Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Azole-Pyrimidine Hybrid Anticancer Agents: A Review of Molecular Structure, Structure Activity Relationship, and Molecular Docking

Author(s): Chinweike Cosmas Eze*, Amarachukwu Mercy Ezeokonkwo, Izuchukwu David Ugwu, Uchenna Florence Eze, Ebuka Leonard Onyeyilim, Izuchi Solomon Attah and Ifeoma Vivian Okonkwo

Volume 22, Issue 16, 2022

Published on: 18 March, 2022

Page: [2822 - 2851] Pages: 30

DOI: 10.2174/1871520622666220318090147

Price: $65

Abstract

Cancer has emerged as one of the leading causes of death globally, partly due to the steady rise in anticancer drug resistance. Pyrimidine and pyrimidine-fused heterocycles are some of the privileged scaffolds in medicine, as they possess diverse biological properties. Pyrimidines containing azole nucleus possess inestimable anticancer potency and can potentially regulate cellular pathways for selective anticancer activity. The present review outlines the molecular structure of pyrimidine-fused azoles with significant anticancer activity. The structure activity relationship and molecular docking studies have also been discussed. The current review is the first complete compilation of significant literature on the proposed topic from 2016 to 2020. The information contained in this review offers a useful insight to chemists in the design of new and potent anticancer azole-pyrimidine analogues.

Keywords: Anticancer activity, azole, cancer, molecular docking, pyrimidine, SAR.

Graphical Abstract

[1]
Wong, M.C.; Goggins, W.B.; Wang, H.H.; Fung, F.D.; Leung, C.; Wong, S.Y.; Ng, C.F.; Sung, J.J. Global incidence and mortality for prostate cancer: Analysis of temporal patterns and trends in 36 countries. Eur. Urol., 2016, 70(5), 862-874.
[http://dx.doi.org/10.1016/j.eururo.2016.05.043] [PMID: 27289567]
[2]
Denisenko, T.V.; Sorokina, I.V.; Gogvadze, V.; Zhivotovsky, B. Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist. Updat., 2016, 24, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.11.002] [PMID: 26830311]
[3]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue)(Suppl. 1), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[4]
Peng, X.M.; Cai, G.X.; Zhou, C.H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem., 2013, 13(16), 1963-2010.
[http://dx.doi.org/10.2174/15680266113139990125] [PMID: 23895097]
[5]
Al-Harbi, N.O.; Bahashwan, S.A.; Fayed, A.A.; Aboonq, M.S.; Amr, A-G. Anti-parkinsonism, hypoglycemic and anti-microbial activities of new poly fused ring heterocyclic candidates. Int. J. Biol. Macromol., 2013, 57, 165-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.019] [PMID: 23500666]
[6]
M, S.; Abdel-Hamide, S.G.; Ghorab, M.M.; El-Sayed, S.M. Synthesis and anticancer activity in vitro of some new pyrimidines. Acta Pharm., 1999, 49(3), 149-158.
[7]
de Vries, E.G.E.; Gietema, J.A.; Workman, P.; Scott, J.E.; Crawshaw, A.; Dobbs, H.J.; Dennis, I.; Mulder, N.H.; Sleijfer, D.T.H.; Willemse, P.H. A phase II and pharmacokinetic study with oral piritrexim for metastatic breast cancer. Br. J. Cancer, 1993, 68(3), 641-644.
[http://dx.doi.org/10.1038/bjc.1993.400] [PMID: 8353055]
[8]
Nasr, M.N.; Gineinah, M.M. Pyrido[2, 3-d]pyrimidines and pyrimido[5′,4′:5, 6]pyrido[2, 3-d]pyrimidines as new antiviral agents: Synthesis and biological activity. Arch. Pharm. (Weinheim), 2002, 335(6), 289-295.
[http://dx.doi.org/10.1002/1521-4184(200208)335:6289::AID-ARDP2893.0.CO;2-Z] [PMID: 12210772]
[9]
Alam, O.; Khan, S.A.; Siddiqui, N.; Ahsan, W.; Verma, S.P.; Gilani, S.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2010, 45(11), 5113-5119.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.022] [PMID: 20813434]
[10]
Gupta, J.K.; Sharma, P.K.; Dudhe, R.; Chaudhary, A.; Singh, A.; Verma, P.K.; Mondal, S.C.; Yadav, R.K.; Kashyap, S. Analgesic study of novel pyrimidine derivatives linked with coumarin moiety. Med. Chem. Res., 2012, 21(8), 1625-1632.
[http://dx.doi.org/10.1007/s00044-011-9675-4]
[11]
Smith, P.A.; Kan, R.O. Cyclization of isothiocyanates as a route to phthalic and homophthalic acid derivatives1,2. J. Org. Chem., 1964, 29(8), 2261-2265.
[http://dx.doi.org/10.1021/jo01031a037]
[12]
Vega, S.; Alonso, J.; Diaz, J.A.; Junquera, F. Synthesis of 3-substituted‐4‐phenyl‐2‐thioxo‐1, 2, 3, 4, 5, 6, 7, 8-octahydrobenzo [4, 5] thieno [2, 3-á] pyrimidines. J. Heterocycl. Chem., 1990, 27(2), 269-273.
[http://dx.doi.org/10.1002/jhet.5570270229]
[13]
Srivastva, A.N.; Singh, N.P.; Shriwastaw, C.K. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2, 6-pyrimidine-dione and their spectroscopic validation. Arab. J. Chem., 2014, 9(1), 48-61.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.004]
[14]
Kuyper, L.F.; Baccanari, D.P.; Jones, M.L.; Hunter, R.N.; Tansik, R.L.; Joyner, S.S.; Boytos, C.M.; Rudolph, S.K.; Knick, V.; Wilson, H.R.; Caddell, J.M.; Friedman, H.S.; Comley, J.C.; Stables, J.N. High-affinity inhibitors of dihydrofolate reductase: Antimicrobial and anti-cancer activities of 7,8-dialkyl-1,3-diaminopyrrolo[3,2-f]quinazolines with small molecular size. J. Med. Chem., 1996, 39(4), 892-903.
[http://dx.doi.org/10.1021/jm9505122] [PMID: 8632413]
[15]
Cheng, H.; Hoffman, J.E.; Le, P.T.; Pairish, M.; Kania, R.; Farrell, W.; Bagrodia, S.; Yuan, J.; Sun, S.; Zhang, E.; Xiang, C.; Dalvie, D.; Rahavendran, S.V. Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorg. Med. Chem. Lett., 2013, 23(9), 2787-2792.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.020] [PMID: 23506825]
[16]
Fargualy, A.M.; Habib, N.S.; Ismail, K.A.; Hassan, A.M.; Sarg, M.T. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives. Eur. J. Med. Chem., 2013, 66, 276-295.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.028] [PMID: 23811090]
[17]
Lee, W.; Ortwine, D.F.; Bergeron, P.; Lau, K.; Lin, L.; Malek, S.; Nonomiya, J.; Pei, Z.; Robarge, K.D.; Schmidt, S.; Sideris, S.; Lyssikatos, J.P. A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(18), 5097-5104.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.027] [PMID: 23932790]
[18]
Xu, Y.; Foulks, J.M.; Clifford, A.; Brenning, B.; Lai, S.; Luo, B.; Parnell, K.M.; Merx, S.; McCullar, M.V.; Kanner, S.B.; Ho, K.K. Synthesis and structure-activity relationship of 2-arylamino-4-arylpyrimidines as potent PAK1 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(14), 4072-4075.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.059] [PMID: 23756368]
[19]
Wu, K.; Ai, J.; Liu, Q.; Chen, T.; Zhao, A.; Peng, X.; Wang, Y.; Ji, Y.; Yao, Q.; Xu, Y.; Geng, M.; Zhang, A. Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: Synthesis and SAR study as tyrosine kinase c-Met inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(20), 6368-6372.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.075] [PMID: 22985853]
[20]
Jiao, X.; Kopecky, D.J.; Liu, J.; Liu, J.; Jaen, J.C.; Cardozo, M.G.; Sharma, R.; Walker, N.; Wesche, H.; Li, S.; Farrelly, E.; Xiao, S.H.; Wang, Z.; Kayser, F. Synthesis and optimization of substituted furo[2,3-d]-pyrimidin-4-amines and 7H-pyrrolo[2,3-d]pyrimidin-4-amines as ACK1 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(19), 6212-6217.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.020] [PMID: 22929232]
[21]
Amr, A.E.G.E.; Sayed, H.H.; Abdulla, M.M. Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents. Archiv der Pharmazie: Int. Arch. Pharm. (Weinheim), 2005, 338(9), 433-440.
[http://dx.doi.org/10.1002/ardp.200500982]
[22]
Wang, S.B.; Deng, X.Q.; Zheng, Y.; Yuan, Y.P.; Quan, Z.S.; Guan, L.P. Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 56, 139-144.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.027] [PMID: 22982524]
[23]
Yang, Z.; Fang, Y.; Pham, T.A.N.; Lee, J.; Park, H. Synthesis and biological evaluation of 5-nitropyrimidine analogs with azabicyclic sub-stituents as GPR119 agonists. Bioorg. Med. Chem. Lett., 2013, 23(5), 1519-1521.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.011] [PMID: 23374864]
[24]
Koga, Y.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Sakamoto, T.; Yamamoto, Y.; Kimata, H.; Nakayama, K.; Kuriyama, C.; Matsushita, Y.; Ueta, K.; Tsuda-Tsukimoto, M.; Nomura, S. C-Glucosides with heteroaryl thiophene as novel sodium-dependent glucose cotransporter 2 inhibitors. Bioorg. Med. Chem., 2013, 21(17), 5561-5572.
[http://dx.doi.org/10.1016/j.bmc.2013.05.048] [PMID: 23809172]
[25]
Toobaei, Z.; Yousefi, R.; Panahi, F.; Shahidpour, S.; Nourisefat, M.; Doroodmand, M.M.; Khalafi-Nezhad, A. Synthesis of novel poly-hydroxyl functionalized acridine derivatives as inhibitors of α-Glucosidase and α-. Amylase. Carbohydr. Res., 2015, 411, 22-32.
[http://dx.doi.org/10.1016/j.carres.2015.04.005] [PMID: 25957572]
[26]
Negoro, K.; Yonetoku, Y.; Moritomo, A.; Hayakawa, M.; Iikubo, K.; Yoshida, S.; Takeuchi, M.; Ohta, M. Synthesis and structure-activity relationship of fused-pyrimidine derivatives as a series of novel GPR119 agonists. Bioorg. Med. Chem., 2012, 20(21), 6442-6451.
[http://dx.doi.org/10.1016/j.bmc.2012.08.054] [PMID: 23010456]
[27]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.019] [PMID: 15908051]
[28]
Shakya, N.; Vedi, S.; Liang, C.; Yang, F.; Agrawal, B.; Kumar, R. 4′-Substituted pyrimidine nucleosides lacking 5′-hydroxyl function as potential anti-HCV agents. Bioorg. Med. Chem. Lett., 2014, 24(5), 1407-1409.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.024] [PMID: 24485784]
[29]
Noguchi, H.; Kitazumi, K.; Mori, M.; Shiba, T. Binding and neuropharmacological profile of zaleplon, a novel nonbenzodiazepine sedative/hypnotic. Eur. J. Pharmacol., 2002, 434(1-2), 21-28.
[http://dx.doi.org/10.1016/S0014-2999(01)01502-3] [PMID: 11755161]
[30]
Jacobson, K.A.; Boeynaems, J.M. P2Y nucleotide receptors: Promise of therapeutic applications. Drug Discov. Today, 2010, 15(13-14), 570-578.
[http://dx.doi.org/10.1016/j.drudis.2010.05.011] [PMID: 20594935]
[31]
O’Connor, S.P.; Wang, Y.; Simpkins, L.M.; Brigance, R.P.; Meng, W.; Wang, A.; Kirby, M.S.; Weigelt, C.A.; Hamann, L.G. Synthesis, SAR, and atropisomerism of imidazolopyrimidine DPP4 inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(21), 6273-6276.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.090] [PMID: 20833042]
[32]
Storer, R.; Ashton, C.J.; Baxter, A.D.; Hann, M.M.; Marr, C.L.; Mason, A.M.; Mo, C.L.; Myers, P.L.; Noble, S.A.; Penn, C.R.; Weir, N.G.; Woods, J.M.; Coe, P.L. The synthesis and antiviral activity of 4-fluoro-1-β-D-ribofuranosyl-1H-pyrazole-3-carboxamide. Nucleosides Nucleotides, 1999, 18(2), 203-216.
[http://dx.doi.org/10.1080/15257779908043068] [PMID: 10067273]
[33]
Cheng, H.; Lundy DeMello, K.M.; Li, J.; Sakya, S.M.; Ando, K.; Kawamura, K.; Kato, T.; Rafka, R.J.; Jaynes, B.H.; Ziegler, C.B.; Stevens, R.; Lund, L.A.; Mann, D.W.; Kilroy, C.; Haven, M.L.; Nimz, E.L.; Dutra, J.K.; Li, C.; Minich, M.L.; Kolosko, N.L.; Petras, C.; Silvia, A.M.; Seibel, S.B. Synthesis and SAR of heteroaryl-phenyl-substituted pyrazole derivatives as highly selective and potent canine COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(8), 2076-2080.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.059] [PMID: 16464588]
[34]
Prakash, O.; Kumar, R.; Parkash, V. Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur. J. Med. Chem., 2008, 43(2), 435-440.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.004] [PMID: 17555846]
[35]
Kim, D.C.; Lee, Y.R.; Yang, B.S.; Shin, K.J.; Kim, D.J.; Chung, B.Y.; Yoo, K.H. Synthesis and biological evaluations of pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur. J. Med. Chem., 2003, 38(5), 525-532.
[http://dx.doi.org/10.1016/S0223-5234(03)00065-5] [PMID: 12767603]
[36]
Dwyer, M.P.; Paruch, K.; Labroli, M.; Alvarez, C.; Keertikar, K.M.; Poker, C.; Rossman, R.; Fischmann, T.O.; Duca, J.S.; Madison, V.; Parry, D.; Davis, N.; Seghezzi, W.; Wiswell, D.; Guzi, T.J. Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: A template-based approach-part 1. Bioorg. Med. Chem. Lett., 2011, 21(1), 467-470.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.113] [PMID: 21094608]
[37]
Mauer, A.M.; Cohen, E.E.; Ma, P.C.; Kozloff, M.F.; Schwartzberg, L.; Coates, A.I.; Qian, J.; Hagey, A.E.; Gordon, G.B. A phase II study of ABT-751 in patients with advanced non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(6), 631-636.
[http://dx.doi.org/10.1097/JTO.0b013e318174e01f] [PMID: 18520803]
[38]
Schenone, S.; Bruno, O.; Bondavalli, F.; Ranise, A.; Mosti, L.; Menozzi, G.; Fossa, P.; Donnini, S.; Santoro, A.; Ziche, M.; Manetti, F.; Botta, M. Antiproliferative activity of new 1-aryl-4-amino-1H-pyrazolo[3,4-d]pyrimidine derivatives toward the human epidermoid carcinoma A431 cell line. Eur. J. Med. Chem., 2004, 39(11), 939-946.
[http://dx.doi.org/10.1016/j.ejmech.2004.07.010] [PMID: 15501543]
[39]
Gupta, S.; Rodrigues, L.M.; Esteves, A.P.; Oliveira-Campos, A.M.; Nascimento, M.S.J.; Nazareth, N.; Cidade, H.; Neves, M.P.; Fernandes, E.; Pinto, M.; Cerqueira, N.M.; Brás, N. Synthesis of N-aryl-5-amino-4-cyanopyrazole derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem., 2008, 43(4), 771-780.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.002] [PMID: 17692432]
[40]
Sanghvi, Y.S.; Larson, S.B.; Smee, D.F.; Revankar, G.R.; Robins, R.K. In Vivo Antiviral Activity of 5-Amino-1-Methyl-3-β-D-Ribofuranosyl-Pyrazolo [4, 3-d] Pyrimidin-7 (6 H)-One and related guanosine analogues prepared from formycin. Nucleosides Nucleotides, 1991, 10(6), 1417-1427.
[http://dx.doi.org/10.1080/07328319108047071]
[41]
Zhu, B.; Strada, S.J. The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmonary/cardiovascular vessels. Curr. Top. Med. Chem., 2007, 7(4), 437-454.
[http://dx.doi.org/10.2174/156802607779941198] [PMID: 17305584]
[42]
Ratajczyk, J.D.; Stein, R.G.; Swett, L.R. US 3939161, 1976.
[43]
Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093] [PMID: 27744184]
[44]
Hafez, H.N.; El-Gazzar, A.B.A.; Al-Hussain, S.A. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2428-2433.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.117] [PMID: 27080187]
[45]
Kamal, A.; Faazil, S.; Hussaini, S.M.; Ramaiah, M.J.; Balakrishna, M.; Patel, N.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis and mechanistic aspects of 2-anilinonicotinyl-pyrazolo[1,5-a]pyrimidine conjugates that regulate cell proliferation in MCF-7 cells via estrogen signaling. Bioorg. Med. Chem. Lett., 2016, 26(8), 2077-2083.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.072] [PMID: 26948540]
[46]
Abd El Razik, H.A.; Mroueh, M.; Faour, W.H.; Shebaby, W.N.; Daher, C.F.; Ashour, H.M.A.; Ragab, H.M. Synthesis of new pyrazolo[3,4-d]pyrimidine derivatives and evaluation of their anti-inflammatory and anticancer activities. Chem. Biol. Drug Des., 2017, 90(1), 83-96.
[http://dx.doi.org/10.1111/cbdd.12929] [PMID: 28032452]
[47]
Kang, K.; Oh, S.H.; Yun, J.H.; Jho, E.H.; Kang, J.H.; Batsuren, D.; Tunsag, J.; Park, K.H.; Kim, M.; Nho, C.W. A novel topoisomerase inhibitor, daurinol, suppresses growth of HCT116 cells with low hematological toxicity compared to etoposide. Neoplasia, 2011, 13(11), 1043-1057.
[http://dx.doi.org/10.1593/neo.11972] [PMID: 22131880]
[48]
Ravi Kumar, N.; Poornachandra, Y.; Krishna Swaroop, D.; Jitender Dev, G.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel ethyl 2,4-disubstituted 8-(trifluoromethyl)pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine-9-carboxylate derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(21), 5203-5206.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.062] [PMID: 27720296]
[49]
Kumar, A.A.; Bodke, Y.D.; Lakra, P.S.; Sambasivam, G.; Bhat, K.G. Design, synthesis and anti-cancer evaluation of a novel series of pyrazolo [1, 5-a] pyrimidine substituted diamide derivatives. Med. Chem. Res., 2017, 26(4), 714-744.
[http://dx.doi.org/10.1007/s00044-016-1770-0]
[50]
Zhao, M.; Ren, H.; Chang, J.; Zhang, D.; Yang, Y.; He, Y.; Qi, C.; Zhang, H. Design and synthesis of novel pyrazolo[1,5-a]pyrimidine derivatives bearing nitrogen mustard moiety and evaluation of their antitumor activity in vitro and in vivo. Eur. J. Med. Chem., 2016, 119, 183-196.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.068] [PMID: 27162123]
[51]
Abdelgawad, M.A.; Bakr, R.B.; Alkhoja, O.A.; Mohamed, W.R. Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg. Chem., 2016, 66, 88-96.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.011] [PMID: 27043178]
[52]
Rahmouni, A.; Souiei, S.; Belkacem, M.A.; Romdhane, A.; Bouajila, J.; Jannet, H.B. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents. Bioorg. Chem, 2016, 66, 160-168.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.001]
[53]
Hassan, A.S.; Mady, M.F.; Awad, H.M.; Hafez, T.S. Synthesis and antitumor activity of some new pyrazolo [1, 5-a] pyrimidines. Chin. Chem. Lett., 2017, 28(2), 388-393.
[http://dx.doi.org/10.1016/j.cclet.2016.10.022]
[54]
A, K.; Bodke, Y.D.; Gowda, A.N.; Sambasivam, G.; Bhat, K.G. Design, synthesis, and evaluation of the anticancer properties of a novel series of imidazolone fused pyrazolo [1, 5-a] pyrimidine derivatives. J. Heterocycl. Chem., 2017, 54(3), 1904-1924.
[http://dx.doi.org/10.1002/jhet.2786]
[55]
Vignaroli, G.; Iovenitti, G.; Zamperini, C.; Coniglio, F.; Calandro, P.; Molinari, A.; Fallacara, A.L.; Sartucci, A.; Calgani, A.; Colecchia, D.; Mancini, A.; Festuccia, C.; Dreassi, E.; Valoti, M.; Musumeci, F.; Chiariello, M.; Angelucci, A.; Botta, M.; Schenone, S. Prodrugs of pyrazolo [3, 4-d] pyrimidines: From library synthesis to evaluation as potential anticancer agents in an orthotopic glioblastoma model. J. Med. Chem., 2017, 60(14), 6305-6320.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00637] [PMID: 28650650]
[56]
Nassar, I.F.; El Farargy, A.F.; Abdelrazek, F.M.; Ismail, N.S.M. Design, synthesis and anticancer evaluation of novel pyrazole, pyrazolo[3,4-d]pyrimidine and their glycoside derivatives. Nucleosides Nucleotides Nucleic Acids, 2017, 36(4), 275-291.
[http://dx.doi.org/10.1080/15257770.2016.1276290] [PMID: 28323527]
[57]
Hassan, A.S.; Moustafa, G.O.; Awad, H.M. Synthesis and in vitro anticancer activity of pyrazolo [1, 5-a] pyrimidines and pyrazolo [3, 4-d][1, 2, 3] triazines. Synth. Commun., 2017, 47(21), 1963-1972.
[http://dx.doi.org/10.1080/00397911.2017.1358368]
[58]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. Med. Chem. Comm., 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[59]
Allam, M.; Bhavani, A.K.D.; Mudiraj, A.; Ranjan, N.; Thippana, M.; Babu, P.P. Synthesis of pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles and their evaluation as potential anticancer agents. Eur. J. Med. Chem., 2018, 156(5), 43-52.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.055] [PMID: 30006173]
[60]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclindependent kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.030] [PMID: 29753773]
[61]
Gaber, A.A.; Bayoumi, A.H.; El-Morsy, A.M.; Sherbiny, F.F.; Mehany, A.B.M.; Eissa, I.H. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg. Chem., 2018, 80, 375-395.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.017] [PMID: 29986185]
[62]
El Sayed, M.T.; Hussein, H.A.R.; Elebiary, N.M.; Hassan, G.S.; Elmessery, S.M.; Elsheakh, A.R.; Nayel, M.; Abdel-Aziz, H.A. Tyrosine kinase inhibition effects of novel Pyrazolo[1,5-a]pyrimidines and Pyrido[2,3-d]pyrimidines ligand: Synthesis, biological screening and molecular modeling studies. Bioorg. Chem., 2018, 78, 312-323.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.009] [PMID: 29625271]
[63]
El-Naggar, M.; Hassan, A.S.; Awad, H.M.; Mady, M.F. Design, synthesis and antitumor evaluation of novel pyrazolopyrimidines and pyrazoloquinazolines. Molecules, 2018, 23(6), 1249.
[http://dx.doi.org/10.3390/molecules23061249] [PMID: 29882908]
[64]
Atta, K.F.; Farahat, O.O.; Al-Shargabi, T.Q.; Marei, M.G.; Ibrahim, T.M.; Bekhit, A.A.; El Sayed, H. Syntheses and in silico pharmacokinetic predictions of glycosylhydrazinyl-pyrazolo [1, 5-c] pyrimidines and pyrazolo [1, 5-c] triazolo [4, 3-a] pyrimidines as anti-proliferative agents. Med. Chem. Res., 2019, 28(2), 215-227.
[http://dx.doi.org/10.1007/s00044-018-2277-7]
[65]
Wang, Y.; Wan, S.; Li, Z.; Fu, Y.; Wang, G.; Zhang, J.; Wu, X. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo[3,4-d]pyrimidine derivatives as BRAFV600E and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2018, 155, 210-228.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.054] [PMID: 29886324]
[66]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo[3,4-d]pyrimidines: Design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046] [PMID: 30688116]
[67]
Attia, M.H.; Elrazaz, E.Z.; El-Emam, S.Z.; Taher, A.T.; Abdel-Aziz, H.A.; Abouzid, K.A.M. Synthesis and in-vitro anti-proliferative evaluation of some pyrazolo[1,5-a]pyrimidines as novel larotrectinib analogs. Bioorg. Chem., 2020, 94, 103458.
[http://dx.doi.org/10.1016/j.bioorg.2019.103458] [PMID: 31785854]
[68]
Fouda, A.M.; Abbas, H.S.; Ahmed, E.H.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I. Synthesis, in vitro antimicrobial and cytotoxic activities of some new pyrazolo [1, 5-a] pyrimidine derivatives. Molecules, 2019, 24(6), 1080.
[http://dx.doi.org/10.3390/molecules24061080] [PMID: 30893820]
[69]
Metwally, N.H.; Mohamed, M.S.; Ragb, E.A. Design, synthesis, anticancer evaluation, molecular docking and cell cycle analysis of 3-methyl-4,7-dihydropyrazolo[1,5-a]pyrimidine derivatives as potent histone lysine demethylases (KDM) inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102929.
[http://dx.doi.org/10.1016/j.bioorg.2019.102929] [PMID: 31015179]
[70]
Ragab, F.A.; Nissan, Y.M.; Seif, E.M.; Maher, A.; Arafa, R.K. Synthesis and in vitro investigation of novel cytotoxic pyrimidine and pyrazolopyrimidne derivatives showing apoptotic effect. Bioorg. Chem., 2020, 96, 103621.
[http://dx.doi.org/10.1016/j.bioorg.2020.103621] [PMID: 32036162]
[71]
Li, G.; Wang, Y.; Li, L.; Ren, Y.; Deng, X.; Liu, J.; Wang, W.; Luo, M.; Liu, S.; Chen, J. Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities. Eur. J. Med. Chem., 2020, 202, 112519.
[http://dx.doi.org/10.1016/j.ejmech.2020.112519] [PMID: 32650183]
[72]
Novinson, T.; Springer, R.; O’Brien, D.E.; Scholten, M.B.; Miller, J.P.; Robins, R.K. 2-(Alkylthio)-1, 2, 4-triazolo [1, 5-a] pyrimidines as adenosine 3′, 5′-monophosphate phosphodiesterase inhibitors with potential as new cardiovascular agents. J. Med. Chem., 1982, 25(4), 420-426.
[http://dx.doi.org/10.1021/jm00346a017] [PMID: 6279846]
[73]
Abdel-Rahman, H.M.; El-Koussi, N.A.; Hassan, H.Y. Fluorinated 1,2,4-Triazolo[1,5-a]pyrimidine-6-carboxylic acid derivatives as anti-mycobacterial agents. Arch. Pharm. (Weinheim), 2009, 342(2), 94-99.
[http://dx.doi.org/10.1002/ardp.200800113] [PMID: 19173243]
[74]
Gujjar, R.; El Mazouni, F.; White, K.L.; White, J.; Creason, S.; Shackleford, D.M.; Deng, X.; Charman, W.N.; Bathurst, I.; Burrows, J.; Floyd, D.M.; Matthews, D.; Buckner, F.S.; Charman, S.A.; Phillips, M.A.; Rathod, P.K. Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J. Med. Chem., 2011, 54(11), 3935-3949.
[http://dx.doi.org/10.1021/jm200265b] [PMID: 21517059]
[75]
Sato, Y.; Shimoji, Y.; Fujita, H.; Nishino, H.; Mizuno, H.; Kobayashi, S.; Kumakura, S. Studies on cardiovascular agents. 6. Synthesis and coronary vasodilating and antihypertensive activities of 1,2,4-triazolo[1,5-a]pyrimidines fused to heterocyclic systems. J. Med. Chem., 1980, 23(8), 927-937.
[http://dx.doi.org/10.1021/jm00182a021] [PMID: 7401118]
[76]
Ivachtchenko, A.V.; Golovina, E.S.; Kadieva, M.G.; Koryakova, A.G.; Kovalenko, S.M.; Mitkin, O.D.; Okun, I.M.; Ravnyeyko, I.M.; Tkachenko, S.E.; Zaremba, O.V. Synthesis and biological study of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines as potent and selective serotonin 5-HT6 receptor antagonists. Bioorg. Med. Chem., 2010, 18(14), 5282-5290.
[http://dx.doi.org/10.1016/j.bmc.2010.05.051] [PMID: 20541425]
[77]
Li, Z.; Ding, L.; Li, Z.; Wang, Z.; Suo, F.; Shen, D.; Zhao, T.; Sun, X.; Wang, J.; Liu, Y.; Ma, L. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm. Sin, 2019, B 9(4), 794-808.
[78]
Li, Z.H.; Liu, X.Q.; Geng, P.F.; Suo, F.Z.; Ma, J.L.; Yu, B.; Zhao, T.Q.; Zhou, Z.Q.; Huang, C.X.; Zheng, Y.C.; Liu, H.M. Discovery of [1, 2, 3] Triazolo [4, 5-d] pyrimidine derivatives as novel LSD1 inhibitors. ACS Med. Chem. Lett., 2017, 8(4), 384-389.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00423] [PMID: 28435523]
[79]
Li, Z.H.; Yang, D.X.; Geng, P.F.; Zhang, J.; Wei, H.M.; Hu, B.; Guo, Q.; Zhang, X.H.; Guo, W.G.; Zhao, B.; Yu, B.; Ma, L.Y.; Liu, H.M. Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. Eur. J. Med. Chem., 2016, 124, 967-980.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.022] [PMID: 27771599]
[80]
Abdallah, M.A.; Gomha, S.M.; Morad, M.A.; Elaasser, M.M. Synthesis of pyridotriazolopyrimidines as antitumor agents. J. Heterocycl. Chem., 2017, 54(2), 1242-1251.
[http://dx.doi.org/10.1002/jhet.2699]
[81]
Gomha, S.M.; Muhammad, Z.A.; Edrees, M.M. Ethyl 7-Methyl-1-(4-nitrophenyl)-5-phenyl-3-(thiophen-2-yl)-1, 5-dihydro-[1, 2, 4] triazolo [4, 3-a] pyrimidine-6-carboxylate. Molbank, 2017, 2(2), M942.
[http://dx.doi.org/10.3390/M942]
[82]
Fan, N.J.; Li, Y.F.; Liang, S.; Tang, J.J. Synthesis and cytotoxic activity of novel steroidal derivatives containing a [1, 2, 4] triazolo [1, 5-a] pyrimidine ring. J. Chem. Res., 2017, 41(7), 413-415.
[http://dx.doi.org/10.3184/174751917X14967701767003]
[83]
Li, Z.H.; Liu, X.Q.; Zhao, T.Q.; Geng, P.F.; Guo, W.G.; Yu, B.; Liu, H.M. Design, synthesis and preliminary biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine/thiourea hybrids as antiproliferative agents. Eur. J. Med. Chem., 2017, 139, 741-749.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.042] [PMID: 28863355]
[84]
El-Nassan, H.B.; Naguib, B.H.; Beshay, E.A. Synthesis of new pyridothienopyrimidinone and pyridothienotriazolopyrimidine derivatives as pim-1 inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 58-66.
[http://dx.doi.org/10.1080/14756366.2017.1389921] [PMID: 29161928]
[85]
Geng, P.F.; Liu, X.Q.; Zhao, T.Q.; Wang, C.C.; Li, Z.H.; Zhang, J.; Wei, H.M.; Hu, B.; Ma, L.Y.; Liu, H.M. Design, synthesis and in vitro biological evaluation of novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing a thiosemicarbazide moiety. Eur. J. Med. Chem., 2018, 146, 147-156.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.031] [PMID: 29407946]
[86]
Li, Z.H.; Ma, J.L.; Liu, G.Z.; Zhang, X.H.; Qin, T.T.; Ren, W.H.; Zhao, T.Q.; Chen, X.H.; Zhang, Z.Q. [1,2,3]Triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors. Eur. J. Med. Chem., 2020, 187, 111989.
[http://dx.doi.org/10.1016/j.ejmech.2019.111989] [PMID: 31881456]
[87]
Safari, F.; Bayat, M.; Nasri, S.; Karami, S. Synthesis and evaluation of anti-tumor activity of novel triazolo[1,5-a] pyrimidine on cancer cells by induction of cellular apoptosis and inhibition of epithelial-to-mesenchymal transition process. Bioorg. Med. Chem. Lett., 2020, 30(10), 127111.
[http://dx.doi.org/10.1016/j.bmcl.2020.127111] [PMID: 32199733]
[88]
Sherbiny, F. Design, synthesis, molecular docking and anti-proliferative evaluation of novel pyrazolo [4, 3-E][1, 2, 4] triazolo [4, 3-C] pyrimidine derivatives as potential DNA intercalators and topoisomerase ii inhibitors. Al-Azhar. J. Pharm. Sci., 2020, 61(1), 12-28.
[PMID: 32860800]
[89]
Łukowska-Chojnacka, E.; Mierzejewska, J.; Milner-Krawczyk, M.; Bondaryk, M.; Staniszewska, M. Synthesis of novel tetrazole derivatives and evaluation of their antifungal activity. Bioorg. Med. Chem., 2016, 24(22), 6058-6065.
[http://dx.doi.org/10.1016/j.bmc.2016.09.066] [PMID: 27745991]
[90]
Pandey, S.; Agarwal, P.; Srivastava, K.; Rajakumar, S.; Puri, S.K.; Verma, P.; Saxena, J.K.; Sharma, A.; Lal, J.; Chauhan, P.M. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. Eur. J. Med. Chem., 2013, 66, 69-81.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.023] [PMID: 23792317]
[91]
Arshad, M.; Bhat, A.R.; Pokharel, S.; Kim, J.E.; Lee, E.J.; Athar, F.; Choi, I. Synthesis, characterization and anticancer screening of some novel piperonyl-tetrazole derivatives. Eur. J. Med. Chem., 2014, 71, 229-236.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.008] [PMID: 24309000]
[92]
Shaaban, S.; Negm, A.; Ashmawy, A.M.; Ahmed, D.M.; Wessjohann, L.A. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. Eur. J. Med. Chem., 2016, 122, 55-71.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.005] [PMID: 27343853]
[93]
Kim, T.W.; Yoo, B.W.; Lee, J.K.; Kim, J.H.; Lee, K.T.; Chi, Y.H.; Lee, J.Y. Synthesis and antihypertensive activity of pyrimidin-4(3H)-one derivatives as losartan analogue for new angiotensin II receptor type 1 (AT1) antagonists. Bioorg. Med. Chem. Lett., 2012, 22(4), 1649-1654.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.116] [PMID: 22264484]
[94]
Karabanovich, G.; Němeček, J.; Valášková, L.; Carazo, A.; Konečná, K.; Stolaříková, J.; Hrabálek, A.; Pavliš, O.; Pávek, P.; Vávrová, K.; Roh, J.; Klimešová, V. S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents. Eur. J. Med. Chem., 2017, 126, 369-383.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.041] [PMID: 27907875]
[95]
Amblard, F.; Aucagne, V.; Guenot, P.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis and antiviral activity of novel acyclic nucleosides in the 5-alkynyl- and 6-alkylfuro[2,3-d]pyrimidine series. Bioorg. Med. Chem., 2005, 13(4), 1239-1248.
[http://dx.doi.org/10.1016/j.bmc.2004.11.057] [PMID: 15670933]
[96]
Surmiak, E.; Neochoritis, C.G.; Musielak, B.; Twarda-Clapa, A.; Kurpiewska, K.; Dubin, G.; Camacho, C.; Holak, T.A.; Dömling, A. Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. Eur. J. Med. Chem., 2017, 126, 384-407.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.029] [PMID: 27907876]
[97]
Wu, L.; Liu, Y.; Li, Y. Synthesis of spirooxindole-O-naphthoquinone-tetrazolo [1, 5-a] pyrimidine hybrids as potential anticancer agents. Molecules, 2018, 23(9), 2330.
[http://dx.doi.org/10.3390/molecules23092330] [PMID: 30213123]
[98]
Radwan, M.A.A.; Alminderej, F.M.; Awad, H.M. One-pot multicomponent synthesis and cytotoxic evaluation of novel 7-substituted-5-(1H-Indol-3-yl) tetrazolo [1, 5-a] pyrimidine-6-carbonitrile. Molecules, 2020, 25(2), 255.
[http://dx.doi.org/10.3390/molecules25020255] [PMID: 31936309]
[99]
Tully, W.R.; Gardner, C.R.; Gillespie, R.J.; Westwood, R. 2-(oxadiazolyl)- and 2-(thiazolyl)imidazo[1,2-a]pyrimidines as agonists and inverse agonists at benzodiazepine receptors. J. Med. Chem., 1991, 34(7), 2060-2067.
[http://dx.doi.org/10.1021/jm00111a021] [PMID: 1648620]
[100]
Clements-Jewery, S.; Danswan, G.; Gardner, C.R.; Matharu, S.S.; Murdoch, R.; Tully, W.R.; Westwood, R. (Imidazo[1,2-a]pyrimidin-2-yl)phenylmethanones and related compounds as potential nonsedative anxiolytics. J. Med. Chem., 1988, 31(6), 1220-1226.
[http://dx.doi.org/10.1021/jm00401a025] [PMID: 2897468]
[101]
Mantipally, M.; Gangireddy, M.R.; Gundla, R.; Badavath, V.N.; Mandha, S.R.; Maddipati, V.C. Rational design, molecular docking and synthesis of novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives as potent cytotoxic and antimicrobial agents. Bioorg. Med. Chem. Lett., 2019, 29(16), 2248-2253.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.031] [PMID: 31239178]
[102]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272.
[http://dx.doi.org/10.1074/jbc.M207135200] [PMID: 12196540]
[103]
De Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[104]
Tebben, A.J.; Ruzanov, M.; Gao, M.; Xie, D.; Kiefer, S.E.; Yan, C.; Newitt, J.A.; Zhang, L.; Kim, K.; Lu, H.; Kopcho, L.M.; Sheriff, S. Crystal structures of apo and inhibitor-bound TGFβR2 kinase domain: Insights into TGFβR isoform selectivity. Acta Crystallogr. D Struct. Biol., 2016, 72(Pt 5), 658-674.
[http://dx.doi.org/10.1107/S2059798316003624] [PMID: 27139629]
[105]
Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J., 2012, 448(3), 417-423.
[http://dx.doi.org/10.1042/BJ20121513] [PMID: 23101586]
[106]
Sogabe, S.; Kawakita, Y.; Igaki, S.; Iwata, H.; Miki, H.; Cary, D.R.; Takagi, T.; Takagi, S.; Ohta, Y.; Ishikawa, T. Structure-based approach for the discovery of pyrrolo [3, 2-d] pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med. Chem. Lett., 2012, 4(2), 201-205.
[http://dx.doi.org/10.1021/ml300327z] [PMID: 24900643]
[107]
Wan, P.T.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[108]
Okamoto, K.; Ikemori-Kawada, M.; Jestel, A.; von König, K.; Funahashi, Y.; Matsushima, T.; Tsuruoka, A.; Inoue, A.; Matsui, J. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med. Chem. Lett., 2014, 6(1), 89-94.
[http://dx.doi.org/10.1021/ml500394m] [PMID: 25589937]
[109]
Horton, J.R.; Liu, X.; Gale, M.; Wu, L.; Shanks, J.R.; Zhang, X.; Webber, P.J.; Bell, J.S.K.; Kales, S.C.; Mott, B.T.; Rai, G.; Jansen, D.J.; Henderson, M.J.; Urban, D.J.; Hall, M.D.; Simeonov, A.; Maloney, D.J.; Johns, M.A.; Fu, H.; Jadhav, A.; Vertino, P.M.; Yan, Q.; Cheng, X. Structural basis for KDM5A histone lysine demethylase inhibition by diverse compounds. Cell Chem. Biol., 2016, 23(7), 769-781.
[http://dx.doi.org/10.1016/j.chembiol.2016.06.006] [PMID: 27427228]
[110]
Perez, H.L.; Banfi, P.; Bertrand, J.; Cai, Z-W.; Grebinski, J.W.; Kim, K.; Lippy, J.; Modugno, M.; Naglich, J.; Schmidt, R.J.; Tebben, A.; Vianello, P.; Wei, D.D.; Zhang, L.; Galvani, A.; Lombardo, L.J.; Borzilleri, R.M. Identification of a phenylacylsulfonamide series of dual Bcl-2/Bcl-xL antagonists. Bioorg. Med. Chem. Lett., 2012, 22(12), 3946-3950.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.103] [PMID: 22608961]
[111]
Dubin, G.; Stec-Niemczyk, J.; Kisielewska, M.; Pustelny, K.; Popowicz, G.M.; Bista, M.; Kantyka, T.; Boulware, K.T.; Stennicke, H.R.; Czarna, A.; Phopaisarn, M.; Daugherty, P.S.; Thøgersen, I.B.; Enghild, J.J.; Thornberry, N.; Dubin, A.; Potempa, J. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J. Mol. Biol., 2008, 379(2), 343-356.
[http://dx.doi.org/10.1016/j.jmb.2008.03.059] [PMID: 18448121]
[112]
Cormier, A.; Marchand, M.; Ravelli, R.B.G.; Knossow, M.; Gigant, B. Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep., 2008, 9(11), 1101-1106.
[http://dx.doi.org/10.1038/embor.2008.171] [PMID: 18787557]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy