Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Effects of SVEP1 on Lung Squamous Cell Carcinoma and its Association with Tumor Mutation Burden, Prognosis, and Immune Regulation

Author(s): Yu Luo*, Min Zhang*, Zhibo Wang*, Zhihua Li, Xiru Chen, Juan Cao, Jun Que, Liang Chen and Xiaheng Deng

Volume 26, Issue 2, 2023

Published on: 17 June, 2022

Page: [313 - 329] Pages: 17

DOI: 10.2174/1386207325666220318094440

Price: $65

Abstract

Background: The mutated genes in lung squamous cell carcinoma were investigated for their possible association with tumor mutation burden, microsatellite instability, and cancer prognosis.

Objective: Our study aims to evaluate the value of the candidate genes as a potential biomarker of lung squamous cell carcinoma and pan-cancer analysis.

Methods: The landscape of the tumor microenvironment and infiltrating lymphocytes in lung squamous cell carcinoma was calculated using ESTIMATE and CIBERSORT algorithm. Weighed gene co-expression network analysis was used to screen key modules related to immune cell infiltration. Somatic mutations were found by data analysis from the TCGA and ICGC databases. Mann-Whitney U test was used to evaluate the tumor mutation burden difference between patients with mutant and wild-type SVEP1 genes. The Kaplan-Meier method was used to examine the prognosis of the patients with mutations. The effects of SVEP1 expression on tumor mutation burden and immunity in different cancers were determined by pan-cancer analysis.

Results: SVEP1 mutation was found to be associated with a higher tumor mutation burden and prognosis. SVEP1 mutation might be involved in the possible biological process of the anti-tumor immune response. SVEP1 is related to different degrees of immune infiltration in cancer. Moreover, the miRNA-SVEP1 targeting network was used to illuminate the possible mechanisms.

Conclusion: SVEP1 mutation and its mRNA expression are related to tumor mutation burden and cancer immunity in lung squamous cell carcinoma. Our findings reveal the underlying mechanisms, indicating that SVEP1 may be a prognostic marker of lung squamous cell carcinoma.

Keywords: SVEP1, lung squamous cell carcinoma, tumor mutation burden, microsatellite instability, tumor immune infiltration, prognosis.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Cheng, L.; Han, T.; Chen, B.; Nie, K.; Peng, W. TBX5-AS1, an enhancer RNA, is a potential novel prognostic biomarker for lung adenocarcinoma. BMC Cancer, 2021, 21(1), 794.
[http://dx.doi.org/10.1186/s12885-021-08517-w] [PMID: 34238250]
[3]
Fan, F.; Ping, Y.; Yang, L.; Duan, X.; Resegofetse Maimela, N.; Li, B.; Li, X.; Chen, J.; Zhang, K.; Wang, L.; Liu, S.; Zhao, X.; Wang, H.; Zhang, Y. Characterization of a non-coding RNA-associated ceRNA network in metastatic lung adenocar-cinoma. J. Cell. Mol. Med., 2020, 24(20), 11680-11690.
[http://dx.doi.org/10.1111/jcmm.15778] [PMID: 32860342]
[4]
Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; Rodríguez-Cid, J.; Wilson, J.; Sugawara, S.; Kato, T.; Lee, K.H.; Cheng, Y.; Novello, S.; Halmos, B.; Li, X.; Lubiniecki, G.M.; Piperdi, B.; Kowalski, D.M.; Investigators, K. Pem-brolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med., 2018, 379(21), 2040-2051.
[http://dx.doi.org/10.1056/NEJMoa1810865] [PMID: 30280635]
[5]
Zhang, X.; Wang, Y. A, G.; Qu, C.; Chen, J. Pan-Cancer anal-ysis of PARP1 alterations as biomarkers in the prediction of immunotherapeutic effects and the association of its expres-sion levels and immunotherapy signatures. Front. Immunol., 2021, 12, 721030.
[http://dx.doi.org/10.3389/fimmu.2021.721030] [PMID: 34531868]
[6]
Zhou, R.; Zhang, J.; Zeng, D.; Sun, H.; Rong, X.; Shi, M.; Bin, J.; Liao, Y.; Liao, W. Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I-III colon cancer. Cancer Immunol. Immunother., 2019, 68(3), 433-442.
[http://dx.doi.org/10.1007/s00262-018-2289-7] [PMID: 30564892]
[7]
Ostroumov, D.; Fekete-Drimusz, N.; Saborowski, M.; Kühnel, F.; Woller, N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci., 2018, 75(4), 689-713.
[http://dx.doi.org/10.1007/s00018-017-2686-7] [PMID: 29032503]
[8]
Shi, Z.Z.; Tao, H.; Fan, Z.W.; Song, S.J.; Bai, J. Prognostic and immunological role of key genes of ferroptosis in pan-cancer. Front. Cell Dev. Biol., 2021, 9, 748925.
[http://dx.doi.org/10.3389/fcell.2021.748925] [PMID: 34722530]
[9]
Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer, 2012, 12(4), 298-306.
[http://dx.doi.org/10.1038/nrc3245] [PMID: 22419253]
[10]
Donnem, T.; Kilvaer, T.K.; Andersen, S.; Richardsen, E.; Paulsen, E.E.; Hald, S.M.; Al-Saad, S.; Brustugun, O.T.; Hel-land, A.; Lund-Iversen, M.; Solberg, S.; Gronberg, B.H.; Wahl, S.G.; Helgeland, L.; Fløtten, O.; Pohl, M.; Al-Shibli, K.; Sandanger, T.M.; Pezzella, F.; Busund, L.T.; Bremnes, R.M. Strategies for clinical implementation of TNM-Immunoscore in resected nonsmall-cell lung cancer. Ann. Oncol., 2016, 27(2), 225-232.
[http://dx.doi.org/10.1093/annonc/mdv560] [PMID: 26578726]
[11]
Muppa, P.; Parrilha Terra, S.B.S.; Sharma, A.; Mansfield, A.S.; Aubry, M.C.; Bhinge, K.; Asiedu, M.K.; de Andrade, M.; Janaki, N.; Murphy, S.J.; Nasir, A.; Van Keulen, V.; Vasmatzis, G.; Wigle, D.A.; Yang, P.; Yi, E.S.; Peikert, T.; Kosari, F. Immune cell infiltration may be a key determinant of long-term survival in small cell lung cancer. J. Thorac. Oncol., 2019, 14(7), 1286-1295.
[http://dx.doi.org/10.1016/j.jtho.2019.03.028] [PMID: 31078775]
[12]
Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor mutational burden as a predictive bi-omarker in solid tumors. Cancer Discov., 2020, 10(12), 1808-1825.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0522] [PMID: 33139244]
[13]
Corti, F.; Lonardi, S.; Intini, R.; Salati, M.; Fenocchio, E.; Belli, C.; Borelli, B.; Brambilla, M.; Prete, A.A.; Quarà, V.; Antista, M.; Fassan, M.; Morano, F.; Spallanzani, A.; Am-brosini, M.; Curigliano, G.; de Braud, F.; Zagonel, V.; Fucà, G.; Pietrantonio, F. The pan-immune-inflammation value in microsatellite instability-high metastatic colorectal cancer pa-tients treated with immune checkpoint inhibitors. Eur. J. Cancer, 2021, 150, 155-167.
[http://dx.doi.org/10.1016/j.ejca.2021.03.043] [PMID: 33901794]
[14]
Flieswasser, T.; Van Loenhout, J.; Freire Boullosa, L.; Van den Eynde, A.; De Waele, J.; Van Audenaerde, J.; Lardon, F.; Smits, E.; Pauwels, P.; Jacobs, J. Clinically relevant chemo-therapeutics have the ability to induce immunogenic cell death in non-small cell lung cancer. Cells, 2020, 9(6), E1474.
[http://dx.doi.org/10.3390/cells9061474] [PMID: 32560232]
[15]
Zaravinos, A.; Roufas, C.; Nagara, M.; de Lucas Moreno, B.; Oblovatskaya, M.; Efstathiades, C.; Dimopoulos, C.; Ayi-omamitis, G.D. Cytolytic activity correlates with the muta-tional burden and deregulated expression of immune check-points in colorectal cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 364.
[http://dx.doi.org/10.1186/s13046-019-1372-z] [PMID: 31429779]
[16]
Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.E.; Badin, F.; Ready, N.; Hiltermann, T.J.N.; Nair, S.; Juergens, R.; Peters, S.; Minenza, E.; Wrangle, J.M.; Rodriguez-Abreu, D.; Borghaei, H.; Blumenschein, G.R., Jr; Villaruz, L.C.; Ha-vel, L.; Krejci, J.; Corral Jaime, J.; Chang, H.; Geese, W.J.; Bhagavatheeswaran, P.; Chen, A.C.; Socinski, M.A. First-Line nivolumab in stage iv or recurrent non-small-cell lung cancer. N. Engl. J. Med., 2017, 376(25), 2415-2426.
[http://dx.doi.org/10.1056/NEJMoa1613493] [PMID: 28636851]
[17]
Yang, G.; Zheng, R.Y.; Jin, Z.S. Correlations between mi-crosatellite instability and the biological behaviour of tu-mours. J. Cancer Res. Clin. Oncol., 2019, 145(12), 2891-2899.
[http://dx.doi.org/10.1007/s00432-019-03053-4] [PMID: 31617076]
[18]
Samowitz, W.S. Evaluation of colorectal cancers for Lynch syndrome: Practical molecular diagnostics for surgical pathologists. Mod. Pathol., 2015, 28(S1)(Suppl. 1), S109-S113.
[http://dx.doi.org/10.1038/modpathol.2014.127] [PMID: 25560596]
[19]
Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kenne-dy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[20]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of so-matic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[21]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting ge-nome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[22]
Wang, C.; Yin, R.; Dai, J.; Gu, Y.; Cui, S.; Ma, H.; Zhang, Z.; Huang, J.; Qin, N.; Jiang, T.; Geng, L.; Zhu, M.; Pu, Z.; Du, F.; Wang, Y.; Yang, J.; Chen, L.; Wang, Q.; Jiang, Y.; Dong, L.; Yao, Y.; Jin, G.; Hu, Z.; Jiang, L.; Xu, L.; Shen, H. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat. Commun., 2018, 9(1), 2054.
[http://dx.doi.org/10.1038/s41467-018-04492-2] [PMID: 29799009]
[23]
Cassim, S.; Chepulis, L.; Keenan, R.; Kidd, J.; Firth, M.; Law-renson, R. Patient and carer perceived barriers to early presentation and diagnosis of lung cancer: A systematic re-view. BMC Cancer, 2019, 19(1), 25.
[http://dx.doi.org/10.1186/s12885-018-5169-9] [PMID: 30621616]
[24]
Xu, Y.; Li, H.; Huang, Z.; Chen, K.; Yu, X.; Sheng, J.; Zhang, H.H.; Fan, Y. Predictive values of genomic variation, tumor mutational burden, and PD-L1 expression in advanced lung squamous cell carcinoma treated with immunotherapy. Transl. Lung Cancer Res., 2020, 9(6), 2367-2379.
[http://dx.doi.org/10.21037/tlcr-20-1130] [PMID: 33489799]
[25]
Bai, H.; Duan, J.; Li, C.; Xie, W.; Fang, W.; Xu, Y.; Wang, G.; Wan, R.; Sun, J.; Xu, J.; Wang, X.; Fei, K.; Zhao, Z.; Cai, S.; Zhang, L.; Wang, J.; Wang, Z. EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma. J. Immunother. Cancer, 2020, 8(2), e001315.
[http://dx.doi.org/10.1136/jitc-2020-001315] [PMID: 33303576]
[26]
Li, J.; Li, H.; Zhang, C.; Zhang, C.; Wang, H. Integrative analysis of genomic alteration, immune cells infiltration and prognosis of lung squamous cell carcinoma (LUSC) to identify smoking-related biomarkers. Int Immunopharmacol, 2020, 89(Pt A), 107053.
[27]
Li, X.; Li, J.; Wu, P.; Zhou, L.; Lu, B.; Ying, K.; Chen, E.; Lu, Y.; Liu, P. Smoker and non-smoker lung adenocarcinoma is characterized by distinct tumor immune microenvironments. OncoImmunology, 2018, 7(10), e1494677.
[http://dx.doi.org/10.1080/2162402X.2018.1494677] [PMID: 30288364]
[28]
Smolle, E.; Pichler, M. Non-smoking-associated lung cancer: A distinct entity in terms of tumor biology, patient character-istics and impact of hereditary cancer predisposition. Cancers (Basel), 2019, 11(2), E204.
[http://dx.doi.org/10.3390/cancers11020204] [PMID: 30744199]
[29]
Smida, T.; Bruno, T.C.; Stabile, L.P. Influence of estrogen on the NSCLC microenvironment: A comprehensive picture and clinical implications. Front. Oncol., 2020, 10, 137.
[http://dx.doi.org/10.3389/fonc.2020.00137] [PMID: 32133288]
[30]
Meng, J.; Liu, Y.; Guan, S.; Fan, S.; Zhou, J.; Zhang, M.; Liang, C. The establishment of immune infiltration based novel recurrence predicting nomogram in prostate cancer. Cancer Med., 2019, 8(11), 5202-5213.
[http://dx.doi.org/10.1002/cam4.2433] [PMID: 31355524]
[31]
Ge, P.; Wang, W.; Li, L.; Zhang, G.; Gao, Z.; Tang, Z.; Dang, X.; Wu, Y. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer. Biomed. Pharmacother., 2019, 118, 109228.
[http://dx.doi.org/10.1016/j.biopha.2019.109228] [PMID: 31351430]
[32]
Péguillet, I.; Milder, M.; Louis, D.; Vincent-Salomon, A.; Dorval, T.; Piperno-Neumann, S.; Scholl, S.M.; Lantz, O. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response af-ter neoadjuvant therapy of breast cancer. Cancer Res., 2014, 74(8), 2204-2216.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2269] [PMID: 24535711]
[33]
Yamane, H.; Paul, W.E. Cytokines of the γ(c) family control CD4+ T cell differentiation and function. Nat. Immunol., 2012, 13(11), 1037-1044.
[http://dx.doi.org/10.1038/ni.2431] [PMID: 23080204]
[34]
Zhou, M.; Greenhill, S.; Huang, S.; Silva, T.K.; Sano, Y.; Wu, S.; Cai, Y.; Nagaoka, Y.; Sehgal, M.; Cai, D.J.; Lee, Y.S.; Fox, K.; Silva, A.J. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife, 2016, 5, 5.
[http://dx.doi.org/10.7554/eLife.20985] [PMID: 27996938]
[35]
Morooka, N.; Futaki, S.; Sato-Nishiuchi, R.; Nishino, M.; Totani, Y.; Shimono, C.; Nakano, I.; Nakajima, H.; Mochizu-ki, N.; Sekiguchi, K. Polydom is an extracellular matrix pro-tein involved in lymphatic vessel remodeling. Circ. Res., 2017, 120(8), 1276-1288.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308825] [PMID: 28179430]
[36]
Shur, I.; Socher, R.; Hameiri, M.; Fried, A.; Benayahu, D. Molecular and cellular characterization of SEL-OB/SVEP1 in osteogenic cells in vivo and in vitro. J. Cell. Physiol., 2006, 206(2), 420-427.
[http://dx.doi.org/10.1002/jcp.20497] [PMID: 16206243]
[37]
Sato-Nishiuchi, R.; Nakano, I.; Ozawa, A.; Sato, Y.; Takeichi, M.; Kiyozumi, D.; Yamazaki, K.; Yasunaga, T.; Futaki, S.; Sekiguchi, K. Polydom/SVEP1 is a ligand for integrin α9β1. J. Biol. Chem., 2012, 287(30), 25615-25630.
[http://dx.doi.org/10.1074/jbc.M112.355016] [PMID: 22654117]
[38]
Jung, I.H.; Elenbaas, J.S.; Alisio, A.; Santana, K.; Young, E.P.; Kang, C.J.; Kachroo, P.; Lavine, K.J.; Razani, B.; Mecham, R.P.; Stitziel, N.O. SVEP1 is a human coronary ar-tery disease locus that promotes atherosclerosis. Sci. Transl. Med., 2021, 13(586), eabe0357.
[http://dx.doi.org/10.1126/scitranslmed.abe0357] [PMID: 33762433]
[39]
Winkler, M.J.; Müller, P.; Sharifi, A.M.; Wobst, J.; Winter, H.; Mokry, M.; Ma, L.; van der Laan, S.W.; Pang, S.; Miritsch, B.; Hinterdobler, J.; Werner, J.; Stiller, B.; Güldener, U.; Webb, T.R.; Asselbergs, F.W.; Björkegren, J.L.M.; Maegdefessel, L.; Schunkert, H.; Sager, H.B.; Kessler, T. Functional investigation of the coronary artery disease gene SVEP1. Basic Res. Cardiol., 2020, 115(6), 67.
[http://dx.doi.org/10.1007/s00395-020-00828-6] [PMID: 33185739]
[40]
Glait-Santar, C.; Pasmanik-Chor, M.; Benayahu, D. Expres-sion pattern of SVEP1 alternatively-spliced forms. Gene, 2012, 505(1), 137-145.
[http://dx.doi.org/10.1016/j.gene.2012.05.015] [PMID: 22659106]
[41]
Stitziel, N.O.; Stirrups, K.E.; Masca, N.G.; Erdmann, J.; Fer-rario, P.G.; König, I.R.; Weeke, P.E.; Webb, T.R.; Auer, P.L.; Schick, U.M.; Lu, Y.; Zhang, H.; Dube, M.P.; Goel, A.; Far-rall, M.; Peloso, G.M.; Won, H.H.; Do, R.; van Iperen, E.; Kanoni, S.; Kruppa, J.; Mahajan, A.; Scott, R.A.; Willenberg, C.; Braund, P.S.; van Capelleveen, J.C.; Doney, A.S.; Donnel-ly, L.A.; Asselta, R.; Merlini, P.A.; Duga, S.; Marziliano, N.; Denny, J.C.; Shaffer, C.M.; El-Mokhtari, N.E.; Franke, A.; Gottesman, O.; Heilmann, S.; Hengstenberg, C.; Hoffman, P.; Holmen, O.L.; Hveem, K.; Jansson, J.H.; Jöckel, K.H.; Kess-ler, T.; Kriebel, J.; Laugwitz, K.L.; Marouli, E.; Martinelli, N.; McCarthy, M.I.; Van Zuydam, N.R.; Meisinger, C.; Esko, T.; Mihailov, E.; Escher, S.A.; Alver, M.; Moebus, S.; Morris, A.D.; Müller-Nurasyid, M.; Nikpay, M.; Olivieri, O.; Lemieux Perreault, L.P.; AlQarawi, A.; Robertson, N.R.; Akinsanya, K.O.; Reilly, D.F.; Vogt, T.F.; Yin, W.; Asselbergs, F.W.; Kooperberg, C.; Jackson, R.D.; Stahl, E.; Strauch, K.; Varga, T.V.; Waldenberger, M.; Zeng, L.; Kraja, A.T.; Liu, C.; Ehret, G.B.; Newton-Cheh, C.; Chasman, D.I.; Chowdhury, R.; Fer-rario, M.; Ford, I.; Jukema, J.W.; Kee, F.; Kuulasmaa, K.; Nordestgaard, B.G.; Perola, M.; Saleheen, D.; Sattar, N.; Surendran, P.; Tregouet, D.; Young, R.; Howson, J.M.; But-terworth, A.S.; Danesh, J.; Ardissino, D.; Bottinger, E.P.; Er-bel, R.; Franks, P.W.; Girelli, D.; Hall, A.S.; Hovingh, G.K.; Kastrati, A.; Lieb, W.; Meitinger, T.; Kraus, W.E.; Shah, S.H.; McPherson, R.; Orho-Melander, M.; Melander, O.; Metspalu, A.; Palmer, C.N.; Peters, A.; Rader, D.; Reilly, M.P.; Loos, R.J.; Reiner, A.P.; Roden, D.M.; Tardif, J.C.; Thompson, J.R.; Wareham, N.J.; Watkins, H.; Willer, C.J.; Kathiresan, S.; De-loukas, P.; Samani, N.J.; Schunkert, H. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary dis-ease. N. Engl. J. Med., 2016, 374(12), 1134-1144.
[http://dx.doi.org/10.1056/NEJMoa1507652] [PMID: 26934567]
[42]
Nakada, T.A.; Russell, J.A.; Boyd, J.H.; Thair, S.A.; Walley, K.R. Identification of a nonsynonymous polymorphism in the SVEP1 gene associated with altered clinical outcomes in septic shock. Crit. Care Med., 2015, 43(1), 101-108.
[http://dx.doi.org/10.1097/CCM.0000000000000604] [PMID: 25188548]
[43]
Takeuchi, Y.; Nishikawa, H. Roles of regulatory T cells in cancer immunity. Int. Immunol., 2016, 28(8), 401-409.
[http://dx.doi.org/10.1093/intimm/dxw025] [PMID: 27160722]
[44]
Zhu, G.; Pei, L.; Li, Y.; Gou, X. EP300 mutation is associated with tumor mutation burden and promotes antitumor immuni-ty in bladder cancer patients. Aging (Albany NY), 2020, 12(3), 2132-2141.
[http://dx.doi.org/10.18632/aging.102728] [PMID: 32012118]
[45]
Pockley, A.G.; Vaupel, P.; Multhoff, G. NK cell-based thera-peutics for lung cancer. Expert Opin. Biol. Ther., 2020, 20(1), 23-33.
[http://dx.doi.org/10.1080/14712598.2020.1688298] [PMID: 31714156]
[46]
Glait-Santar, C.; Benayahu, D. Regulation of SVEP1 gene expression by 17β-estradiol and TNFα in pre-osteoblastic and mammary adenocarcinoma cells. J. Steroid Biochem. Mol. Biol., 2012, 130(1-2), 36-44.
[http://dx.doi.org/10.1016/j.jsbmb.2011.12.015] [PMID: 22265959]
[47]
Gilgès, D.; Vinit, M.A.; Callebaut, I.; Coulombel, L.; Cacheux, V.; Romeo, P.H.; Vigon, I. Polydom: A secreted protein with pentraxin, complement control protein, epidermal growth fac-tor and von willebrand factor a domains. Biochem. J., 2000, 352(Pt 1), 49-59.
[http://dx.doi.org/10.1042/bj3520049] [PMID: 11062057]
[48]
Samuelov, L.; Li, Q.; Bochner, R.; Najor, N.A.; Albrecht, L.; Malchin, N.; Goldsmith, T.; Grafi-Cohen, M.; Vodo, D.; Fainberg, G.; Meilik, B.; Goldberg, I.; Warshauer, E.; Rogers, T.; Edie, S.; Ishida-Yamamoto, A.; Burzenski, L.; Erez, N.; Murray, S.A.; Irvine, A.D.; Shultz, L.; Green, K.J.; Uitto, J.; Sprecher, E.; Sarig, O. SVEP1 plays a crucial role in epider-mal differentiation. Exp. Dermatol., 2017, 26(5), 423-430.
[http://dx.doi.org/10.1111/exd.13256] [PMID: 27892606]
[49]
Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Framp-ton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther., 2017, 16(11), 2598-2608.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0386] [PMID: 28835386]
[50]
Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekht-man, N.; Hollmann, T.; Schalper, K.A.; Gainor, J.F.; Shen, R.; Ni, A.; Arbour, K.C.; Merghoub, T.; Wolchok, J.; Snyder, A.; Chaft, J.E.; Kris, M.G.; Rudin, C.M.; Socci, N.D.; Berger, M.F.; Taylor, B.S.; Zehir, A.; Solit, D.B.; Arcila, M.E.; Ladanyi, M.; Riely, G.J.; Schultz, N.; Hellmann, M.D. Molec-ular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) block-ade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol., 2018, 36(7), 633-641.
[http://dx.doi.org/10.1200/JCO.2017.75.3384] [PMID: 29337640]
[51]
Pawlik, T.M.; Raut, C.P.; Rodriguez-Bigas, M.A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers, 2004, 20(4-5), 199-206.
[http://dx.doi.org/10.1155/2004/368680] [PMID: 15528785]
[52]
Chen, L.; Liu, D.; Yi, X.; Qi, L.; Tian, X.; Sun, B.; Dong, Q.; Han, Z.; Li, Q.; Song, T.; Guo, M.; Zhang, W.; Guo, H.; Zhang, T. The novel miR-1269b-regulated protein SVEP1 in-duces hepatocellular carcinoma proliferation and metastasis likely through the PI3K/Akt pathway. Cell Death Dis., 2020, 11(5), 320.
[http://dx.doi.org/10.1038/s41419-020-2535-8] [PMID: 32371982]
[53]
Tian, W.; Yang, X.; Yang, H.; Lv, M.; Sun, X.; Zhou, B. Exo-somal miR-338-3p suppresses non-small-cell lung cancer cells metastasis by inhibiting CHL1 through the MAPK sig-naling pathway. Cell Death Dis., 2021, 12(11), 1030.
[http://dx.doi.org/10.1038/s41419-021-04314-2] [PMID: 34718336]
[54]
Sun, Q.; Li, Q.; Xie, F. LncRNA-MALAT1 regulates prolif-eration and apoptosis of ovarian cancer cells by targeting miR-503-5p. OncoTargets Ther., 2019, 12, 6297-6307.
[http://dx.doi.org/10.2147/OTT.S214689] [PMID: 31496733]
[55]
Luo, J.; Zhu, H.; Jiang, H.; Cui, Y.; Wang, M.; Ni, X.; Ma, C. The effects of aberrant expression of LncRNA DGCR5/miR-873-5p/TUSC3 in lung cancer cell progression. Cancer Med., 2018, 7(7), 3331-3341.
[http://dx.doi.org/10.1002/cam4.1566] [PMID: 29790668]
[56]
Shi, J.; Ma, H.; Wang, H.; Zhu, W.; Jiang, S.; Dou, R.; Yan, B. Overexpression of LINC00261 inhibits non-small cell lung cancer cells progression by interacting with miR-522-3p and suppressing Wnt signaling. J. Cell. Biochem., 2019, 120(10), 18378-18387.
[http://dx.doi.org/10.1002/jcb.29149] [PMID: 31190356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy