

价格: $65

conference banner
摘要

背景:癌症是全球第二大死亡原因。许多抗癌药物已经上市,但缺乏选择性、靶点特异性、细胞毒性和耐药性的发展会导致严重的副作用。已经进行了一些实验来开发副作用小或没有副作用的化合物。 目的:综述噻唑、苯并噻唑、咪唑噻唑化合物作为抗癌药物的合成策略、SAR研究及其作用机制。 方法:综述了近年来有关噻唑和噻唑相关衍生物的抗癌潜力的文献。本文综述了当代噻唑及其相关衍生物的合成策略、机理靶点和全面的结构活性关系研究,为合理设计高效噻唑类抗癌候选药物提供了展望。 结果:详尽的文献调查表明,噻唑衍生物与诱导细胞凋亡和干扰微管蛋白组装的特性有关。噻唑还与NFkB/mTOR/PI3K/AkT的抑制和雌激素介导的活性的调节有关。此外,噻唑衍生物已被发现可以调节关键靶点,如拓扑异构酶和HDAC。 结论:噻唑衍生物具有良好的活性,并通过多种机制发挥作用。部分噻唑衍生物,如化合物29、40、62和74a,半抑制浓度值分别为0.05 μM、0.00042 μM、0.18 μM和0.67 μM,不仅具有抗癌活性,而且具有较低的毒性和较好的吸收能力。因此,还可以研究其他一些类似的化合物来帮助开发抗癌药效团。

关键词: 噻唑类,抗癌,合成,靶标,SAR,分子对接,耐药性,杂环系统。

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[4]
Wayteck, L.; Breckpot, K.; Demeester, J.; De Smedt, S.C.; Raemdonck, K. A personalized view on cancer immunotherapy. Cancer Lett., 2014, 352(1), 113-125.
[http://dx.doi.org/10.1016/j.canlet.2013.09.016] [PMID: 24051308]
[5]
He, X.; Li, X.Y.; Liang, J.W.; Cao, C.; Li, S.; Zhang, T.J.; Meng, F.H. Design, synthesis and anticancer activities evaluation of novel 5H-dibenzo[b,e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units. Bioorg. Med. Chem. Lett., 2018, 28(5), 847-852.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.008] [PMID: 29456106]
[6]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[7]
Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15), 115599.
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569]
[8]
Dong, P.; Rakesh, K.P.; Manukumar, H.M.; Mohammed, Y.H.E.; Karthik, C.S.; Sumathi, S.; Mallu, P.; Qin, H-L. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem., 2019, 85, 325-336.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.019] [PMID: 30658232]
[9]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[10]
Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem., 2018, 26(2), 340-355.
[http://dx.doi.org/10.1016/j.bmc.2017.11.026] [PMID: 29269253]
[11]
Fang, W-Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H-L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[12]
Moku, B.; Ravindar, L.; Rakesh, K.P.; Qin, H-L. The significance of N-methylpicolinamides in the development of anticancer therapeu-tics: Synthesis and structure-activity relationship (SAR) studies. Bioorg. Chem., 2019, 86, 513-537.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.030] [PMID: 30782571]
[13]
Zhao, C.; Rakesh, K.; Mumtaz, S.; Moku, B.; Asiri, A.M.; Marwani, H.M.; Manukumar, H.; Qin, H-L. Arylnaphthalene lactone ana-logues: Synthesis and development as excellent biological candidates for future drug discovery. RSC Advances, 2018, 8(17), 9487-9502.
[http://dx.doi.org/10.1039/C7RA13754K]
[14]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W-Y.; Qin, H-L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[15]
Wang, M.; Rakesh, K.P.; Leng, J.; Fang, W-Y.; Ravindar, L.; Channe Gowda, D.; Qin, H-L. Amino acids/peptides conjugated heterocy-cles: A tool for the recent development of novel therapeutic agents. Bioorg. Chem., 2018, 76, 113-129.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.007] [PMID: 29169078]
[16]
Singh, I.P.; Gupta, S.; Kumar, S. Thiazole compounds as antiviral agents: An update. Med. Chem., 2020, 16(1), 4-23.
[http://dx.doi.org/10.2174/1573406415666190614101253] [PMID: 31203807]
[17]
Bueno, J.M.; Carda, M.; Crespo, B.; Cuñat, A.C.; de Cozar, C.; León, M.L.; Marco, J.A.; Roda, N.; Sanz-Cervera, J.F. Design, synthe-sis and antimalarial evaluation of novel thiazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(16), 3938-3944.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.010] [PMID: 27432764]
[18]
Kashyap, A.; Adhikari, N.; Das, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P.; Bhat, H.R. Review on synthetic chemistry and antibacterial importance of thiazole derivatives. Curr. Drug Discov. Technol., 2018, 15(3), 214-228.
[http://dx.doi.org/10.2174/1570163814666170911144036] [PMID: 28901248]
[19]
Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. Ionic liquid-promoted one-pot synthesis of thiazole–imidazo [2, 1-b][1, 3, 4] thiadiazole hybrids and their antitubercular activity. MedChemComm, 2016, 7(2), 338-344.
[http://dx.doi.org/10.1039/C5MD00346F] [PMID: 30108749]
[20]
Kryshchyshyn, A.; Atamanyuk, D.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Investigation of anticancer and anti-parasitic activity of thi-opyrano [2, 3-d] thiazoles bearing norbornane moiety. Biopolim. Kletka, 2017, 33(3), 183-205.
[http://dx.doi.org/10.7124/bc.00094F]
[21]
Arora, P.; Narang, R.; Nayak, S.K.; Singh, S.K.; Judge, V. 2, 4-Disubstituted thiazoles as multitargated bioactive molecules. Med. Chem. Res., 2016, 25(9), 1717-1743.
[http://dx.doi.org/10.1007/s00044-016-1610-2]
[22]
Lino, C.I.; Gonçalves de Souza, I.; Borelli, B.M.; Silvério Matos, T.T.; Santos Teixeira, I.N.; Ramos, J.P.; Maria de Souza Fagundes, E.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; de Oliveira, R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem., 2018, 151, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.083] [PMID: 29626797]
[23]
Yapati, H.; Devineni, S.R.; Chirumamilla, S.; Kalluru, S. Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo [d] thiazol-2-yl) thiourea. J. Chem. Sci., 2016, 128(1), 43-51.
[http://dx.doi.org/10.1007/s12039-015-0999-3]
[24]
Ghabbour, H.A.; Kadi, A.A.; ElTahir, K.E.; Angawi, R.F.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents. Med. Chem. Res., 2015, 24(8), 3194-3211.
[http://dx.doi.org/10.1007/s00044-015-1371-3]
[25]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[26]
Khlebnikova, T.; Panibrat, O.; Piven, Y.A.; Zinovich, V.; Tumar, E.; Ogurtsova, S.; Lakhvich, F. Cytotoxic activity of perfluoroalkyl-substituted imidazoindazoles and imidazobenzisoxazoles. Pharm. Chem. J., 2021, 1-5(3), 219-223.
[http://dx.doi.org/10.1007/s11094-021-02401-4]
[27]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416] [PMID: 31313595]
[28]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016.
[http://dx.doi.org/10.1016/j.ejmech.2019.112016] [PMID: 31926469]
[29]
Wang, S-M.; Zha, G-F.; Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Mallesha, N.; Qin, H-L. Synthesis of ben-zo[d]thiazole-hydrazone analogues: Molecular docking and SAR studies of potential H+/K+ ATPase inhibitors and anti-inflammatory agents. MedChemComm, 2017, 8(6), 1173-1189.
[http://dx.doi.org/10.1039/C7MD00111H] [PMID: 30108827]
[30]
Zha, G-F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H-L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.032] [PMID: 28539243]
[31]
Tsai, C-Y.; Kapoor, M.; Huang, Y-P.; Lin, H-H.; Liang, Y-C.; Lin, Y-L.; Huang, S-C.; Liao, W-N.; Chen, J-K.; Huang, J-S.; Hsu, M.H. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents. Molecules, 2016, 21(2), 145.
[http://dx.doi.org/10.3390/molecules21020145] [PMID: 26821004]
[32]
Sadeghzadeh, S.M.; Malekzadeh, M. Synthesis of 1, 3-thiazolidin-4-one using ionic liquid immobilized onto Fe3O4/SiO2/Salen/Mn. J. Mol. Liq., 2015, 202, 46-51.
[http://dx.doi.org/10.1016/j.molliq.2014.12.011]
[33]
Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in or-ganic transformations. J. Mol. Liq., 2016, 215, 345-386.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015]
[34]
Tiwari, J.; Singh, S.; Tufail, F.; Jaiswal, D.; Singh, J.; Singh, J. Glycerol micellar catalysis: An efficient multicomponent‐tandem green synthetic approach to biologically important 2, 4‐disubstituted thiazole derivatives. ChemistrySelect, 2018, 3(41), 11634-11642.
[http://dx.doi.org/10.1002/slct.201802511]
[35]
Safari, J.; Shokrani, Z.; Zarnegar, Z. Asparagine as a green organocatalyst for the synthesis of 2-aminothiazoles. Polycycl. Aromat. Compd., 2020, 40(4), 1105-1111.
[http://dx.doi.org/10.1080/10406638.2018.1528287]
[36]
Raut, D.G.; Bhosale, R.B. One-pot PEG-mediated syntheses of 2-(2-hydrazinyl) thiazole derivatives: Novel route. J. Sulfur Chem., 2018, 39(1), 1-7.
[http://dx.doi.org/10.1080/17415993.2017.1371175]
[37]
Beyzaei, H.; Aryan, R.; Molashahi, H.; Zahedi, M.M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. MgO nanoparti-cle-catalyzed, solvent-free Hantzsch synthesis and antibacterial evaluation of new substituted thiazoles. J. Iran. Chem. Soc., 2017, 14(5), 1023-1031.
[http://dx.doi.org/10.1007/s13738-017-1052-x]
[38]
Riyadh, S.M.; Khalil, K.D.; Aljuhani, A. Chitosan-MgO nanocomposite: One pot preparation and its utility as an ecofriendly biocatalyst in the synthesis of thiazoles and [1,3,4]thiadiazoles. Nanomaterials (Basel), 2018, 8(11), 928.
[http://dx.doi.org/10.3390/nano8110928] [PMID: 30413060]
[39]
Shaterian, H.R.; Molaei, P. Fe3O4@ vitamin B1 as a sustainable superparamagnetic heterogeneous nanocatalyst promoting green synthe-sis of trisubstituted 1, 3‐thiazole derivatives. Appl. Organomet. Chem., 2019, 33(7), e4964.
[http://dx.doi.org/10.1002/aoc.4964]
[40]
Cheng, K.; McClory, A.; Walker, W.; Xu, J.; Zhang, H.; Angelaud, R.; Gosselin, F. A Strecker approach to 2-substituted ethyl 5-aminothiazole-4-carboxylates. Tetrahedron Lett., 2016, 57(16), 1736-1738.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.069]
[41]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[42]
Scalacci, N.; Pelloja, C.; Radi, M.; Castagnolo, D. Microwave-assisted domino reactions of propargylamines with isothiocyanates: Se-lective synthesis of 2-aminothiazoles and 2-amino-4-methylenethiazolines. Synlett, 2016, 27(12), 1883-1887.
[http://dx.doi.org/10.1055/s-0035-1561985]
[43]
Shinde, M.H.; Kshirsagar, U.A. One pot synthesis of substituted imidazopyridines and thiazoles from styrenes in water assisted by NBS. Green Chem., 2016, 18(6), 1455-1458.
[http://dx.doi.org/10.1039/C5GC02771C]
[44]
Babar, A.; Khalid, H.; Ayub, K.; Saleem, S.; Waseem, A.; Mahmood, T.; Munawar, M.A.; Abbas, G.; Khan, A.F. Synthesis, characteri-zation and density functional theory study of some new 2-anilinothiazoles. J. Mol. Struct., 2014, 1072, 221-227.
[http://dx.doi.org/10.1016/j.molstruc.2014.05.009]
[45]
Mallia, C.J.; Englert, L.; Walter, G.C.; Baxendale, I.R. Thiazole formation through a modified Gewald reaction. Beilstein J. Org. Chem., 2015, 11(1), 875-883.
[http://dx.doi.org/10.3762/bjoc.11.98] [PMID: 26124889]
[46]
Xiabing, M.; Ablajan, K.; Obul, M.; Seydimemet, M.; Ruzi, R.; Wenbo, L. Facial one-pot, three-component synthesis of thiazole com-pounds by the reactions of aldehyde/ketone, thiosemicarbazide and chlorinated carboxylic ester derivatives. Tetrahedron, 2016, 72(18), 2349-2353.
[http://dx.doi.org/10.1016/j.tet.2016.03.053]
[47]
Pathak, N.; Rathi, E.; Kumar, N.; Kini, S.G.; Rao, C.M. A review on anticancer potentials of benzothiazole derivatives. Mini Rev. Med. Chem., 2020, 20(1), 12-23.
[http://dx.doi.org/10.2174/1389557519666190617153213] [PMID: 31288719]
[48]
Gao, X.; Liu, J.; Zuo, X.; Feng, X.; Gao, Y. Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 2020, 25(7), 1675.
[http://dx.doi.org/10.3390/molecules25071675] [PMID: 32260500]
[49]
Ye, L.; Chen, J.; Mao, P.; Mao, Z.; Zhang, X.; Yan, M. Visible-light-promoted synthesis of benzothiazoles from 2-aminothiophenols and aldehydes. Tetrahedron Lett., 2017, 58(9), 874-876.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.053]
[50]
Maphupha, M.; Juma, W.P.; de Koning, C.B.; Brady, D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Advances, 2018, 8(69), 39496-39510.
[http://dx.doi.org/10.1039/C8RA07377E]
[51]
Merroun, Y.; Chehab, S.; Ghailane, T.; Akhazzane, M.; Souizi, A.; Ghailane, R. Preparation of tin-modified mono-ammonium phos-phate fertilizer and its application as heterogeneous catalyst in the benzimidazoles and benzothiazoles synthesis. React. Kinet. Mech. Catal., 2019, 126(1), 249-264.
[http://dx.doi.org/10.1007/s11144-018-1446-5]
[52]
Bhat, R.; Karhale, S.; Arde, S.; Helavi, V. Acacia concinna pod catalyzed synthesis of 2-arylbenzothia/(oxa) zole derivatives. Iran. J. Catal., 2019, 9(2), 173-179.http://ijc.iaush.ac.ir/article_664816.html
[53]
Ghafuri, H.; Esmaili, E.; Talebi, M. Fe3O4@ SiO2/collagen: An efficient magnetic nanocatalyst for the synthesis of benzimidazole and benzothiazole derivatives. C. R. Chim., 2016, 19(8), 942-950.
[http://dx.doi.org/10.1016/j.crci.2016.05.003]
[54]
Kumar, P.; Bhatia, R.; Khanna, R.; Dalal, A.; Kumar, D.; Surain, P.; Kamboj, R.C. Synthesis of some benzothiazoles by developing a new protocol using urea nitrate as a catalyst and their antimicrobial activities. J. Sulfur Chem., 2017, 38(6), 585-596.
[http://dx.doi.org/10.1080/17415993.2017.1334781]
[55]
Kan, S-Y.; Yiong, W.S.; Yong, F.S.J.; Chia, P.W. Synthesis of benzothiazole derivatives using ultrasonic probe irradiation. Malays. J. Anal. Sci., 2017, 21(6), 1219-1225.
[http://dx.doi.org/10.17576/mjas-2017-2106-02]
[56]
Hwang, H.S.; Lee, S.; Han, S.S.; Moon, Y.K.; You, Y.; Cho, E.J. Benzothiazole synthesis: Mechanistic investigation of an in situ-generated photosensitizing disulfide. J. Org. Chem., 2020, 85(18), 11835-11843.
[http://dx.doi.org/10.1021/acs.joc.0c01598] [PMID: 32822174]
[57]
Sankar, V.; Karthik, P.; Neppolian, B.; Sivakumar, B. Metal–organic framework mediated expeditious synthesis of benzimidazole and benzothiazole derivatives through an oxidative cyclization pathway. New J. Chem., 2020, 44(3), 1021-1027.
[http://dx.doi.org/10.1039/C9NJ04431K]
[58]
Dar, A.A.; Shadab, M.; Khan, S.; Ali, N.; Khan, A.T. One-pot synthesis and evaluation of antileishmanial activities of functionalized S-alkyl/aryl benzothiazole-2-carbothioate scaffold. J. Org. Chem., 2016, 81(8), 3149-3160.
[http://dx.doi.org/10.1021/acs.joc.6b00113] [PMID: 26999637]
[59]
Luo, B.; Li, D.; Zhang, A-L.; Gao, J-M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives. Molecules, 2018, 23(10), 2457.
[http://dx.doi.org/10.3390/molecules23102457] [PMID: 30257495]
[60]
Folgueiras-Amador, A.A.; Qian, X-Y.; Xu, H.C.; Wirth, T. Catalyst-and supporting electrolyte-free electrosynthesis of benzothiazoles and thiazolopyridines in continuousf flow. Chemistry, 2018, 24(2), 487-491.
[http://dx.doi.org/10.1002/chem.201705016] [PMID: 29125202]
[61]
Xu, Z-M.; Li, H-X.; Young, D.J.; Zhu, D-L.; Li, H-Y.; Lang, J-P. Exogenous photosensitizer-, metal-, and base-free visible-light-promoted C–H thiolation via reverse hydrogen atom transfer. Org. Lett., 2019, 21(1), 237-241.
[http://dx.doi.org/10.1021/acs.orglett.8b03679] [PMID: 30575402]
[62]
Bouchet, L.M.; Heredia, A.A.; Argüello, J.E.; Schmidt, L.C. Riboflavin as photoredox catalyst in the cyclization of thiobenzanilides: Synthesis of 2-substituted benzothiazoles. Org. Lett., 2020, 22(2), 610-614.
[http://dx.doi.org/10.1021/acs.orglett.9b04384] [PMID: 31887062]
[63]
Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic liquid-catalyzed C–S bond construction using CO2 as a C1 building block under mild conditions: A metal-free route to synthesis of benzothiazoles. ACS Catal., 2015, 5(11), 6648-6652.
[http://dx.doi.org/10.1021/acscatal.5b01874]
[64]
Chun, S.; Yang, S.; Chung, Y.K. Synthesis of benzothiazoles from 2-aminobenzenethiols in the presence of a reusable polythiazolium precatalyst under atmospheric pressure of carbon dioxide. Tetrahedron, 2017, 73(25), 3438-3442.
[http://dx.doi.org/10.1016/j.tet.2017.05.003]
[65]
Monga, A.; Bagchi, S.; Soni, R.K.; Sharma, A. Synthesis of benzothiazoles via photooxidative decarboxylation of α‐keto acids. Adv. Synth. Catal., 2020, 362(11), 2232-2237.
[http://dx.doi.org/10.1002/adsc.201901617]
[66]
Kazi, I.; Sekar, G. An efficient synthesis of benzothiazole using tetrabromomethane as a halogen bond donor catalyst. Org. Biomol. Chem., 2019, 17(45), 9743-9756.
[http://dx.doi.org/10.1039/C9OB02125F] [PMID: 31696198]
[67]
Liu, B.; Zhu, N.; Hong, H.; Han, L. Novel synthesis of benzothiazole by self-redox tandem reaction of disulfide with aldehyde. Tetrahedron, 2015, 71(49), 9287-9292.
[http://dx.doi.org/10.1016/j.tet.2015.10.029]
[68]
Zhao, J.; Xiao, Q.; Chen, J. Xu, J. Metal‐free synthesis of imidazo [2, 1‐b] thiazoles from thioimidazoles and ketones mediated by selectfluor. Eur. J. Org. Chem., 2020, 2020(32), 5201-5206.
[http://dx.doi.org/10.1002/ejoc.202000815]
[69]
Mishra, A.; Srivastava, M.; Rai, P.; Yadav, S.; Tripathi, B.P.; Singh, J.; Singh, J. Visible light triggered, catalyst free approach for the synthesis of thiazoles and imidazo [2, 1-b] thiazoles in EtOH: H2O green medium. RSC Advances, 2016, 6(54), 49164-49172.
[http://dx.doi.org/10.1039/C6RA05385H]
[70]
Vekariya, R.H.; Patel, K.D.; Vekariya, M.K.; Prajapati, N.P.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. Microwave-assisted green synthesis of new imidazo [2, 1-b] thiazole derivatives and their antimicrobial, antimalarial, and antitubercular activities. Res. Chem. Intermed., 2017, 43(11), 6207-6231.
[http://dx.doi.org/10.1007/s11164-017-2985-5]
[71]
Chen, Z.; Jin, W.; Xia, Y.; Zhang, Y.; Xie, M.; Ma, S.; Liu, C. Aminothiolation of α-Bromocinnamaldehydes to access Imidazo[2,1-b]thiazoles by incorporation of two distinct Photoinduced processes. Org. Lett., 2020, 22(21), 8261-8266.
[http://dx.doi.org/10.1021/acs.orglett.0c02907] [PMID: 33021794]
[72]
Mukku, N.; Maiti, B. On water catalyst-free synthesis of benzo [d] imidazo [2, 1-b] thiazoles and novel N-alkylated 2-aminobenzo [d] oxazoles under microwave irradiation. RSC Advances, 2020, 10(2), 770-778.
[http://dx.doi.org/10.1039/C9RA08929B]
[73]
Balwe, S.G.; Jeong, Y.T. Iron-catalyzed unprecedented formation of benzo [d] imidazo [2, 1-b] thiazoles under solvent-free conditions. RSC Advances, 2016, 6(109), 107225-107232.
[http://dx.doi.org/10.1039/C6RA24183B]
[74]
Neganova, M.E.; Klochkov, S.G.; Aleksandrova, Y.R.; Aliev, G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin. Cancer Biol., 2020. S1044-579X(20)30176-0
[http://dx.doi.org/10.1016/j.semcancer.2020.07.015] [PMID: 32814115]
[75]
Rajak, H.; Singh, A.; Raghuwanshi, K.; Kumar, R.; Dewangan, P.K.; Veerasamy, R.; Sharma, P.C.; Dixit, A.; Mishra, P. A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Curr. Med. Chem., 2014, 21(23), 2642-2664.
[http://dx.doi.org/10.2174/09298673113209990191] [PMID: 23895688]
[76]
Carradori, S.; Rotili, D.; De Monte, C.; Lenoci, A.; D’Ascenzio, M.; Rodriguez, V.; Filetici, P.; Miceli, M.; Nebbioso, A.; Altucci, L.; Secci, D.; Mai, A. Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: Enzyme and cellular studies. Eur. J. Med. Chem., 2014, 80, 569-578.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.042] [PMID: 24835815]
[77]
Secci, D.; Carradori, S.; Bizzarri, B.; Bolasco, A.; Ballario, P.; Patramani, Z.; Fragapane, P.; Vernarecci, S.; Canzonetta, C.; Filetici, P. Synthesis of a novel series of thiazole-based histone acetyltransferase inhibitors. Bioorg. Med. Chem., 2014, 22(5), 1680-1689.
[http://dx.doi.org/10.1016/j.bmc.2014.01.022] [PMID: 24513187]
[78]
Pardo-Jiménez, V.; Navarrete-Encina, P.; Díaz-Araya, G. Synthesis and biological evaluation of novel thiazolyl-coumarin derivatives as potent histone deacetylase inhibitors with antifibrotic activity. Molecules, 2019, 24(4), 739.
[http://dx.doi.org/10.3390/molecules24040739] [PMID: 30791388]
[79]
Zhang, S-W.; Gong, C-J.; Su, M-B.; Chen, F.; He, T.; Zhang, Y-M.; Shen, Q-Q.; Su, Y.; Ding, J.; Li, J.; Chen, Y.; Nan, F.J. Synthesis and in vitro and in vivo biological evaluation of tissue-specific bisthiazole Histone Deacetylase (HDAC) inhibitors. J. Med. Chem., 2020, 63(2), 804-815.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01792] [PMID: 31855601]
[80]
Sarkar, R.; Banerjee, S.; Amin, S.A.; Adhikari, N.; Jha, T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur. J. Med. Chem., 2020, 192, 112171.
[http://dx.doi.org/10.1016/j.ejmech.2020.112171] [PMID: 32163814]
[81]
Anh, D.T.; Hai, P-T.; Huong, L.T.; Park, E.J.; Jun, H.W.; Kang, J.S.; Kwon, J.H.; Dung, D.T.M.; Anh, V.T.; Hue, V.T.M.; Han, S.B.; Nam, N.H. Exploration of certain 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2020, 101, 103988.
[http://dx.doi.org/10.1016/j.bioorg.2020.103988] [PMID: 32534346]
[82]
Roostalu, J.; Surrey, T. Microtubule nucleation: Beyond the template. Nat. Rev. Mol. Cell Biol., 2017, 18(11), 702-710.
[http://dx.doi.org/10.1038/nrm.2017.75] [PMID: 28831203]
[83]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[84]
Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding do-mains. Eur. J. Med. Chem., 2019, 171, 310-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[85]
Subba Rao, A.V.; Swapna, K.; Shaik, S.P.; Lakshma Nayak, V.; Srinivasa Reddy, T.; Sunkari, S.; Shaik, T.B.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymer-ization inhibitors and apoptosis inducers. Bioorg. Med. Chem., 2017, 25(3), 977-999.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[86]
Ansari, M.; Shokrzadeh, M.; Karima, S.; Rajaei, S.; Fallah, M.; Ghassemi-Barghi, N.; Ghasemian, M.; Emami, S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyph-enyl) moiety as anticancer agents. Eur. J. Med. Chem., 2020, 185, 111784.
[http://dx.doi.org/10.1016/j.ejmech.2019.111784] [PMID: 31669850]
[87]
El-Naggar, A.M.; Eissa, I.H.; Belal, A.; El-Sayed, A.A. Design, eco-friendly synthesis, molecular modeling and anticancer evaluation of thiazol-5 (4 H)-ones as potential tubulin polymerization inhibitors targeting the colchicine binding site. RSC Advances, 2020, 10(5), 2791-2811.
[http://dx.doi.org/10.1039/C9RA10094F]
[88]
Guggilapu, S.D.; Guntuku, L.; Reddy, T.S.; Nagarsenkar, A.; Sigalapalli, D.K.; Naidu, V.G.M.; Bhargava, S.K.; Bathini, N.B. Synthe-sis of thiazole linked indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2017, 138, 83-95.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.025] [PMID: 28648953]
[89]
Fu, D-J.; Liu, S-M.; Li, F-H.; Yang, J-J.; Li, J. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel col-chicine site tubulin polymerisation inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1050-1059.
[http://dx.doi.org/10.1080/14756366.2020.1753721] [PMID: 32299262]
[90]
Baig, M.F.; Nayak, V.L.; Budaganaboyina, P.; Mullagiri, K.; Sunkari, S.; Gour, J.; Kamal, A. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg. Chem., 2018, 77, 515-526.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.005] [PMID: 29459129]
[91]
Shaik, S.P.; Nayak, V.L.; Sultana, F.; Rao, A.V.S.; Shaik, A.B.; Babu, K.S.; Kamal, A. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. Eur. J. Med. Chem., 2017, 126, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.060] [PMID: 27744185]
[92]
Shaik, S.P.; Vishnuvardhan, M.V.P.S.; Sultana, F.; Subba Rao, A.V.; Bagul, C.; Bhattacharjee, D.; Kapure, J.S.; Jain, N.; Kamal, A. Design and synthesis of 1,2,3-triazolo linked benzo[d]imidazo[2,1-b]thiazole conjugates as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(13), 3285-3297.
[http://dx.doi.org/10.1016/j.bmc.2017.04.013] [PMID: 28462842]
[93]
Sultana, F.; Reddy Bonam, S.; Reddy, V.G.; Nayak, V.L.; Akunuri, R.; Rani Routhu, S.; Alarifi, A.; Halmuthur, M.S.K.; Kamal, A. Synthesis of benzo[d]imidazo[2,1-b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 76, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.019] [PMID: 29102724]
[94]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[95]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppala-pati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signal-ing pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[96]
Minder, P.; Zajac, E.; Quigley, J.P.; Deryugina, E.I. EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia, 2015, 17(8), 634-649.
[http://dx.doi.org/10.1016/j.neo.2015.08.002] [PMID: 26408256]
[97]
Mohareb, R.M.; Abdo, N.Y.M.; Wardakhan, W.W. Synthesis and evaluation of pyrazolo [5, 1-b] quinazoline-2-carboxylate, and its thiazole derivatives as potential antiproliferative agents and Pim-1 kinase inhibitors. Med. Chem. Res., 2017, 26(10), 2520-2537.
[http://dx.doi.org/10.1007/s00044-017-1951-5]
[98]
Sever, B. Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182, 111648.
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[99]
Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657.
[http://dx.doi.org/10.1016/j.bmc.2020.115657] [PMID: 32828424]
[100]
Mahapatra, D.K.; Das, D.; Shivhare, R. Substituted thiazole linked murrayanine-Schiff’s base derivatives as potential anti-breast cancer candidates: Future EGFR Kinase inhibitors. Int. J. Pharm. Sci. Drug Res., 2017, 9(3), 139-144.
[http://dx.doi.org/10.25004/IJPSDR.2017.090307]
[101]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M. EGFR tyrosine kinase targeted compounds: In vitro antitumor activ-ity and molecular modeling studies of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives. EXCLI J., 2014, 13, 573-585.
[PMID: 26417284]
[102]
Zhang, L.; Deng, X-S.; Zhang, C.; Meng, G-P.; Wu, J-F.; Li, X-S.; Zhao, Q-C.; Hu, C. Design, synthesis and cytotoxic evaluation of a novel series of benzo [d] thiazole-2-carboxamide derivatives as potential EGFR inhibitors. Med. Chem. Res., 2017, 26(9), 2180-2189.
[http://dx.doi.org/10.1007/s00044-017-1925-7]
[103]
Labib, M.B.; Philoppes, J.N.; Lamie, P.F.; Ahmed, E.R. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorg. Chem., 2018, 76, 67-80.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.016] [PMID: 29153588]
[104]
Abdellatif, K.R.A.; Belal, A.; El-Saadi, M.T.; Amin, N.H.; Said, E.G.; Hemeda, L.R. Design, synthesis, molecular docking and antipro-liferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorg. Chem., 2020, 101, 103976.
[http://dx.doi.org/10.1016/j.bioorg.2020.103976] [PMID: 32506018]
[105]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.012] [PMID: 26807863]
[106]
Corcoran, R.B.; Dias-Santagata, D.; Bergethon, K.; Iafrate, A.J.; Settleman, J.; Engelman, J.A. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal., 2010, 3(149), ra84-ra84.
[http://dx.doi.org/10.1126/scisignal.2001148] [PMID: 21098728]
[107]
Zhao, M-Y.; Yin, Y.; Yu, X-W.; Sangani, C.B.; Wang, S-F.; Lu, A-M.; Yang, L-F.; Lv, P-C.; Jiang, M-G.; Zhu, H-L. Synthesis, bio-logical evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as BRAF(V600E) inhibitors. Bioorg. Med. Chem., 2015, 23(1), 46-54.
[http://dx.doi.org/10.1016/j.bmc.2014.11.029] [PMID: 25496804]
[108]
Abdel-Maksoud, M.S.; Kim, M-R.; El-Gamal, M.I.; Gamal El-Din, M.M.; Tae, J.; Choi, H.S.; Lee, K-T.; Yoo, K.H.; Oh, C-H. Design, synthesis, in vitro antiproliferative evaluation, and kinase inhibitory effects of a new series of imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2015, 95, 453-463.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.065] [PMID: 25841200]
[109]
Abdel-Maksoud, M.S.; Ammar, U.M.; Oh, C-H. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole scaffold. Bioorg. Med. Chem., 2019, 27(10), 2041-2051.
[http://dx.doi.org/10.1016/j.bmc.2019.03.062] [PMID: 30955995]
[110]
Ammar, U.M.; Abdel-Maksoud, M.S.; Mersal, K.I.; Ali, E.M.H.; Yoo, K.H.; Choi, H.S.; Lee, J.K.; Cha, S.Y.; Oh, C-H. Modification of imidazothiazole derivatives gives promising activity in B-Raf kinase enzyme inhibition; synthesis, in vitro studies and molecular dock-ing. Bioorg. Med. Chem. Lett., 2020, 30(20), 127478.
[http://dx.doi.org/10.1016/j.bmcl.2020.127478] [PMID: 32781217]
[111]
Yu, C-C.; Hung, S-K.; Lin, H-Y.; Chiou, W-Y.; Lee, M-S.; Liao, H-F.; Huang, H-B.; Ho, H-C.; Su, Y-C. Targeting the PI3K/AKT/mTOR signaling pathway as an effectively radiosensitizing strategy for treating human oral squamous cell carcinoma in vitro and in vivo. Oncotarget, 2017, 8(40), 68641-68653.
[http://dx.doi.org/10.18632/oncotarget.19817] [PMID: 28978144]
[112]
Khorami, S.A.H.; Movahedi, A.; Huzwah, K.; Sokhini, A. PI3K/AKT pathway in modulating glucose homeostasis and its alteration in diabetes. Ann. Med. Biomed. Sci., 2015, 1(2), 46-55.http://ambs-journal.co.uk/articles/8%20AMBS46-55-20151.pdf
[113]
Liu, Y.; Wan, W.Z.; Li, Y.; Zhou, G.L.; Liu, X.G. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Oncotarget, 2017, 8(4), 7181-7200.
[http://dx.doi.org/10.18632/oncotarget.12742] [PMID: 27769061]
[114]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Özdemir, A. Design, synthesis, and evaluation of a new series of thiazole-based anticancer agents as potent Akt inhibitors. Molecules, 2018, 23(6), 1318.
[http://dx.doi.org/10.3390/molecules23061318] [PMID: 29857484]
[115]
Jin, R-Y.; Tang, T.; Zhou, S.; Long, X.; Guo, H.; Zhou, J.; Yan, H.; Li, Z.; Zuo, Z-Y.; Xie, H-L.; Tang, Y.P. Design, synthesis, anti-tumor activity and theoretical calculation of novel PI3Ka inhibitors. Bioorg. Chem., 2020, 98, 103737.
[http://dx.doi.org/10.1016/j.bioorg.2020.103737] [PMID: 32193031]
[116]
Chen, N-Y.; Xie, Y-L.; Lu, G-D.; Ye, F.; Li, X-Y.; Huang, Y-W.; Huang, M-L.; Chen, T-Y.; Li, C-P. Synthesis and antitumor evalua-tion of (aryl) methyl-amine derivatives of dehydroabietic acid-based B ring-fused-thiazole as potential PI3K/AKT/mTOR signaling pathway inhibitors. Mol. Divers., 2021, 25(2), 967-979.
[http://dx.doi.org/10.1007/s11030-020-10081-7] [PMID: 32297120]
[117]
Li, H.; Wang, X-M.; Wang, J.; Shao, T.; Li, Y-P.; Mei, Q-B.; Lu, S-M.; Zhang, S-Q. Combination of 2-methoxy-3-phenylsulfonylaminobenzamide and 2-aminobenzothiazole to discover novel anticancer agents. Bioorg. Med. Chem., 2014, 22(14), 3739-3748.
[http://dx.doi.org/10.1016/j.bmc.2014.04.064] [PMID: 24878359]
[118]
Cao, S.; Cao, R.; Liu, X.; Luo, X.; Zhong, W. Design, synthesis and biological evaluation of novel benzothiazole derivatives as selective PI3Kβ inhibitors. Molecules, 2016, 21(7), 876.
[http://dx.doi.org/10.3390/molecules21070876] [PMID: 27384552]
[119]
Xie, L.; Huang, J.; Chen, X.; Yu, H.; Li, K.; Yang, D.; Chen, X.; Ying, J.; Pan, F.; Lv, Y.; Cheng, Y. Design, synthesis and biological evaluation of novel rapamycin benzothiazole hybrids as mTOR targeted anti-cancer agents. Chem. Pharm. Bull. (Tokyo), 2016, 64(4), 346-355.
[http://dx.doi.org/10.1248/cpb.c15-01016] [PMID: 26842804]
[120]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur. J. Med. Chem., 2018, 155, 905-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.049] [PMID: 29966916]
[121]
Ratre, P.; Mishra, K.; Dubey, A.; Vyas, A.; Jain, A.; Thareja, S. Aromatase inhibitors for the treatment of breast cancer: A journey from the scratch. Anticancer. Agents Med. Chem., 2020, 20(17), 1994-2004.
[http://dx.doi.org/10.2174/1871520620666200627204105] [PMID: 32593281]
[122]
Mohammed, S.A.; Hassan, F.; Philip, A.K.; Abd-Allateef, M.; Yousif, E. Role of aromatase and anastrozole in cancer treatment. Int. J. Pharm. Sci. Rev. Res., 2016, 40, 135-140.https://www.researchgate.net/publication/316364530
[123]
Sahin, Z.; Ertas, M.; Berk, B.; Biltekin, S.N.; Yurttas, L.; Demirayak, S. Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives. Bioorg. Med. Chem., 2018, 26(8), 1986-1995.
[http://dx.doi.org/10.1016/j.bmc.2018.02.048] [PMID: 29525337]
[124]
Ertas, M.; Sahin, Z.; Berk, B.; Yurttas, L.; Biltekin, S.N.; Demirayak, S. Pyridine-substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation. Arch. Pharm. (Weinheim), 2018, 351(3-4), e1700272.
[http://dx.doi.org/10.1002/ardp.201700272] [PMID: 29522642]
[125]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sul-fonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[126]
Çevik, U.A.; Osmaniye, D.; Levent, S. Sağlik, B.N.; Çavuşoğlu, B.K.; Karaduman, A.B.; Özkay, Y.; Kaplancikli, Z.A. Synthesis and biological evaluation of novel 1,3,4-thiadiazole derivatives as possible anticancer agents. Acta Pharm., 2020, 70(4), 499-513.
[http://dx.doi.org/10.2478/acph-2020-0034] [PMID: 32412436]
[127]
Capranico, G.; Marinello, J.; Chillemi, G. Type I DNA Topoisomerases. J. Med. Chem., 2017, 60(6), 2169-2192.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00966] [PMID: 28072526]
[128]
Madabhushi, R. The roles of DNA topoisomerase IIβ in transcription. Int. J. Mol. Sci., 2018, 19(7), 1917.
[http://dx.doi.org/10.3390/ijms19071917] [PMID: 29966298]
[129]
Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. MedChemComm, 2018, 10(1), 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
[130]
Coman, F-M.; Mbaveng, A.T.; Marc, G.; Leonte, D.; Brém, B.; Vlase, L.; Imre, S.; Kuete, V.; Zaharia, V. Heterocycles 47. Synthesis, characterization and biological evaluation of some new thiazole aurones as antiproliferative agents. Farmacia, 2019, 68(3), 492-506.
[http://dx.doi.org/10.31925/farmacia.2020.3.15]
[131]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[132]
Aki-Yalcin, E.; Ertan-Bolelli, T.; Taskin-Tok, T.; Ozturk, O.; Ataei, S.; Ozen, C.; Yildiz, I.; Yalcin, I. Evaluation of inhibitory effects of benzothiazole and 3-amino-benzothiazolium derivatives on DNA topoisomerase II by molecular modeling studies. SAR QSAR Environ. Res., 2014, 25(8), 637-649.
[http://dx.doi.org/10.1080/1062936X.2014.923039] [PMID: 25027467]
[133]
Lisic, E.C.; Rand, V.G.; Ngo, L.; Kent, P.; Rice, J.; Gerlach, D.; Papish, E.T.; Jiang, X. Cu (II) propionyl-thiazole thiosemicarbazone complexes: Crystal structure, inhibition of human topoisomerase IIα and activity against breast cancer cells. Open J. Med. Chem., 2018, 8(2), 30-46.
[http://dx.doi.org/10.4236/ojmc.2018.82004]
[134]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[135]
Carafa, V.; Altucci, L. Deregulation of cell death in cancer: Recent highlights. Cancers (Basel), 2020, 12(12), 3517-3520.
[http://dx.doi.org/10.3390/cancers12123517] [PMID: 33255936]
[136]
Mohamed, M.S.; Bishr, M.K.; Almutairi, F.M.; Ali, A.G. Inhibitors of apoptosis: Clinical implications in cancer. Apoptosis, 2017, 22(12), 1487-1509.
[http://dx.doi.org/10.1007/s10495-017-1429-4] [PMID: 29067538]
[137]
Sabt, A.; Abdelhafez, O.M.; El-Haggar, R.S.; Madkour, H.M.F.; Eldehna, W.M.; El-Khrisy, E.E.A.M.; Abdel-Rahman, M.A.; Rashed, L.A. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1095-1107.
[http://dx.doi.org/10.1080/14756366.2018.1477137] [PMID: 29944015]
[138]
Mohamed, T.K.; Batran, R.Z.; Elseginy, S.A.; Ali, M.M.; Mahmoud, A.E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg. Chem., 2019, 85, 253-273.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.040] [PMID: 30641320]
[139]
Sharma, P.; Srinivasa Reddy, T.; Thummuri, D.; Senwar, K.R.; Praveen Kumar, N.; Naidu, V.G.M.; Bhargava, S.K.; Shankaraiah, N. Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2016, 124, 608-621.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.029] [PMID: 27614408]
[140]
He, H.; Wang, X.; Shi, L.; Yin, W.; Yang, Z.; He, H.; Liang, Y. Synthesis, antitumor activity and mechanism of action of novel 1,3-thiazole derivatives containing hydrazide-hydrazone and carboxamide moiety. Bioorg. Med. Chem. Lett., 2016, 26(14), 3263-3270.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.059] [PMID: 27262600]
[141]
Kumar, P.; Duhan, M.; Kadyan, K.; Bhardwaj, J.K.; Saraf, P.; Mittal, M. Multicomponent synthesis of some molecular hybrid contain-ing thiazole pyrazole as apoptosis inducer. Drug Res. (Stuttg.), 2018, 68(2), 72-79.
[http://dx.doi.org/10.1055/s-0043-116947] [PMID: 28910831]
[142]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[143]
Finiuk, N.; Klyuchivska, O.; Ivasechko, I.; Hreniukh, V.; Ostapiuk, Y.; Shalai, Y.; Panchuk, R.; Matiychuk, V.; Obushak, M.; Stoika, R.; Babsky, A. Proapoptotic effects of novel thiazole derivative on human glioma cells. Anticancer Drugs, 2019, 30(1), 27-37.
[http://dx.doi.org/10.1097/CAD.0000000000000686] [PMID: 30130258]
[144]
Piechowska, K.; Świtalska, M; Cytarska, J; Jaroch, K; Łuczykowski, K; Chałupka, J; Wietrzyk, J; Misiura, K; Bojko, B; Kruszewski, S; Łączkowski, K.Z Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem., 2019, 175, 162-171.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.006] [PMID: 31082763]
[145]
Oliva, P.; Onnis, V.; Balboni, E.; Hamel, E.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F.; Brancale, A.; Ferla, S.; Manfredini, S.; Romagnoli, R. Synthesis and biological evaluation of 2-substituted benzyl-/phenylethylamino-4-amino-5-aroylthiazoles as apoptosis-inducing anticancer agents. Molecules, 2020, 25(9), 2177.
[http://dx.doi.org/10.3390/molecules25092177] [PMID: 32384805]
[146]
Fayed, E.A.; Ammar, Y.A.; Ragab, A.; Gohar, N.A.; Mehany, A.B.M.; Farrag, A.M. In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorg. Chem., 2020, 100, 103951.
[http://dx.doi.org/10.1016/j.bioorg.2020.103951] [PMID: 32450392]
[147]
Suma, V.R.; Sreenivasulu, R.; Rao, M.V.B.; Subramanyam, M.; Ahsan, M.J.; Alluri, R.; Rao, K.R.M. Design, synthesis, and biological evaluation of chalcone-linked thiazole-imidazopyridine derivatives as anticancer agents. Med. Chem. Res., 2020, 29(9), 1643-1654.
[http://dx.doi.org/10.1007/s00044-020-02590-9]
[148]
Wang, Y.; Wu, C.; Zhang, Q.; Shan, Y.; Gu, W.; Wang, S. Design, synthesis and biological evaluation of novel β-pinene-based thiazole derivatives as potential anticancer agents via mitochondrial-mediated apoptosis pathway. Bioorg. Chem., 2019, 84, 468-477.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.010] [PMID: 30576910]
[149]
Hegde, M.; Vartak, S.V.; Kavitha, C.V.; Ananda, H.; Prasanna, D.S.; Gopalakrishnan, V.; Choudhary, B.; Rangappa, K.S.; Raghavan, S.C. A benzothiazole derivative (5g) induces DNA damage and potent G2/M arrest in cancer cells. Sci. Rep., 2017, 7(1), 2533.
[http://dx.doi.org/10.1038/s41598-017-02489-3] [PMID: 28566733]
[150]
Liu, D.C.; Gao, M.J.; Huo, Q.; Ma, T.; Wang, Y.; Wu, C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyra-zole with benzo[d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 829-837.
[http://dx.doi.org/10.1080/14756366.2019.1591391] [PMID: 30915869]
[151]
Uremis, N.; Uremis, M.M.; Tolun, F.I.; Ceylan, M.; Doganer, A.; Kurt, A.H. Synthesis of 2-substituted benzothiazole derivatives and their in vitro anticancer effects and antioxidant activities against pancreatic cancer cells. Anticancer Res., 2017, 37(11), 6381-6389.
[http://dx.doi.org/10.21873/anticanres.12091] [PMID: 29061823]
[152]
Philoppes, J.N.; Lamie, P.F. Design and synthesis of new benzoxazole/benzothiazole-phthalimide hybrids as antitumor-apoptotic agents. Bioorg. Chem., 2019, 89, 102978.
[http://dx.doi.org/10.1016/j.bioorg.2019.102978] [PMID: 31136900]
[153]
Shareef, M.A.; Devi, G.P.; Rani Routhu, S.; Kumar, C.G.; Kamal, A.; Babu, B.N. New imidazo[2,1-b]thiazole-based aryl hydrazones: Unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med. Chem., 2020, 11(10), 1178-1184.
[http://dx.doi.org/10.1039/D0MD00188K] [PMID: 33479622]
[154]
Abdelazeem, A.H.; Alqahtani, A.; Omar, H.A.; Bukhari, S.N.A.; Gouda, A.M. Synthesis, biological evaluation and kinase profiling of novel S-benzo [4, 5] thiazolo [2, 3-c][1, 2, 4] triazole derivatives as cytotoxic agents with apoptosis-inducing activity. J. Mol. Struct., 2020, 1219, 128567.
[http://dx.doi.org/10.1016/j.molstruc.2020.128567]
[155]
Ozgur, A.; Tutar, Y. Heat shock protein 90 inhibitors in oncology. Curr. Proteomics, 2014, 11(1), 2-16.
[http://dx.doi.org/10.2174/1570164611666140415224635]
[156]
Biebl, M.M.; Buchner, J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb. Perspect. Biol., 2019, 11(9), a034017.
[http://dx.doi.org/10.1101/cshperspect.a034017] [PMID: 30745292]
[157]
Koca, İ Gümüş M.; Özgür, A.; Dişli, A.; Tutar, Y. A novel approach to inhibit heat shock response as anticancer strategy by couma-rine compounds containing thiazole skeleton. Anticancer. Agents Med. Chem., 2015, 15(7), 916-930.
[http://dx.doi.org/10.2174/1871520615666150407155623] [PMID: 25846761]
[158]
Wing, S.S. Deubiquitinating enzymes in skeletal muscle atrophy-An essential role for USP19. Int. J. Biochem. Cell Biol., 2016, 79, 462-468.
[http://dx.doi.org/10.1016/j.biocel.2016.07.028] [PMID: 27475983]
[159]
Weisberg, E.; Halilovic, E.; Cooke, V.G.; Nonami, A.; Ren, T.; Sanda, T.; Simkin, I.; Yuan, J.; Antonakos, B.; Barys, L.; Ito, M.; Stone, R.; Galinsky, I.; Cowens, K.; Nelson, E.; Sattler, M.; Jeay, S.; Wuerthner, J.U.; McDonough, S.M.; Wiesmann, M.; Griffin, J.D. Inhibi-tion of wild-type p53-expressing AML by the novel small molecule HDM2 inhibitor CGM097. Mol. Cancer Ther., 2015, 14(10), 2249-2259.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0429] [PMID: 26206331]
[160]
Chen, C.; Song, J.; Wang, J.; Xu, C.; Chen, C.; Gu, W.; Sun, H.; Wen, X. Synthesis and biological evaluation of thiazole derivatives as novel USP7 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 845-849.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.018] [PMID: 28108249]
[161]
Shi, G-X.; Yang, W.S.; Jin, L.; Matter, M.L.; Ramos, J.W. RSK2 drives cell motility by serine phosphorylation of LARG and activation of Rho GTPases. Proc. Natl. Acad. Sci. USA, 2018, 115(2), E190-E199.
[http://dx.doi.org/10.1073/pnas.1708584115] [PMID: 29279389]
[162]
Fascio, M.L.; Errea, M.I.; D’Accorso, N.B. Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological proper-ties. Eur. J. Med. Chem., 2015, 90, 666-683.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.012] [PMID: 25499987]
[163]
Varga, D.; Crisan, L.; Pacureanu, L. Molecular modeling studies of thiazole derivatives as PIN1 inhibitors. Rev. Roum. Chim., 2017, 62(4-5), 425-432.https://www.researchgate.net/publication/319479516
[164]
Zhao, H.; Cui, G.; Jin, J.; Chen, X.; Xu, B. Synthesis and Pin1 inhibitory activity of thiazole derivatives. Bioorg. Med. Chem., 2016, 24(22), 5911-5920.
[http://dx.doi.org/10.1016/j.bmc.2016.09.049] [PMID: 27692510]
[165]
Gehringer, M.; Laufer, S.A. Emerging and re-emerging warheads for targeted covalent inhibitors: Applications in medicinal chemistry and chemical biology. J. Med. Chem., 2019, 62(12), 5673-5724.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01153] [PMID: 30565923]
[166]
Deng, H.; Li, W. Monoacylglycerol lipase inhibitors: Modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm. Sin. B, 2020, 10(4), 582-602.
[http://dx.doi.org/10.1016/j.apsb.2019.10.006] [PMID: 32322464]
[167]
Wyatt, R.M.; Fraser, I.; Welty, N.; Lord, B.; Wennerholm, M.; Sutton, S.; Ameriks, M.K.; Dugovic, C.; Yun, S.; White, A.; Nguyen, L.; Koudriakova, T.; Tian, G.; Suarez, J.; Szewczuk, L.; Bonnette, W.; Ahn, K.; Ghosh, B.; Flores, C.M.; Connolly, P.J.; Zhu, B.; Macielag, M.J.; Brandt, M.R.; Chevalier, K.; Zhang, S.P.; Lovenberg, T.; Bonaventure, P. Pharmacologic characterization of JNJ-42226314, [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl) piperazin-1-yl]azetidin-1-yl]methanone, a reversible, selective, and potent Mono-acylglycerol Lipase inhibitor. J. Pharmacol. Exp. Ther., 2020, 372(3), 339-353.
[http://dx.doi.org/10.1124/jpet.119.262139] [PMID: 31818916]
[168]
Afzal, O.; Akhtar, M.S.; Kumar, S.; Ali, M.R.; Jaggi, M.; Bawa, S. Hit to lead optimization of a series of N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamides as monoacylglycerol lipase inhibitors with potential anticancer activity. Eur. J. Med. Chem., 2016, 121, 318-330.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.038] [PMID: 27267002]
[169]
Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032.
[http://dx.doi.org/10.1042/BCJ20160115] [PMID: 27407171]
[170]
Krall, N.; Pretto, F.; Decurtins, W.; Bernardes, G.J.; Supuran, C.T.; Neri, D. A small-molecule drug conjugate for the treatment of car-bonic anhydrase IX expressing tumors. Angew. Chem. Int. Ed. Engl., 2014, 53(16), 4231-4235.
[http://dx.doi.org/10.1002/anie.201310709] [PMID: 24623670]
[171]
Abdoli, M.; Angeli, A.; Bozdag, M.; Carta, F.; Kakanejadifard, A.; Saeidian, H.; Supuran, C.T. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzo[d]thiazole-5- and 6-sulfonamides. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1071-1078.
[http://dx.doi.org/10.1080/14756366.2017.1356295] [PMID: 28753093]
[172]
Turan-Zitouni, G. Altıntop, M.D.; Özdemir, A.; Kaplancıklı Z.A.; Çiftçi, G.A.; Temel, H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem., 2016, 107, 288-294.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.002] [PMID: 26599534]
[173]
Gomha, S.M.; Salaheldin, T.A.; Hassaneen, H.M.; Abdel-Aziz, H.M.; Khedr, M.A. Synthesis, characterization and molecular docking of novel bioactive thiazolyl-thiazole derivatives as promising cytotoxic antitumor drug. Molecules, 2015, 21(1), E3.
[http://dx.doi.org/10.3390/molecules21010003] [PMID: 26703554]
[174]
Gomha, S.M. El‐Hashash, M.A.; Edrees, M.M.; El‐Arab, E.E. Synthesis, characterization, and molecular docking of novel bis‐thiazolyl thienothiophene derivatives as promising cytotoxic antitumor drug. J. Heterocycl. Chem., 2017, 54(5), 2686-2695.
[http://dx.doi.org/10.1002/jhet.2869]
[175]
Gomha, S.M.; Abdelhamid, A.O.; Abdelrehem, N.A.; Kandeel, S.M. Efficient synthesis of new benzofuran‐based thiazoles and inves-tigation of their cytotoxic activity against human breast carcinoma cell lines. J. Heterocycl. Chem., 2018, 55(4), 995-1001.
[http://dx.doi.org/10.1002/jhet.3131]
[176]
Hosseinzadeh, L.; Aliabadi, A.; Kalantari, M.; Mostafavi, A.; Khajouei, M.R. Synthesis and cytotoxicity evaluation of some new 6-nitro derivatives of thiazole-containing 4-(3H)-quinazolinone. Res. Pharm. Sci., 2016, 11(3), 210-218.
[PMID: 27499790]
[177]
Braga, S.F.P.; Fonseca, N.C.; Ramos, J.P.; Souza-Fagundes, E.M.; Oliveira, R.B. Synthesis and cytotoxicity evaluation of thiosemi-carbazones and their thiazole derivatives. Braz. J. Pharm. Sci., 2016, 52(2), 299-308.
[http://dx.doi.org/10.1590/S1984-82502016000200008]
[178]
Grozav, A.; Porumb, I-D. Găină L.I.; Filip, L.; Hanganu, D. Cytotoxicity and antioxidant potential of novel 2-(2-((1H-indol-5yl)methylene)-hydrazinyl)-thiazole derivatives. Molecules, 2017, 22(2), 260.
[http://dx.doi.org/10.3390/molecules22020260] [PMID: 28208774]
[179]
Sridevi, B.; Tangella, Y.; Babu, K.S.; Nanubolu, J.B.; Rani, R.S.; Kumar, C.G.; Meshram, H.; Kamal, A. Sulfamic acid catalyzed one-pot, three-component green approach: Synthesis and cytotoxic evaluation of pyrazolyl-thiazole congeners. New J. Chem., 2017, 41(10), 3745-3749.
[http://dx.doi.org/10.1039/C7NJ00042A]
[180]
Mohareb, R.M.; Abdallah, A.E.M.; Mohamed, A.A. Synthesis of novel thiophene, thiazole and coumarin derivatives based on benzim-idazole nucleus and their cytotoxicity and toxicity evaluations. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 309-318.
[http://dx.doi.org/10.1248/cpb.c17-00922] [PMID: 29491264]
[181]
Shamim, F.; Khan, F.A.; Taha, M.; Khan, K.M. Synthesis and in vitro anti-proliferative capabilities of steroidal thiazole and indole deriv-atives. J. Saudi Chem. Soc., 2019, 23(7), 775-780.
[http://dx.doi.org/10.1016/j.jscs.2019.05.001]
[182]
Sroor, F.M.; Abdelmoniem, A.M.; Abdelhamid, I.A. Facile synthesis, structural activity relationship, molecular modeling and in vitro biological evaluation of new urea derivatives with incorporated isoxazole and thiazole moieties as anticancer agents. ChemistrySelect, 2019, 4(34), 10113-10121.
[http://dx.doi.org/10.1002/slct.201901415]
[183]
Abd El-Karim, S.S.; Syam, Y.M.; El Kerdawy, A.M.; Abdelghany, T.M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorg. Chem., 2019, 86, 80-96.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.026] [PMID: 30685646]
[184]
Alvarez, N.; Velluti, F.; Guidali, F.; Serra, G.; Kramer, M.G.; Ellena, J.; Facchin, G.; Scarone, L.; Torre, M.H. New BI and TRI-Thiazole copper (II) complexes in the search of new cytotoxic drugs against breast cancer cells. Inorg. Chim. Acta, 2020, 508, 119622.
[http://dx.doi.org/10.1016/j.ica.2020.119622]
[185]
Omar, A.M.; Bajorath, J.; Ihmaid, S.; Mohamed, H.M.; El-Agrody, A.M.; Mora, A.; El-Araby, M.E.; Ahmed, H.E.A. Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: Anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg. Chem., 2020, 101, 103992.
[http://dx.doi.org/10.1016/j.bioorg.2020.103992] [PMID: 32554279]
[186]
Sahin, B.; Yaglioglu, A.S.; Ceylan, M. Synthesis and cytotoxic activities of novel 2-(1, 5-bis (aryl) penta-1, 4-dien-2-yl) benzo [d] thia-zol derivatives. Org. Commun., 2016, 9(3), 65.https://www.acgpubs.org/doc/201808091820118-OC-1602-401.pdf
[187]
Uremis, M.M. Yağlıoğlu, A.Ş Budak, Y.; Ceylan, M. Synthesis, characterization, in vitro antiproliferative and cytotoxicity effects of a new class of 2-((1R, 2S)-2-((E)-4-substitutedstyryl) cyclooctyl) benzo [d] thiazole derivatives. Org. Commun., 2017, 10(3), 190-200.
[http://dx.doi.org/10.25135/acg.oc.18.17.02.009]
[188]
Mohareb, R.M.; Abdallah, A.E.M.; Ahmed, E.A. Synthesis and cytotoxicity evaluation of thiazole derivatives obtained from 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene- 3-carbonitrile. Acta Pharm., 2017, 67(4), 495-510.
[http://dx.doi.org/10.1515/acph-2017-0040] [PMID: 29337677]
[189]
Evren, A.E.; Yurttas, L.; Ekselli, B.; Akalin-Ciftci, G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(8), 820-828.
[http://dx.doi.org/10.1080/10426507.2018.1550642]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy