Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Drug Repurposing Strategies for Non-cancer to Cancer Therapeutics

Author(s): Shipra Singhal, Priyal Maheshwari, Praveen Thaggikuppe Krishnamurthy and Vaishali M. Patil*

Volume 22, Issue 15, 2022

Published on: 12 May, 2022

Page: [2726 - 2756] Pages: 31

DOI: 10.2174/1871520622666220317140557

Price: $65

conference banner
Abstract

Global efforts invested in the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off-patent noncancer drugs with known targets into newer indications. The literature review suggests a key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs such as, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs, have come out with interesting outcomes during preclinical and clinical phases. In the present article, a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.

Keywords: Anticancer drugs, multitargeting, Non-cancer drugs, drug repurposing, drug discovery, cancer therapeutics.

Graphical Abstract

[1]
Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M-H.D.B. Drug repositioning and repurposing: terminology and defi-nitions in literature. Drug Discov. Today, 2015, 20(8), 1027-1034.
[http://dx.doi.org/10.1016/j.drudis.2015.05.001] [PMID: 25975957]
[2]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[3]
Masuda, T.; Tsuruda, Y.; Matsumoto, Y.; Uchida, H.; Nakayama, K.I.; Mimori, K. Drug repositioning in cancer: The current situation in Japan. Cancer Res., 2020, 111(4), 1039-1046.
[http://dx.doi.org/10.1111/cas.14318] [PMID: 31957175]
[4]
Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; Papapetropoulos, S.; Grossman, I.; Laifenfeld, D. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol., 2018, 175(2), 168-180.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[5]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25075216]
[6]
Rodriguez, S.; Hug, C.; Todorov, P.; Moret, N.; Boswell, S.A.; Evans, K.; Zhou, G.; Johnson, N.T.; Hyman, B.T.; Sorger, P.K.; Albers, M.W.; Sokolov, A. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat. Commun., 2021, 12(1), 1033.
[http://dx.doi.org/10.1038/s41467-021-21330-0] [PMID: 33589615]
[7]
Roessler, H.I.; Knoers, N.V.A.M.; van Haelst, M.M.; van Haaften, G. Drug repurposing for rare diseases. Trends Pharmacol. Sci., 2021, 42(4), 255-267.
[http://dx.doi.org/10.1016/j.tips.2021.01.003] [PMID: 33563480]
[8]
Mourenza, Á.; Bravo-Santano, N.; Gil, J.; Mateos, L.; Letek, M. Drug repurposing: A quick and easy way of finding new medicines. Front. Young Minds, 2021, 9, 553424.
[http://dx.doi.org/10.3389/frym.2020.553424]
[9]
Patil, V.M.; Gaurav, A.; Garg, P.; Masand, N. Non-cancer to anti-cancer: Investigation of human ether-a-go-go-related gene potassium channel inhibitors as potential therapeutics. J. Egypt. Natl. Canc. Inst., 2021, 33(1), 33.
[PMID: 34746987]
[10]
Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[11]
Hernández-Lemus, E.; Martínez-García, M. Pathway-based drug-repurposing schemes in cancer: The role of translational bioinformatics. Front. Oncol., 2021, 10(10), 605680.
[http://dx.doi.org/10.3389/fonc.2020.605680] [PMID: 33520715]
[12]
Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol., 2019, 16(11), 703-715.
[http://dx.doi.org/10.1038/s41571-019-0252-y] [PMID: 31399699]
[13]
Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C. Artificial intelligence–based breast cancer nodal metastasis detection: Insights into the black box for pathologists. Arch. Pathol. Lab. Med., 2019, 143(7), 859-868.
[http://dx.doi.org/10.5858/arpa.2018-0147-OA] [PMID: 30295070]
[14]
Yurkovich, J.T.; Tian, Q.; Price, N.D.; Hood, L. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat. Rev. Clin. Oncol., 2020, 17(3), 183-194.
[http://dx.doi.org/10.1038/s41571-019-0273-6] [PMID: 31619755]
[15]
Kaissis, G.; Ziegelmayer, S.; Lohöfer, F.; Steiger, K.; Algül, H.; Muckenhuber, A.; Yen, H-Y.; Rummeny, E.; Friess, H.; Schmid, R.; Wei-chert, W.; Siveke, J.T.; Braren, R. A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with dif-ferential response to gemcitabine-based versus FOLFIRINOX chemotherapy. PLoS One, 2019, 14(10), e0218642.
[http://dx.doi.org/10.1371/journal.pone.0218642] [PMID: 31577805]
[16]
Perales-Patón, J.; Di Domenico, T.; Fustero-Torre, C.; Piñeiro-Yáñez, E.; Carretero-Puche, C.; Tejero, H.; Valencia, A.; Gómez-López, G.; Al-Shahrour, F. vulcanSpot: A tool to prioritize therapeutic vulnerabilities in cancer. Bioinformatics, 2019, 35(22), 4846-4848.
[http://dx.doi.org/10.1093/bioinformatics/btz465] [PMID: 31173067]
[17]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[18]
Issa, N.T.; Stathias, V.; Schürer, S.; Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol., 2021, 68, 132-142.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.011] [PMID: 31904426]
[19]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedeo, A. A broad-spectrum integrative design for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35, S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[20]
Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357(6348), eaal2380.
[http://dx.doi.org/10.1126/science.aal2380] [PMID: 28729483]
[21]
Sarmento-Ribeiro, A.B.; Scorilas, A.; Gonçalves, A.C.; Efferth, T.; Trougakos, I.P. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist. Updat., 2019, 47, 100646.
[http://dx.doi.org/10.1016/j.drup.2019.100646] [PMID: 31733611]
[22]
Bhattacharya, B.; Mukherjee, S. Cancer therapy using antibiotics. J. Cancer Ther., 2015, 06, 849-858.
[http://dx.doi.org/10.4236/jct.2015.610093]
[23]
Markowska, A.; Kaysiewicz, J.; Markowska, J. Huczyński, A. Doxycycline, salinomycin, monensin and ivermectin repositioned as can-cer drugs. Bioorg. Med. Chem. Lett., 2019, 29(13), 1549-1554.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.045] [PMID: 31054863]
[24]
Yang, Z.; Liu, S.; Chen, X.; Chen, H.; Huang, M.; Zheng, J. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res., 2000, 60(3), 505-509.
[PMID: 10676625]
[25]
Zhang, L.; Xu, L.; Zhang, F.; Vlashi, E. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle, 2017, 16(8), 737-745.
[http://dx.doi.org/10.1080/15384101.2016.1241929] [PMID: 27753527]
[26]
Son, K.; Fujioka, S.; Iida, T.; Furukawa, K.; Fujita, T.; Yamada, H.; Chiao, P.J.; Yanaga, K. Doxycycline induces apoptosis in PANC-1 pancreatic cancer cells. Anticancer Res., 2009, 29(10), 3995-4003.
[PMID: 19846942]
[27]
Lee, M-J.; Hung, S-H.; Huang, M-C.; Tsai, T.; Chen, C-T. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells. PLoS One, 2017, 12(5), e0178493.
[http://dx.doi.org/10.1371/journal.pone.0178493] [PMID: 28558025]
[28]
Antoszczak, M. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur. J. Med. Chem., 2019, 166, 48-64.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.034] [PMID: 30684870]
[29]
Dewangan, J.; Srivastava, S.; Rath, S.K. Salinomycin: A new paradigm in cancer therapy. Tumour Biol., 2017, 39(3), 1010428317695035.
[http://dx.doi.org/10.1177/1010428317695035] [PMID: 28349817]
[30]
Versini, A.; Saier, L.; Sindikubwabo, F.; Muller, S.; Caneque, T.; Rodriguez, R. Chemical biology of salinomycin. Tetrahedron, 2018, 74, 5585-5614.
[http://dx.doi.org/10.1016/j.tet.2018.07.028]
[31]
Huczyński, A.; Markowska, J.; Ramlau, R.; Sajdak, S.; Szubert, S.; Stencel, K. Salinomycin – a breakthrough in the treatment of ovarian cancer? Curr Gynecol Oncol., 2016, 14, 156-161.
[http://dx.doi.org/10.15557/CGO.2016.0018]
[32]
Markowska, A.; Sajdak, S.; Markowska, J. Huczyński, A. Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Eur. J. Med. Chem., 2017, 142, 87-94.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.030] [PMID: 28651817]
[33]
Parajuli, B.; Lee, H.G.; Kwon, S.H.; Cha, S.D.; Shin, S.J.; Lee, G.H.; Bae, I.; Cho, C.H. Salinomycin inhibits Akt/NF-κB and induces apop-tosis in cisplatin resistant ovarian cancer cells. Cancer Epidemiol., 2013, 37(4), 512-517.
[http://dx.doi.org/10.1016/j.canep.2013.02.008] [PMID: 23545383]
[34]
Parajuli, B.; Shin, S.J.; Kwon, S.H.; Cha, S.D.; Chung, R.; Park, W.J.; Lee, H.G.; Cho, C.H. Salinomycin induces apoptosis via death recep-tor-5 up-regulation in cisplatin-resistant ovarian cancer cells. Anticancer Res., 2013, 33(4), 1457-1462. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23564786
[PMID: 23564786]
[35]
Park, W.H.; Jung, C.W.; Park, J.O.; Kim, K.; Kim, W.S.; Im, Y.H.; Lee, M.H.; Kang, W.K.; Park, K. Monensin inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis. Int. J. Oncol., 2003, 22(4), 855-860.
[http://dx.doi.org/10.3892/ijo.22.4.855] [PMID: 12632079]
[36]
Park, W.H.; Kim, E.S.; Jung, C.W.; Kim, B.K.; Lee, Y.Y. Monensin-mediated growth inhibition of SNU-C1 colon cancer cells via cell cycle arrest and apoptosis. Int. J. Oncol., 2003, 22(2), 377-382.
[http://dx.doi.org/10.3892/ijo.22.2.377] [PMID: 12527937]
[37]
Park, W.H.; Kim, E.S.; Kim, B.K.; Lee, Y.Y. Monensin-mediated growth inhibition in NCI-H929 myeloma cells via cell cycle arrest and apoptosis. Int. J. Oncol., 2003, 23(1), 197-204.
[http://dx.doi.org/10.3892/ijo.23.1.197] [PMID: 12792794]
[38]
Park, W.H.; Lee, M.S.; Park, K.; Kim, E.S.; Kim, B.K.; Lee, Y.Y. Monensin-mediated growth inhibition in acute myelogenous leukemia cells via cell cycle arrest and apoptosis. Int. J. Cancer, 2002, 101(3), 235-242.
[http://dx.doi.org/10.1002/ijc.10592] [PMID: 12209973]
[39]
Park, W.H.; Seol, J.G.; Kim, E.S.; Kang, W.K.; Im, Y.H.; Jung, C.W.; Kim, B.K.; Lee, Y.Y. Monensin-mediated growth inhibition in human lymphoma cells through cell cycle arrest and apoptosis. Br. J. Haematol., 2002, 119(2), 400-407.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03834.x] [PMID: 12406077]
[40]
Choi, H.S.; Jeong, E.H.; Lee, T.G.; Kim, S.Y.; Kim, H.R.; Kim, C.H. Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells. Tuberc. Respir. Dis. (Seoul), 2013, 75(1), 9-17.
[http://dx.doi.org/10.4046/trd.2013.75.1.9] [PMID: 23946753]
[41]
Vanneste, M.; Huang, Q.; Li, M.; Moose, D.; Zhao, L.; Stamnes, M.A.; Schultz, M.; Wu, M.; Henry, M.D. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci. Rep., 2019, 9(1), 1200.
[http://dx.doi.org/10.1038/s41598-018-38019-y] [PMID: 30718715]
[42]
Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res., 2018, 8(2), 317-331.
[PMID: 29511601]
[43]
Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug Ivermectin and related macro-cyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278.
[http://dx.doi.org/10.15252/emmm.201404084] [PMID: 25143352]
[44]
Dominguez-Gomez, G.; Chavez-Blanco, A.; Medina-Franco, J.L.; Saldivar-Gonzalez, F.; Flores-Torrontegui, Y.; Juarez, M.; Díaz-Chávez, J.; Gonzalez-Fierro, A.; Dueñas-González, A. Ivermectin as an inhibitor of cancer stem like cells. Mol. Med. Rep., 2018, 17(2), 3397-3403.
[http://dx.doi.org/10.3892/mmr.2017.8231] [PMID: 29257278]
[45]
Kwon, Y.J.; Petrie, K.; Leibovitch, B.A.; Zeng, L.; Mezei, M.; Howell, L.; Gil, V.; Christova, R.; Bansal, N.; Yang, S.; Sharma, R.; Ariztia, E.V.; Frankum, J.; Brough, R.; Sbirkov, Y.; Ashworth, A.; Lord, C.J.; Zelent, A.; Farias, E.; Zhou, M.M.; Waxman, S. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol. Cancer Ther., 2015, 14(8), 1824-1836.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0980-T] [PMID: 26078298]
[46]
Nambara, S.; Masuda, T.; Nishio, M.; Kuramitsu, S.; Tobo, T.; Ogawa, Y.; Hu, Q.; Iguchi, T.; Kuroda, Y.; Ito, S.; Eguchi, H.; Sugimachi, K.; Saeki, H.; Oki, E.; Maehara, Y.; Suzuki, A.; Mimori, K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8(64), 107666-107677.
[http://dx.doi.org/10.18632/oncotarget.22587] [PMID: 29296196]
[47]
Onoda, T.; Ono, T.; Dhar, D.K.; Yamanoi, A.; Fujii, T.; Nagasue, N. Doxycycline inhibits cell proliferation and invasive potential: combi-nation therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J. Lab. Clin. Med., 2004, 143(4), 207-216.
[http://dx.doi.org/10.1016/j.lab.2003.12.012] [PMID: 15085079]
[48]
Shen, L.C.; Chen, Y.K.; Lin, L.M.; Shaw, S.Y. Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squa-mous-cell carcinoma – in vitro and in vivo studies. Oral Oncol., 2010, 46(3), 178-184.
[PMID: 20036604]
[49]
Ali, I.; Alfarouk, K.O.; Reshkin, S.J.; Ibrahim, M.E. Doxycycline as potential anti-cancer agent. Anticancer. Agents Med. Chem., 2017, 17(12), 1617-1623.
[http://dx.doi.org/10.2174/1871520617666170213111951] [PMID: 28270076]
[50]
Meng, J.; Sun, B.; Zhao, X.; Zhang, D.; Zhao, X.; Gu, Q.; Dong, X.; Zhao, N.; Liu, P.; Liu, Y. Doxycycline as an inhibitor of the epithelial-to-mesenchymal transition and vasculogenic mimicry in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(12), 3107-3122.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1060] [PMID: 25277383]
[51]
Zhong, W.; Chen, S.; Zhang, Q.; Xiao, T.; Qin, Y.; Gu, J.; Sun, B.; Liu, Y.; Jing, X.; Hu, X.; Zhang, P.; Zhou, H.; Sun, T.; Yang, C. Doxycycline directly targets PAR1 to suppress tumor progression. Oncotarget, 2017, 8(10), 16829-16842.
[http://dx.doi.org/10.18632/oncotarget.15166] [PMID: 28187433]
[52]
Antoszczak, M. Huczyński, A. Anticancer activity of polyether ionophore-salinomycin. Anticancer. Agents Med. Chem., 2015, 15(5), 575-591.
[http://dx.doi.org/10.2174/1871520615666150101130209] [PMID: 25553435]
[53]
Huczynski, A. Salinomycin: A new cancer drug candidate. Chem. Biol. Drug Des., 2012, 79(3), 235-238.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01287.x] [PMID: 22145602]
[54]
Antoszczak, M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur. J. Med. Chem., 2019, 164, 366-377.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.057] [PMID: 30611056]
[55]
Huang, X.; Borgström, B.; Stegmayr, J.; Abassi, Y.; Kruszyk, M.; Leffler, H.; Persson, L.; Albinsson, S.; Massoumi, R.; Scheblykin, I.G.; Hegardt, C.; Oredsson, S.; Strand, D. The molecular basis for inhibition of stem like cancer cells by salinomycin. ACS Cent. Sci., 2018, 4(6), 760-767.
[http://dx.doi.org/10.1021/acscentsci.8b00257] [PMID: 29974072]
[56]
Huang, X.; Borgström, B.; Kempengren, S.; Persson, L.; Hegardt, C.; Strand, D.; Oredsson, S. Breast cancer stem cell selectivity of syn-thetic nanomolar-active salinomycin analogs. BMC Cancer, 2016, 16(1), 145.
[http://dx.doi.org/10.1186/s12885-016-2142-3] [PMID: 26906175]
[57]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginesti-er, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[58]
Antoszczak, M.; Popiel, K. Stefańska, J.; Wietrzyk, J.; Maj, E.; Janczak, J.; Michalska, G.; Brzezinski, B.; Huczyński, A. Synthesis, cyto-toxicity and antibacterial activity of new esters of polyether antibiotic - salinomycin. Eur. J. Med. Chem., 2014, 76, 435-444.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.031] [PMID: 24602789]
[59]
Huczyński, A.; Antoszczak, M.; Kleczewska, N.; Lewandowska, M.; Maj, E.; Stefańska, J.; Wietrzyk, J.; Janczak, J.; Celewicz, L. Synthe-sis and biological activity of salinomycin conjugates with floxuridine. Eur. J. Med. Chem., 2015, 93, 33-41.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.045] [PMID: 25644674]
[60]
Huczyński, A.; Ratajczak-Sitarz, M.; Katrusiak, A.; Brzezinski, B. Molecular structure of the 1: 1 inclusion complex of monensin A sodi-um salt with acetonitrile. J. Mol. Struct., 2007, 832, 84-89.
[http://dx.doi.org/10.1016/j.molstruc.2006.07.043]
[61]
Deng, Y.; Zhang, J.; Wang, Z.; Yan, Z.; Qiao, M.; Ye, J.; Wei, Q.; Wang, J.; Wang, X.; Zhao, L.; Lu, S.; Tang, S.; Mohammed, M.K.; Liu, H.; Fan, J.; Zhang, F.; Zou, Y.; Liao, J.; Qi, H.; Haydon, R.C.; Luu, H.H.; He, T.C.; Tang, L. Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells. Sci. Rep., 2015, 5, 17523.
[http://dx.doi.org/10.1038/srep17523] [PMID: 26639992]
[62]
Yoon, M.J.; Kang, Y.J.; Kim, I.Y.; Kim, E.H.; Lee, J.A.; Lim, J.H.; Kwon, T.K.; Choi, K.S. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis, 2013, 34(8), 1918-1928.
[http://dx.doi.org/10.1093/carcin/bgt137] [PMID: 23615398]
[63]
Xu, F.; Zhong, H.; Chang, Y.; Li, D.; Jin, H.; Zhang, M.; Wang, H.; Jiang, C.; Shen, Y.; Huang, Y. Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocompo-sites. Biomaterials, 2018, 158, 56-73.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.018] [PMID: 29304403]
[64]
Wang, X.; Wu, X.; Zhang, Z.; Ma, C.; Wu, T.; Tang, S.; Zeng, Z.; Huang, S.; Gong, C.; Yuan, C.; Zhang, L.; Feng, Y.; Huang, B.; Liu, W.; Zhang, B.; Shen, Y.; Luo, W.; Wang, X.; Liu, B.; Lei, Y.; Ye, Z.; Zhao, L.; Cao, D.; Yang, L.; Chen, X.; Haydon, R.C.; Luu, H.H.; Peng, B.; Liu, X.; He, T.C. Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci. Rep., 2018, 8(1), 17914.
[http://dx.doi.org/10.1038/s41598-018-36214-5] [PMID: 30559409]
[65]
Iljin, K.; Ketola, K.; Vainio, P.; Halonen, P.; Kohonen, P.; Fey, V.; Grafström, R.C.; Perälä, M.; Kallioniemi, O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin. Cancer Res., 2009, 15(19), 6070-6078.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1035] [PMID: 19789329]
[66]
Ketola, K.; Vainio, P.; Fey, V.; Kallioniemi, O.; Iljin, K. Monensin is a potent inducer of oxidative stress and inhibitor of androgen signal-ing leading to apoptosis in prostate cancer cells. Mol. Cancer Ther., 2010, 9(12), 3175-3185.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0368] [PMID: 21159605]
[67]
Campbell, W.C. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr. Pharm. Biotechnol., 2012, 13(6), 853-865.
[http://dx.doi.org/10.2174/138920112800399095] [PMID: 22039784]
[68]
Zemkova, H.; Tvrdonova, V.; Bhattacharya, A.; Jindrichova, M. Allosteric modulation of ligand gated ion channels by ivermectin. Physiol. Res., 2014, 63(Suppl. 1), S215-S224.
[http://dx.doi.org/10.33549/physiolres.932711] [PMID: 24564661]
[69]
Dou, Q.; Chen, H.N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2887] [PMID: 27302166]
[70]
Hashimoto, H.; Messerli, S.M.; Sudo, T.; Maruta, H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov. Ther., 2009, 3(6), 243-246.
[PMID: 22495656]
[71]
Tang, M.; Hu, X.; Wang, Y.; Yao, X.; Zhang, W.; Yu, C.; Cheng, F.; Li, J.; Fang, Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol. Res., 2021, 163, 105207.
[http://dx.doi.org/10.1016/j.phrs.2020.105207] [PMID: 32971268]
[72]
Abdelaleem, M.; Ezzat, H.; Osama, M.; Megahed, A.; Alaa, W.; Gaber, A.; Shafei, A.; Refaat, A. Prospects for repurposing CNS drugs for cancer treatment. Oncol. Rev., 2019, 13(1), 411.
[http://dx.doi.org/10.4081/oncol.2019.411] [PMID: 31044029]
[73]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sul-fonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[74]
Wu, C.H.; Bai, L.Y.; Tsai, M.H.; Chu, P.C.; Chiu, C.F.; Chen, M.Y.; Chiu, S.J.; Chiang, J.H.; Weng, J.R. Pharmacological exploitation of the phenothiazine antipsychotics to develop novel antitumor agents. A drug repurposing strategy. Sci. Rep., 2016, 6, 27540.
[http://dx.doi.org/10.1038/srep27540] [PMID: 27277973]
[75]
Kang, S.; Hong, J.; Lee, J.M.; Moon, H.E.; Jeon, B.; Choi, J.; Yoon, N.A.; Paek, S.H.; Roh, E.J.; Lee, C.J.; Kang, S.S. Trifluoperazine, a well-known antipsychotic, inhibits glioblastoma invasion by binding to calmodulin and disinhibiting calcium release channel IP3R. Mol. Cancer Ther., 2017, 16(1), 217-227.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0169-T] [PMID: 28062709]
[76]
Yeh, C.T.; Wu, A.T.H.; Chang, P.M.H.; Chen, K.Y.; Yang, C.N.; Yang, S.C.; Ho, C.C.; Chen, C.C.; Kuo, Y.L.; Lee, P.Y.; Liu, Y.W.; Yen, C.C.; Hsiao, M.; Lu, P.J.; Lai, J.M.; Wang, L.S.; Wu, C.H.; Chiou, J.F.; Yang, P.C.; Huang, C.Y. Trifluoperazine, an antipsychotic agent, in-hibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am. J. Respir. Crit. Care Med., 2012, 186(11), 1180-1188.
[http://dx.doi.org/10.1164/rccm.201207-1180OC] [PMID: 23024022]
[77]
Pulkoski-Gross, A.; Li, J.; Zheng, C.; Li, Y.; Ouyang, N.; Rigas, B.; Zucker, S.; Cao, J. Repurposing the antipsychotic trifluoperazine as an antimetastasis agent. Mol. Pharmacol., 2015, 87(3), 501-512.
[http://dx.doi.org/10.1124/mol.114.096941] [PMID: 25552486]
[78]
Mapes, J.; Anandan, L.; Li, Q.; Neff, A.; Clevenger, C.V.; Bagchi, I.C.; Bagchi, M.K. Aberrantly high expression of the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) in mammary epithelium leads to breast tumorigenesis. J. Biol. Chem., 2018, 293(8), 2850-2864.
[http://dx.doi.org/10.1074/jbc.RA117.000162] [PMID: 29321207]
[79]
Chen, J.J.; Cai, N.; Chen, G.Z.; Jia, C.C.; Qiu, D.B.; Du, C.; Liu, W.; Yang, Y.; Long, Z.J.; Zhang, Q. The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma. Oncotarget, 2017, 8(11), 17593-17609.
[http://dx.doi.org/10.18632/oncotarget.4307] [PMID: 26061710]
[80]
Ji, M.M.; Wang, L.; Zhan, Q.; Xue, W.; Zhao, Y.; Zhao, X.; Xu, P.P.; Shen, Y.; Liu, H.; Janin, A.; Cheng, S.; Zhao, W.L. Induction of au-tophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation. Autophagy, 2015, 11(12), 2160-2171.
[http://dx.doi.org/10.1080/15548627.2015.1082024] [PMID: 26735433]
[81]
Nelson, E.A.; Walker, S.R.; Xiang, M.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Liu, S.; Kharbanda, S.; Christie, A.L.; Nicolais, M.; Grif-fin, J.D.; Stone, R.M.; Kung, A.L.; Frank, D.A. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations. Genes Cancer, 2012, 3(7-8), 503-511.
[http://dx.doi.org/10.1177/1947601912466555] [PMID: 23264850]
[82]
Chou, Y.W.; Chaturvedi, N.K.; Ouyang, S.; Lin, F.F.; Kaushik, D.; Wang, J.; Kim, I.; Lin, M.F. Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Lett., 2011, 311(2), 177-186.
[http://dx.doi.org/10.1016/j.canlet.2011.07.015] [PMID: 21862211]
[83]
Gan, C.P.; Hamid, S.; Hor, S.Y.; Zain, R.B.; Ismail, S.M.; Wan Mustafa, W.M.; Teo, S.H.; Saunders, N.; Cheong, S.C. Valproic acid: growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck, 2012, 34(3), 344-353.
[http://dx.doi.org/10.1002/hed.21734] [PMID: 21438066]
[84]
Tseng, J.H.; Chen, C.Y.; Chen, P.C.; Hsiao, S.H.; Fan, C.C.; Liang, Y.C.; Chen, C.P. Valproic acid inhibits glioblastoma multiforme cell growth via paraoxonase 2 expression. Oncotarget, 2017, 8(9), 14666-14679.
[http://dx.doi.org/10.18632/oncotarget.14716] [PMID: 28108734]
[85]
Cerna, T.; Hrabeta, J.; Eckschlager, T.; Frei, E.; Schmeiser, H.H.; Arlt, V.M.; Stiborová, M. The histone deacetylase inhibitor valproic acid exerts a synergistic cytotoxicity with the DNA-damaging drug ellipticine in neuroblastoma cells. Int. J. Mol. Sci., 2018, 19(1), 164.
[http://dx.doi.org/10.3390/ijms19010164] [PMID: 29304031]
[86]
Pretreatment with Valproate Prior to Immunotherapy Targeting Cluster of Differentiation Antigen 20 in Chronic Lymphocytic Leukemia NCT02144623, 2015. Available from: https://clinicaltrials.gov/show/
[87]
Mohammed, T.A.; Holen, K.D.; Jaskula-Sztul, R.; Mulkerin, D.; Lubner, S.J.; Schelman, W.R.; Eickhoff, J.; Chen, H.; Loconte, N.K. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist, 2011, 16(6), 835-843.
[http://dx.doi.org/10.1634/theoncologist.2011-0031] [PMID: 21632454]
[88]
Liu, S.; Liang, B.; Jia, H.; Jiao, Y.; Pang, Z.; Huang, Y. Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio, 2017, 7(6), 798-810.
[http://dx.doi.org/10.1002/2211-5463.12223] [PMID: 28593135]
[89]
Saha, S.K.; Yin, Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Choi, H.Y.; Cho, S.G. Valproic acid induces endocytosis-mediated doxorubicin internalization and shows synergistic cytotoxic effects in hepatocellular carcinoma cells. Int. J. Mol. Sci., 2017, 18(5), 1048.
[http://dx.doi.org/10.3390/ijms18051048] [PMID: 28498322]
[90]
Terranova-Barberio, M.; Roca, M.S.; Zotti, A.I.; Leone, A.; Bruzzese, F.; Vitagliano, C.; Scogliamiglio, G.; Russo, D.; D’Angelo, G.; Fran-co, R.; Budillon, A.; Di Gennaro, E. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget, 2016, 7(7), 7715-7731.
[http://dx.doi.org/10.18632/oncotarget.6802] [PMID: 26735339]
[91]
Venkataramani, V.; Rossner, C.; Iffland, L.; Schweyer, S.; Tamboli, I.Y.; Walter, J.; Wirths, O.; Bayer, T.A. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the Alzheimer amyloid precursor protein. J. Biol. Chem., 2010, 285(14), 10678-10689.
[http://dx.doi.org/10.1074/jbc.M109.057836] [PMID: 20145244]
[92]
Munson, J.M.; Fried, L.; Rowson, S.A.; Bonner, M.Y.; Karumbaiah, L.; Diaz, B.; Courtneidge, S.A.; Knaus, U.G.; Brat, D.J.; Arbiser, J.L.; Bellamkonda, R.V. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci. Transl. Med., 2012, 4(127), 127ra36.
[http://dx.doi.org/10.1126/scitranslmed.3003016] [PMID: 22461640]
[93]
Shchors, K.; Massaras, A.; Hanahan, D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell, 2015, 28(4), 456-471.
[http://dx.doi.org/10.1016/j.ccell.2015.08.012] [PMID: 26412325]
[94]
Rajamanickam, S.; Panneerdoss, S.; Gorthi, A.; Timilsina, S.; Onyeagucha, B.; Kovalskyy, D.; Ivanov, D.; Hanes, M.A.; Vadlamudi, R.K.; Chen, Y.; Bishop, A.J.; Arbiser, J.L.; Rao, M.K. Inhibition of FoxM1- mediated DNA repair by imipramine blue suppresses breast cancer growth and metastasis. Clin. Cancer Res., 2016, 22(14), 3524-3536.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2535] [PMID: 26927663]
[95]
Yang, W.H.; Su, Y.H.; Hsu, W.H.; Wang, C.C.; Arbiser, J.L.; Yang, M.H. Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation. Oncogene, 2016, 35(18), 2287-2298.
[http://dx.doi.org/10.1038/onc.2015.291] [PMID: 26257063]
[96]
Klingenberg, M.; Becker, J.; Eberth, S.; Kube, D.; Wilting, J. The NADPH oxidase inhibitor imipramine-blue in the treatment of Burkitt lymphoma. Mol. Cancer Ther., 2014, 13(4), 833-841.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0688] [PMID: 24482381]
[97]
Metts, J.; Bradley, H.L.; Wang, Z.; Shah, N.P.; Kapur, R.; Arbiser, J.L.; Bunting, K.D. Imipramine blue sensitively and selectively targets FLT3-ITD positive acute myeloid leukemia cells. Sci. Rep., 2017, 7(1), 4447.
[http://dx.doi.org/10.1038/s41598-017-04796-1] [PMID: 28667329]
[98]
Laidlaw, K.M.E.; Berhan, S.; Liu, S.; Silvestri, G.; Holyoake, T.L.; Frank, D.A.; Aggarwal, B.; Bonner, M.Y.; Perrotti, D.; Jørgensen, H.G.; Arbiser, J.L. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia. Oncotarget, 2016, 7(32), 51651-51664.
[http://dx.doi.org/10.18632/oncotarget.10541] [PMID: 27438151]
[99]
Serafeim, A.; Holder, M.J.; Grafton, G.; Chamba, A.; Drayson, M.T.; Luong, Q.T.; Bunce, C.M.; Gregory, C.D.; Barnes, N.M.; Gordon, J. Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood, 2003, 101(8), 3212-3219.
[http://dx.doi.org/10.1182/blood-2002-07-2044] [PMID: 12515726]
[100]
Gil-Ad, I.; Zolokov, A.; Lomnitski, L.; Taler, M.; Bar, M.; Luria, D.; Ram, E.; Weizman, A. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol., 2008, 33(2), 277-286.
[PMID: 18636148]
[101]
Liu, F.; Huang, J.; Ning, B.; Liu, Z.; Chen, S.; Zhao, W. Drug discovery via humanderived stem cell organoids. Front. Pharmacol., 2016, 7, 334.
[http://dx.doi.org/10.3389/fphar.2016.00334] [PMID: 27713700]
[102]
Bennani-Baiti, I.M.; Machado, I.; Llombart-Bosch, A.; Kovar, H. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is ex-pressed and is an epigenetic drug target in chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum. Pathol., 2012, 43(8), 1300-1307.
[http://dx.doi.org/10.1016/j.humpath.2011.10.010] [PMID: 22245111]
[103]
Baxter, E.; Windloch, K.; Gannon, F.; Lee, J.S. Epigenetic regulation in cancer progression. Cell Biosci., 2014, 4, 45.
[http://dx.doi.org/10.1186/2045-3701-4-45] [PMID: 25949794]
[104]
Fond, G.; Macgregor, A.; Attal, J.; Larue, A.; Brittner, M.; Ducasse, D.; Capdevielle, D. Antipsychotic drugs: Pro-cancer or anti-cancer? A systematic review. Med. Hypotheses, 2012, 79(1), 38-42.
[http://dx.doi.org/10.1016/j.mehy.2012.03.026] [PMID: 22543071]
[105]
Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J.H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012, 149(6), 1284-1297.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
[106]
Zhelev, Z.; Ohba, H.; Bakalova, R.; Hadjimitova, V.; Ishikawa, M.; Shinohara, Y.; Baba, Y. Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother. Pharmacol., 2004, 53(3), 267-275.
[http://dx.doi.org/10.1007/s00280-003-0738-1] [PMID: 14663628]
[107]
Gil-Ad, I.; Shtaif, B.; Levkovitz, Y.; Dayag, M.; Zeldich, E.; Weizman, A. Characterization of phenothiazine-induced apoptosis in neuro-blastoma and glioma cell lines: Clinical relevance and possible application for brain-derived tumors. J. Mol. Neurosci., 2004, 22(3), 189-198.
[http://dx.doi.org/10.1385/JMN:22:3:189] [PMID: 14997012]
[108]
Zong, D.; Zielinska-Chomej, K.; Juntti, T.; Mörk, B.; Lewensohn, R.; Hååg, P.; Viktorsson, K. Harnessing the lysosome-dependent anti-tumor activity of phenothiazines in human small cell lung cancer. Cell Death Dis., 2014, 5(3), e1111-e1111.
[http://dx.doi.org/10.1038/cddis.2014.56] [PMID: 24625970]
[109]
Wen, Y.; Zhang, Y.; Li, J.; Luo, F.; Huang, Z.; Liu, K. Low concentration trifluoperazine promotes proliferation and reduces calcium-dependent apoptosis in glioma cells. Sci. Rep., 2018, 8(1), 1147.
[http://dx.doi.org/10.1038/s41598-018-19413-y] [PMID: 29348654]
[110]
Bertolesi, G.E.; Shi, C.; Elbaum, L.; Jollimore, C.; Rozenberg, G.; Barnes, S.; Kelly, M.E. The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol. Pharmacol., 2002, 62(2), 210-219.
[http://dx.doi.org/10.1124/mol.62.2.210] [PMID: 12130671]
[111]
Witt, D.; Burfeind, P.; von Hardenberg, S.; Opitz, L.; Salinas-Riester, G.; Bremmer, F.; Schweyer, S.; Thelen, P.; Neesen, J.; Kaulfuss, S. Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2. Carcinogenesis, 2013, 34(5), 1115-1124.
[http://dx.doi.org/10.1093/carcin/bgt019] [PMID: 23349020]
[112]
Tran, L.N.K.; Kichenadasse, G.; Butler, L.M.; Centenera, M.M.; Morel, K.L.; Ormsby, R.J.; Michael, M.Z.; Lower, K.M.; Sykes, P.J. The combination of metformin and valproic acid induces synergistic apoptosis in the presence of p53 and androgen signaling in prostate can-cer. Mol. Cancer Ther., 2017, 16(12), 2689-2700.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0074] [PMID: 28802253]
[113]
Aizawa, S.; Yamamuro, Y. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport, 2015, 26(15), 915-920.
[http://dx.doi.org/10.1097/WNR.0000000000000448] [PMID: 26339990]
[114]
Caponigro, F.; Di Gennaro, E.; Ionna, F.; Longo, F.; Aversa, C.; Pavone, E.; Maglione, M.G.; Di Marzo, M.; Muto, P.; Cavalcanti, E.; Pe-trillo, A.; Sandomenico, F.; Maiolino, P.; D’Aniello, R.; Botti, G.; De Cecio, R.; Losito, N.S.; Scala, S.; Trotta, A.; Zotti, A.I.; Bruzzese, F.; Daponte, A.; Calogero, E.; Montano, M.; Pontone, M.; De Feo, G.; Perri, F.; Budillon, A. Phase II clinical study of valproic acid plus cis-platin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer, 2016, 16(1), 918.
[http://dx.doi.org/10.1186/s12885-016-2957-y] [PMID: 27884140]
[115]
Fu, J.; Shao, C.J.; Chen, F.R.; Ng, H.K.; Chen, Z.P. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-oncol., 2010, 12(4), 328-340.
[http://dx.doi.org/10.1093/neuonc/nop005] [PMID: 20308311]
[116]
Seizure Treatment in Glioma - Full Text View - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT03048084
[117]
Zapotocky, M.; Mejstrikova, E.; Smetana, K.; Stary, J.; Trka, J.; Starkova, J. Valproic acid triggers differentiation and apoptosis in AML1/ETO-positive leukemic cells specifically. Cancer Lett., 2012, 319(2), 144-153.
[http://dx.doi.org/10.1016/j.canlet.2011.12.041] [PMID: 22261333]
[118]
Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma. Clinicaltrials.Gov., 2004. Available from: http://clinicaltrials.gov/show/NCT00079378 Accessed on 31 March 2021.
[119]
Fredly, H.; Ersvær, E.; Kittang, A.O.; Tsykunova, G.; Gjertsen, B.T.; Bruserud, O. The combination of valproic acid, all-trans retinoic acid and low-dose cytarabine as disease-stabilizing treatment in acute myeloid leukemia. Clin. Epigenetics, 2013, 5(1), 13.
[http://dx.doi.org/10.1186/1868-7083-5-13] [PMID: 23915396]
[120]
Li, J.; Bonifati, S.; Hristov, G.; Marttila, T.; Valmary-Degano, S.; Stanzel, S.; Schnölzer, M.; Mougin, C.; Aprahamian, M.; Grekova, S.P.; Raykov, Z.; Rommelaere, J.; Marchini, A. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol. Med., 2013, 5(10), 1537-1555.
[http://dx.doi.org/10.1002/emmm.201302796] [PMID: 24092664]
[121]
Jahchan, N.S.; Dudley, J.T.; Mazur, P.K.; Flores, N.; Yang, D.; Palmerton, A.; Zmoos, A.F.; Vaka, D.; Tran, K.Q.; Zhou, M.; Krasinska, K.; Riess, J.W.; Neal, J.W.; Khatri, P.; Park, K.S.; Butte, A.J.; Sage, J. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov., 2013, 3(12), 1364-1377.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0183] [PMID: 24078773]
[122]
Tzadok, S.; Beery, E.; Israeli, M.; Uziel, O.; Lahav, M.; Fenig, E.; Gil-Ad, I.; Weizman, A.; Nordenberg, J. In vitro novel combinations of psychotropics and anti-cancer modalities in U87 human glioblastoma cells. Int. J. Oncol., 2010, 37(4), 1043-1051.
[PMID: 20811727]
[123]
Huang, J.; Zeng, C.; Xiao, J.; Zhao, D.; Tang, H.; Wu, H.; Chen, J. Association between depression and brain tumor: A systematic review and meta-analysis. Oncotarget, 2017, 8(55), 94932-94943.
[http://dx.doi.org/10.18632/oncotarget.19843] [PMID: 29212279]
[124]
Biber, A.; Durusu, İ.Z.; Özen, C. In vitro anticancer effect of tricyclic antidepressant nortriptyline on multiple myeloma. Turkish J. Biol. = Turk biyoloji dergisi., 2018, 42(5), 414-421.
[http://dx.doi.org/10.3906/biy-1802-11]
[125]
Hamilton, G.; Rath, B. Repurposing of anthelminthics as anticancer drugs. Oncomedicine, 2018, 3, 1-8.
[http://dx.doi.org/10.7150/oncm.20563]
[126]
Martin, R.J. Modes of action of anthelmintic drugs. Vet. J., 1997, 154(1), 11-34.
[http://dx.doi.org/10.1016/S1090-0233(05)80005-X] [PMID: 9265850]
[127]
Hu, Y.; Ellis, B.L.; Yiu, Y.Y.; Miller, M.M.; Urban, J.F.; Shi, L.Z.; Aroian, R.V. An extensive comparison of the effect of anthelmintic classes on diverse nematodes. PLoS One, 2013, 8(7), e70702.
[http://dx.doi.org/10.1371/journal.pone.0070702] [PMID: 23869246]
[128]
Esumi, H.; Lu, J.; Kurashima, Y.; Hanaoka, T. Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methyl-quinolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Sci., 2004, 95(8), 685-690.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03330.x] [PMID: 15298733]
[129]
Mukhopadhyay, T.; Sasaki, J.; Ramesh, R.; Roth, J.A. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res., 2002, 8(9), 2963-2969.
[PMID: 12231542]
[130]
Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics-anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer, 2017, 3(6), 391-406.
[http://dx.doi.org/10.1016/j.trecan.2017.04.008] [PMID: 28670628]
[131]
Doudican, N.; Rodriguez, A.; Osman, I.; Orlow, S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res., 2008, 6(8), 1308-1315.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2159] [PMID: 18667591]
[132]
Pinto, L.C.; Soares, B.M. Pinheiro, Jde.J.; Riggins, G.J.; Assumpção, P.P.; Burbano, R.M.; Montenegro, R.C. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol. In Vitro, 2015, 29(8), 2038-2044.
[http://dx.doi.org/10.1016/j.tiv.2015.08.007] [PMID: 26315676]
[133]
Bodhinayake, I.; Symons, M.; Boockvar, J.A. Repurposing mebendazole for the treatment of medulloblastoma. Neurosurgery, 2015, 76, N15-N15.
[http://dx.doi.org/10.1227/01.neu.0000460594.93803.cb]
[134]
Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982.
[http://dx.doi.org/10.1093/neuonc/nor077] [PMID: 21764822]
[135]
Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Beheshti Zavareh, R.; Fine, N.; Simpson, C.D.; Sharmeen, S.; Rottapel, R.; Schimmer, A.D. The antihelmintic flubendazole inhibits microtubule function through a mech-anism distinct from vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood, 2010, 115(23), 4824-4833.
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394]
[136]
Hou, Z.J.; Luo, X.; Zhang, W.; Peng, F.; Cui, B.; Wu, S.J.; Zheng, F.M.; Xu, J.; Xu, L.Z.; Long, Z.J.; Wang, X.T.; Li, G.H.; Wan, X.Y.; Yang, Y.L.; Liu, Q. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget, 2015, 6(8), 6326-6340.
[http://dx.doi.org/10.18632/oncotarget.3436] [PMID: 25811972]
[137]
Larsen, A.R.; Bai, R.Y.; Chung, J.H.; Borodovsky, A.; Rudin, C.M.; Riggins, G.J.; Bunz, F. Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol. Cancer Ther., 2015, 14(1), 3-13.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0755-T] [PMID: 25376612]
[138]
Zhang, F.; Li, Y.; Zhang, H.; Huang, E.; Gao, L.; Luo, W.; Wei, Q.; Fan, J.; Song, D.; Liao, J.; Zou, Y.; Liu, F.; Liu, J.; Huang, J.; Guo, D.; Ma, C.; Hu, X.; Li, L.; Qu, X.; Chen, L.; Yu, X.; Zhang, Z.; Wu, T.; Luu, H.H.; Haydon, R.C.; Song, J.; He, T.C.; Ji, P. Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC). Oncotarget, 2017, 8(8), 12968-12982.
[http://dx.doi.org/10.18632/oncotarget.14673] [PMID: 28099902]
[139]
Simbulan-Rosenthal, C.M.; Dakshanamurthy, S.; Gaur, A.; Chen, Y.S.; Fang, H.B.; Abdussamad, M.; Zhou, H.; Zapas, J.; Calvert, V.; Petricoin, E.F.; Atkins, M.B.; Byers, S.W.; Rosenthal, D.S. The repurposed anthelmintic mebendazole in combination with trametinib sup-presses refractory NRASQ61K melanoma. Oncotarget, 2017, 8(8), 12576-12595.
[http://dx.doi.org/10.18632/oncotarget.14990] [PMID: 28157711]
[140]
Tan, Z.; Chen, L.; Zhang, S. Comprehensive modeling and discovery of mebendazole as a novel TRAF2- and NCK-interacting kinase inhibitor. Sci. Rep., 2016, 6, 33534.
[http://dx.doi.org/10.1038/srep33534] [PMID: 27650168]
[141]
Williamson, T.; Bai, R.Y.; Staedtke, V.; Huso, D.; Riggins, G.J. Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget, 2016, 7(42), 68571-68584.
[http://dx.doi.org/10.18632/oncotarget.11851] [PMID: 27612418]
[142]
Liu, J.; Chen, X.; Ward, T.; Pegram, M.; Shen, K. Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumour Biol., 2016, 37(7), 9825-9835.
[http://dx.doi.org/10.1007/s13277-015-4650-1] [PMID: 26810188]
[143]
Di Santo, N.; Ehrisman, J. A functional perspective of nitazoxanide as a potential anticancer drug. Mutat. Res., 2014, 768, 16-21.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.05.005] [PMID: 25847384]
[144]
Weng, S.; Zhou, L.; Deng, Q.; Wang, J.; Yu, Y.; Zhu, J.; Yuan, Y. Niclosamide induced cell apoptosis via upregulation of ATF3 and activa-tion of PERK in Hepatocellular carcinoma cells. BMC Gastroenterol., 2016, 16, 25.
[http://dx.doi.org/10.1186/s12876-016-0442-3] [PMID: 26917416]
[145]
Wieland, A.; Trageser, D.; Gogolok, S.; Reinartz, R.; Höfer, H.; Keller, M.; Leinhaas, A.; Schelle, R.; Normann, S.; Klaas, L.; Waha, A.; Koch, P.; Fimmers, R.; Pietsch, T.; Yachnis, A.T.; Pincus, D.W.; Steindler, D.A.; Brüstle, O.; Simon, M.; Glas, M.; Scheffler, B. Anticancer effects of niclosamide in human glioblastoma. Clin. Cancer Res., 2013, 19(15), 4124-4136.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2895] [PMID: 23908450]
[146]
Jin, Y.; Lu, Z.; Ding, K.; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res., 2010, 70(6), 2516-2527.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3950] [PMID: 20215516]
[147]
Lee, S.L.; Son, A.R.; Ahn, J.; Song, J.Y. Niclosamide enhances ROS-mediated cell death through c-Jun activation. Biomed. Pharmacother., 2014, 68(5), 619-624.
[http://dx.doi.org/10.1016/j.biopha.2014.03.018] [PMID: 24750999]
[148]
Liu, C.; Lou, W.; Armstrong, C.; Zhu, Y.; Evans, C.P.; Gao, A.C. Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. Prostate, 2015, 75(13), 1341-1353.
[http://dx.doi.org/10.1002/pros.23015] [PMID: 25970160]
[149]
Chen, L.; Wang, L.; Shen, H.; Lin, H.; Li, D. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem. Biophys. Res. Commun., 2017, 484(2), 416-421.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.140] [PMID: 28137584]
[150]
Satoh, K.; Zhang, L.; Zhang, Y.; Chelluri, R.; Boufraqech, M.; Nilubol, N.; Patel, D.; Shen, M.; Kebebew, E. Identification of niclosamide as a novel anticancer agent for adrenocortical carcinoma. Clin. Cancer Res., 2016, 22(14), 3458-3466.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2256] [PMID: 26873959]
[151]
Wang, Y.C.; Chao, T.K.; Chang, C.C.; Yo, Y.T.; Yu, M.H.; Lai, H.C. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One, 2013, 8(9), e74538.
[http://dx.doi.org/10.1371/journal.pone.0074538] [PMID: 24058587]
[152]
Lin, C.K.; Bai, M.Y.; Hu, T.M.; Wang, Y.C.; Chao, T.K.; Weng, S.J.; Huang, R.L.; Su, P.H.; Lai, H.C. Preclinical evaluation of a nanofor-mulated antihelminthic, niclosamide, in ovarian cancer. Oncotarget, 2016, 7(8), 8993-9006.
[http://dx.doi.org/10.18632/oncotarget.7113] [PMID: 26848771]
[153]
Yo, Y.T.; Lin, Y.W.; Wang, Y.C.; Balch, C.; Huang, R.L.; Chan, M.W.; Sytwu, H.K.; Chen, C.K.; Chang, C.C.; Nephew, K.P.; Huang, T.; Yu, M.H.; Lai, H.C. Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol. Cancer Ther., 2012, 11(8), 1703-1712.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0002] [PMID: 22576131]
[154]
Arend, R.C.; Londoño-Joshi, A.I.; Samant, R.S.; Li, Y.; Conner, M.; Hidalgo, B.; Alvarez, R.D.; Landen, C.N.; Straughn, J.M.; Buchsbaum, D.J. Inhibition of Wnt/β-catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecol. Oncol., 2014, 134(1), 112-120.
[http://dx.doi.org/10.1016/j.ygyno.2014.04.005] [PMID: 24736023]
[155]
Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.K.; Landen, C.N.; Yang, E.S.; Hidal-go, B.; Alvarez, R.D.; Straughn, J.M.; Forero, A.; Buchsbaum, D.J. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget, 2016, 7(52), 86803-86815.
[http://dx.doi.org/10.18632/oncotarget.13466] [PMID: 27888804]
[156]
Li, Y.; Li, P.K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted therapy of cancer by niclosamide: A new appli-cation for an old drug. Cancer Lett., 2014, 349(1), 8-14.
[http://dx.doi.org/10.1016/j.canlet.2014.04.003] [PMID: 24732808]
[157]
Pan, J.X.; Ding, K.; Wang, C.Y. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin. J. Cancer, 2012, 31(4), 178-184.
[http://dx.doi.org/10.5732/cjc.011.10290] [PMID: 22237038]
[158]
Carrella, D.; Manni, I.; Tumaini, B.; Dattilo, R.; Papaccio, F.; Mutarelli, M.; Sirci, F.; Amoreo, C.A.; Mottolese, M.; Iezzi, M.; Ciolli, L.; Aria, V.; Bosotti, R.; Isacchi, A.; Loreni, F.; Bardelli, A.; Avvedimento, V.E.; di Bernardo, D.; Cardone, L. Computational drugs reposi-tioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds. Oncotarget, 2016, 7(37), 58743-58758.
[http://dx.doi.org/10.18632/oncotarget.11318] [PMID: 27542212]
[159]
Ahn, S.Y.; Kim, N.H.; Lee, K.; Cha, Y.H.; Yang, J.H.; Cha, S.Y.; Cho, E.S.; Lee, Y.; Cha, J.S.; Cho, H.S.; Jeon, Y.; Yuk, Y.S.; Cho, S.; No, K.T.; Kim, H.S.; Lee, H.; Choi, J.; Yook, J.I. Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting Ax-in-GSK3 interaction. Oncotarget, 2017, 8(19), 31842-31855.
[http://dx.doi.org/10.18632/oncotarget.16252] [PMID: 28418862]
[160]
Shi, L.; Zheng, H.; Hu, W.; Zhou, B.; Dai, X.; Zhang, Y.; Liu, Z.; Wu, X.; Zhao, C.; Liang, G. Niclosamide inhibition of STAT3 synergizes with erlotinib in human colon cancer. OncoTargets Ther., 2017, 10, 1767-1776.
[http://dx.doi.org/10.2147/OTT.S129449] [PMID: 28367059]
[161]
Ouelaa-Benslama, R.; Emami, S. Pinworm and TNKS inhibitors, an eccentric duo to derail the oncogenic WNT pathway. Clin. Res. Hepatol. Gastroenterol., 2011, 35(8-9), 534-538.
[http://dx.doi.org/10.1016/j.clinre.2011.03.015] [PMID: 21782548]
[162]
Wiegering, A.; Uthe, F.W.; Hüttenrauch, M.; Mühling, B.; Linnebacher, M.; Krummenast, F.; Germer, C.T.; Thalheimer, A.; Otto, C. The impact of pyrvinium pamoate on colon cancer cell viability. Int. J. Colorectal Dis., 2014, 29(10), 1189-1198.
[http://dx.doi.org/10.1007/s00384-014-1975-y] [PMID: 25060218]
[163]
Xu, W.; Lacerda, L.; Debeb, B.G.; Atkinson, R.L.; Solley, T.N.; Li, L.; Orton, D.; McMurray, J.S.; Hang, B.I.; Lee, E.; Klopp, A.H.; Ueno, N.T.; Reuben, J.M.; Krishnamurthy, S.; Woodward, W.A. The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer. PLoS One, 2013, 8(8), e71508.
[http://dx.doi.org/10.1371/journal.pone.0071508] [PMID: 24013655]
[164]
Xiao, M.; Zhang, L.; Zhou, Y.; Rajoria, P.; Wang, C.; Si, J.Q.; Li, L. Pyrvinium selectively induces apoptosis of lymphoma cells through impairing mitochondrial functions and JAK2/STAT5. Biochem. Biophys. Res. Commun., 2016, 469(3), 716-722.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.059] [PMID: 26707639]
[165]
Li, B.; Flaveny, C.A.; Giambelli, C.; Fei, D.L.; Han, L.; Hang, B.I.; Bai, F.; Pei, X.H.; Nose, V.; Burlingame, O.; Capobianco, A.J.; Orton, D.; Lee, E.; Robbins, D.J. Repurposing the FDA-approved pinworm drug pyrvinium as a novel chemotherapeutic agent for intestinal poly-posis. PLoS One, 2014, 9(7), e101969.
[http://dx.doi.org/10.1371/journal.pone.0101969] [PMID: 25003333]
[166]
Zhang, C.; Zhang, Z.; Zhang, S.; Wang, W.; Hu, P. Targeting of Wnt/β-catenin by anthelmintic drug pyrvinium enhances sensitivity of ovarian cancer cells to chemotherapy. Med. Sci. Monit., 2017, 23, 266-275.
[http://dx.doi.org/10.12659/MSM.901667] [PMID: 28090074]
[167]
Xu, L.; Zhang, L.; Hu, C.; Liang, S.; Fei, X.; Yan, N.; Zhang, Y.; Zhang, F. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int. J. Oncol., 2016, 48(3), 1175-1186.
[http://dx.doi.org/10.3892/ijo.2016.3337] [PMID: 26781188]
[168]
Zhang, X.; Lou, Y.; Zheng, X.; Wang, H.; Sun, J.; Dong, Q.; Han, B. Wnt blockers inhibit the proliferation of lung cancer stem cells. Drug Des. Devel. Ther., 2015, 9, 2399-2407.
[PMID: 25960639]
[169]
Li, B.; Fei, D.L.; Flaveny, C.A.; Dahmane, N.; Baubet, V.; Wang, Z.; Bai, F.; Pei, X.H.; Rodriguez-Blanco, J.; Hang, B.; Orton, D.; Han, L.; Wang, B.; Capobianco, A.J.; Lee, E.; Robbins, D.J. Pyrvinium attenuates Hedgehog signaling downstream of smoothened. Cancer Res., 2014, 74(17), 4811-4821.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0317] [PMID: 24994715]
[170]
Xiang, W.; Cheong, J.K.; Ang, S.H.; Teo, B.; Xu, P.; Asari, K.; Sun, W.T.; Than, H.; Bunte, R.M.; Virshup, D.M.; Chuah, C. Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget, 2015, 6(32), 33769-33780.
[http://dx.doi.org/10.18632/oncotarget.5615] [PMID: 26378050]
[171]
Venugopal, C.; Hallett, R.; Vora, P.; Manoranjan, B.; Mahendram, S.; Qazi, M.A.; McFarlane, N.; Subapanditha, M.; Nolte, S.M.; Singh, M.; Bakhshinyan, D.; Garg, N.; Vijayakumar, T.; Lach, B.; Provias, J.P.; Reddy, K.; Murty, N.K.; Doble, B.W.; Bhatia, M.; Hassell, J.A.; Singh, S.K. Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clin. Cancer Res., 2015, 21(23), 5324-5337.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3147] [PMID: 26152745]
[172]
Deng, L.; Lei, Y.; Liu, R.; Li, J.; Yuan, K.; Li, Y.; Chen, Y.; Liu, Y.; Lu, Y.; Edwards, C.K., III; Huang, C.; Wei, Y. Pyrvinium targets au-tophagy addiction to promote cancer cell death. Cell Death Dis., 2013, 4, e614.
[http://dx.doi.org/10.1038/cddis.2013.142] [PMID: 23640456]
[173]
Yu, D.H.; Macdonald, J.; Liu, G.; Lee, A.S.; Ly, M.; Davis, T.; Ke, N.; Zhou, D.; Wong-Staal, F.; Li, Q.X. Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy. PLoS One, 2008, 3(12), e3951.
[http://dx.doi.org/10.1371/journal.pone.0003951] [PMID: 19079611]
[174]
Luder, P.J.; Siffert, B.; Witassek, F.; Meister, F.; Bircher, J. Treatment of hydatid disease with high oral doses of mebendazole. Long-term follow-up of plasma mebendazole levels and drug interactions. Eur. J. Clin. Pharmacol., 1986, 31(4), 443-448.
[http://dx.doi.org/10.1007/BF00613522] [PMID: 3816925]
[175]
Martarelli, D.; Pompei, P.; Baldi, C.; Mazzoni, G. Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice. Cancer Chemother. Pharmacol., 2008, 61(5), 809-817.
[http://dx.doi.org/10.1007/s00280-007-0538-0] [PMID: 17581752]
[176]
Sasaki, J.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.A.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther., 2002, 1(13), 1201-1209.
[PMID: 12479701]
[177]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)-mebendazole as an anti-cancer agent. Ecancermedicalscience, 2014, 8, 443.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25075217]
[178]
Rajamuthiah, R.; Fuchs, B.B.; Conery, A.L.; Kim, W.; Jayamani, E.; Kwon, B.; Ausubel, F.M.; Mylonakis, E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One, 2015, 10(4), e0124595.
[http://dx.doi.org/10.1371/journal.pone.0124595] [PMID: 25897961]
[179]
Liao, Z.; Nan, G.; Yan, Z.; Zeng, L.; Deng, Y.; Ye, J.; Zhang, Z.; Qiao, M.; Li, R.; Denduluri, S.; Wang, J.; Wei, Q.; Geng, N.; Zhao, L.; Lu, S.; Wang, X.; Zhou, G.; Luu, H.H.; Haydon, R.C.; He, T.C.; Wang, Z. The anthelmintic drug niclosamide inhibits the proliferative activity of human osteosarcoma cells by targeting multiple signal pathways. Curr. Cancer Drug Targets, 2015, 15(8), 726-738.
[http://dx.doi.org/10.2174/1568009615666150629132157] [PMID: 26118906]
[180]
Huang, M.; Qiu, Q.; Zeng, S.; Xiao, Y.; Shi, M.; Zou, Y.; Ye, Y.; Liang, L.; Yang, X.; Xu, H. Niclosamide inhibits the inflammatory and angiogenic activation of human umbilical vein endothelial cells. Inflamm. Res., 2015, 64(12), 1023-1032.
[http://dx.doi.org/10.1007/s00011-015-0888-8] [PMID: 26499405]
[181]
Murakoshi, M.; Saiki, K.; Urayama, K.; Sato, T.N. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction. PLoS One, 2013, 8(11), e79374.
[http://dx.doi.org/10.1371/journal.pone.0079374] [PMID: 24223934]
[182]
Lamb, R.; Ozsvari, B.; Lisanti, C.L.; Tanowitz, H.B.; Howell, A.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Antibiotics that tar-get mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget, 2015, 6(7), 4569-4584.
[http://dx.doi.org/10.18632/oncotarget.3174] [PMID: 25625193]
[183]
Ishii, I.; Harada, Y.; Kasahara, T. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front. Oncol., 2012, 2, 137.
[http://dx.doi.org/10.3389/fonc.2012.00137] [PMID: 23061049]
[184]
Tomitsuka, E.; Kita, K.; Esumi, H. An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system-a unique mito-chondrial energy metabolism in tumour microenvironments. J. Biochem., 2012, 152(2), 171-183.
[http://dx.doi.org/10.1093/jb/mvs041] [PMID: 22528668]
[185]
Harada, Y.; Ishii, I.; Hatake, K.; Kasahara, T. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Lett., 2012, 319(1), 83-88.
[http://dx.doi.org/10.1016/j.canlet.2011.12.034] [PMID: 22210382]
[186]
Dattilp, R.; Mottini, C.; Camera, E.; Lamolinara, A.; Auslander, N.; Doglioni, G.; Muscolini, M.; Tang, W.; Planque, M.; Ercolani, C.; Buglioni, S.; Manni, I.; Trisciuoglio, D.; Boe, A.; Grande, S.; Luciani, A.M.; Lezzi, M.; Ciliberto, G.; Ambs, S.; Maria, R.D.; Fendt, S.-M.; Ruppin, E.; Cardone, L. Pyrvinium pamoate induces death of triple-negative breast cancer stem-like cells and reduces metastases through effects on lipid anabolism. Cancer Research, canres., 2020, 1184.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1184]
[187]
De Witt, M.; Gamble, A.; Hanson, D.; Markowitz, D.; Powell, C.; Al Dimassi, S.; Atlas, M.; Boockvar, J.; Ruggieri, R.; Symons, M. Repur-posing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol. Med., 2017, 23, 50-56.
[http://dx.doi.org/10.2119/molmed.2017.00011] [PMID: 28386621]
[188]
Lim, M.; Otto-Duessel, M.; He, M.; Su, L.; Nguyen, D.; Chin, E.; Alliston, T.; Jones, J.O. Ligand-independent and tissue-selective andro-gen receptor inhibition by pyrvinium. ACS Chem. Biol., 2014, 9(3), 692-702.
[http://dx.doi.org/10.1021/cb400759d] [PMID: 24354286]
[189]
Li, Z.; Li, Q.; Wu, J.; Wang, M.; Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: What else do we need to do? Molecules, 2016, 21(10), 1331.
[http://dx.doi.org/10.3390/molecules21101331] [PMID: 27739410]
[190]
Kong, R.; Jia, G.; Cheng, Z.X.; Wang, Y.W.; Mu, M.; Wang, S.J.; Pan, S.H.; Gao, Y.; Jiang, H.C.; Dong, D.L.; Sun, B. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5. PLoS One, 2012, 7(5), e37222.
[http://dx.doi.org/10.1371/journal.pone.0037222] [PMID: 22666346]
[191]
Berdelle, N.; Nikolova, T.; Quiros, S.; Efferth, T.; Kaina, B. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol. Cancer Ther., 2011, 10(12), 2224-2233.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0534] [PMID: 21998290]
[192]
Mercer, A.E.; Copple, I.M.; Maggs, J.L.; O’Neill, P.M.; Park, B.K. The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J. Biol. Chem., 2011, 286(2), 987-996.
[http://dx.doi.org/10.1074/jbc.M110.144188] [PMID: 21059641]
[193]
Efferth, T. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr. Drug Targets, 2006, 7(4), 407-421.
[http://dx.doi.org/10.2174/138945006776359412] [PMID: 16611029]
[194]
Nakase, I.; Gallis, B.; Takatani-Nakase, T.; Oh, S.; Lacoste, E.; Singh, N.P.; Goodlett, D.R.; Tanaka, S.; Futaki, S.; Lai, H.; Sasaki, T. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett., 2009, 274(2), 290-298.
[http://dx.doi.org/10.1016/j.canlet.2008.09.023] [PMID: 19006645]
[195]
Lu, J.J.; Meng, L.H.; Cai, Y.J.; Chen, Q.; Tong, L.J.; Lin, L.P.; Ding, J. Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol. Ther., 2008, 7(7), 1017-1023.
[http://dx.doi.org/10.4161/cbt.7.7.6035] [PMID: 18414062]
[196]
Jiang, Z.; Chai, J.; Chuang, H.H.; Li, S.; Wang, T.; Cheng, Y.; Chen, W.; Zhou, D. Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells. Anticancer Drugs, 2012, 23(6), 606-613.
[http://dx.doi.org/10.1097/CAD.0b013e328350e8ac] [PMID: 22421370]
[197]
Chen, G.; Gong, R.; Shi, X.; Yang, D.; Zhang, G.; Lu, A.; Yue, J.; Bian, Z. Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1. Oncotarget, 2016, 7(31), 50302-50314.
[http://dx.doi.org/10.18632/oncotarget.10367] [PMID: 27385212]
[198]
Wang, S.J.; Gao, Y.; Chen, H.; Kong, R.; Jiang, H.C.; Pan, S.H.; Xue, D.B.; Bai, X.W.; Sun, B. Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett., 2010, 293(1), 99-108.
[http://dx.doi.org/10.1016/j.canlet.2010.01.001] [PMID: 20137856]
[199]
Ji, Y.; Zhang, Y.C.; Pei, L.B.; Shi, L.L.; Yan, J.L.; Ma, X.H. Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol. Cell. Biochem., 2011, 351(1-2), 99-108.
[http://dx.doi.org/10.1007/s11010-011-0716-6] [PMID: 21234653]
[200]
Holien, T.; Olsen, O.E.; Misund, K.; Hella, H.; Waage, A.; Rø, T.B.; Sundan, A. Lymphoma and myeloma cells are highly sensitive to growth arrest and apoptosis induced by artesunate. Eur. J. Haematol., 2013, 91(4), 339-346.
[http://dx.doi.org/10.1111/ejh.12176] [PMID: 23869695]
[201]
Jiao, Y.; Ge, C.M.; Meng, Q.H.; Cao, J.P.; Tong, J.; Fan, S.J. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol. Sin., 2007, 28(7), 1045-1056.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00612.x] [PMID: 17588342]
[202]
Chen, H.; Sun, B.; Wang, S.; Pan, S.; Gao, Y.; Bai, X.; Xue, D. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. J. Cancer Res. Clin. Oncol., 2010, 136(6), 897-903.
[http://dx.doi.org/10.1007/s00432-009-0731-0] [PMID: 19941148]
[203]
Jia, G.; Kong, R.; Ma, Z.B.; Han, B.; Wang, Y.W.; Pan, S.H.; Li, Y.H.; Sun, B. The activation of c-Jun NH₂-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2014, 33, 8.
[http://dx.doi.org/10.1186/1756-9966-33-8] [PMID: 24438216]
[204]
Njokah, M.J.; Kang’ethe, J.N.; Kinyua, J.; Kariuki, D.; Kimani, F.T. In vitro selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemisinin. Malar. J., 2016, 15(1), 381.
[http://dx.doi.org/10.1186/s12936-016-1443-y] [PMID: 27449110]
[205]
Wang, S.J.; Sun, B.; Cheng, Z.X.; Zhou, H.X.; Gao, Y.; Kong, R.; Chen, H.; Jiang, H.C.; Pan, S.H.; Xue, D.B.; Bai, X.W. Dihydroartemis-inin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother. Pharmacol., 2011, 68(6), 1421-1430.
[http://dx.doi.org/10.1007/s00280-011-1643-7] [PMID: 21479633]
[206]
Dong, F.; Zhou, X.; Li, C.; Yan, S.; Deng, X.; Cao, Z.; Li, L.; Tang, B.; Allen, T.D.; Liu, J. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol. Ther., 2014, 15(11), 1479-1488.
[http://dx.doi.org/10.4161/15384047.2014.955728] [PMID: 25482945]
[207]
Guo, L.; Dong, F.; Hou, Y.; Cai, W.; Zhou, X.; Huang, A.L.; Yang, M.; Allen, T.D.; Liu, J. Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway. Exp. Ther. Med., 2014, 8(6), 1707-1712.
[http://dx.doi.org/10.3892/etm.2014.1997] [PMID: 25371719]
[208]
Saeed, M.E.; Kadioglu, O.; Seo, E.J.; Greten, H.J.; Brenk, R.; Efferth, T. Quantitative structure-activity relationship and molecular docking of artemisinin derivatives to vascular endothelial growth factor receptor 1. Anticancer Res., 2015, 35(4), 1929-1934.
[PMID: 25862844]
[209]
Konkimalla, V.B.; McCubrey, J.A.; Efferth, T. The role of downstream signaling pathways of the epidermal growth factor receptor for Artesunate’s activity in cancer cells. Curr. Cancer Drug Targets, 2009, 9(1), 72-80.
[http://dx.doi.org/10.2174/156800909787314020] [PMID: 19200051]
[210]
Ma, H.; Yao, Q.; Zhang, A.M.; Lin, S.; Wang, X.X.; Wu, L.; Sun, J.G.; Chen, Z.T. The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules, 2011, 16(12), 10556-10569.
[http://dx.doi.org/10.3390/molecules161210556] [PMID: 22183882]
[211]
Li, L.N.; Zhang, H.D.; Yuan, S.J.; Yang, D.X.; Wang, L.; Sun, Z.X. Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of β-catenin and E-cadherin. Eur. J. Pharmacol., 2008, 588(1), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.041] [PMID: 18448095]
[212]
Ishida, J.; Konishi, M.; Ebner, N.; Springer, J. Repurposing of approved cardiovascular drugs. J. Transl. Med., 2016, 14, 269.
[http://dx.doi.org/10.1186/s12967-016-1031-5] [PMID: 27646033]
[213]
Goldfarb, D.A.; Diz, D.I.; Tubbs, R.R.; Ferrario, C.M.; Novick, A.C. Angiotensin II receptor subtypes in the human renal cortex and renal cell carcinoma. J. Urol., 1994, 151(1), 208-213.
[http://dx.doi.org/10.1016/S0022-5347(17)34918-2] [PMID: 8254815]
[214]
Marsigliante, S.; Resta, L.; Muscella, A.; Vinson, G.P.; Marzullo, A.; Storelli, C. AT1 angiotensin II receptor subtype in the human larynx and squamous laryngeal carcinoma. Cancer Lett., 1996, 110(1-2), 19-27.
[http://dx.doi.org/10.1016/S0304-3835(96)04449-7] [PMID: 9018076]
[215]
Fujimoto, Y.; Sasaki, T.; Tsuchida, A.; Chayama, K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett., 2001, 495(3), 197-200.
[http://dx.doi.org/10.1016/S0014-5793(01)02377-8] [PMID: 11334891]
[216]
Suganuma, T.; Ino, K.; Shibata, K.; Kajiyama, H.; Nagasaka, T.; Mizutani, S.; Kikkawa, F. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peri-toneal dissemination. Clin. Cancer Res., 2005, 11(7), 2686-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1946] [PMID: 15814650]
[217]
Herr, D.; Rodewald, M.; Fraser, H.M.; Hack, G.; Konrad, R.; Kreienberg, R.; Wulff, C. Potential role of renin-angiotensin-system for tumor angiogenesis in receptor negative breast cancer. Gynecol. Oncol., 2008, 109(3), 418-425.
[http://dx.doi.org/10.1016/j.ygyno.2008.02.019] [PMID: 18395779]
[218]
Otake, A.H.; Mattar, A.L.; Freitas, H.C.; Machado, C.M.; Nonogaki, S.; Fujihara, C.K.; Zatz, R.; Chammas, R. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother. Pharmacol., 2010, 66(1), 79-87.
[http://dx.doi.org/10.1007/s00280-009-1136-0] [PMID: 19771429]
[219]
Okamoto, K.; Tajima, H.; Ohta, T.; Nakanuma, S.; Hayashi, H.; Nakagawara, H.; Onishi, I.; Takamura, H.; Ninomiya, I.; Kitagawa, H.; Fushida, S.; Tani, T.; Fujimura, T.; Kayahara, M.; Harada, S.; Wakayama, T.; Iseki, S. Angiotensin II induces tumor progression and fi-brosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Int. J. Oncol., 2010, 37(5), 1251-1259.
[http://dx.doi.org/10.3892/ijo_00000776] [PMID: 20878072]
[220]
Anandanadesan, R.; Gong, Q.; Chipitsyna, G.; Witkiewicz, A.; Yeo, C.J.; Arafat, H.A. Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J. Gastrointest. Surg., 2008, 12(1), 57-66.
[http://dx.doi.org/10.1007/s11605-007-0403-9] [PMID: 18026817]
[221]
Gupta, S.P.; Sharma, A.; Patil, V.M. Molecular processes exploited as drug targets for cancer chemotherapy. Anticancer. Agents Med. Chem., 2021, 21(13), 1638-1649.
[http://dx.doi.org/10.2174/1871520620999201117111139] [PMID: 33208079]
[222]
Yasumatsu, R.; Nakashima, T.; Masuda, M.; Ito, A.; Kuratomi, Y.; Nakagawa, T.; Komune, S. Effects of the angiotensin-I converting en-zyme inhibitor perindopril on tumor growth and angiogenesis in head and neck squamous cell carcinoma cells. J. Cancer Res. Clin. Oncol., 2004, 130(10), 567-573.
[http://dx.doi.org/10.1007/s00432-004-0582-7] [PMID: 15449186]
[223]
Shiratori, O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: In vitro and in vivo studies. Gann, 1967, 58(6), 521-528.
[PMID: 5589524]
[224]
Avila, J.; Lecuona, E.; Morales, M.; Soriano, A.; Alonso, T.; Martín-Vasallo, P. Opposite expression pattern of the human Na,K-ATPase β 1 isoform in stomach and colon adenocarcinomas. Ann. N. Y. Acad. Sci., 1997, 834, 653-655.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb52341.x] [PMID: 9405883]
[225]
Espineda, C.; Seligson, D.B.; James Ball, W., Jr; Rao, J.; Palotie, A.; Horvath, S.; Huang, Y.; Shi, T.; Rajasekaran, A.K. Analysis of the Na,K-ATPase α- and β-subunit expression profiles of bladder cancer using tissue microarrays. Cancer, 2003, 97(8), 1859-1868.
[http://dx.doi.org/10.1002/cncr.11267] [PMID: 12673711]
[226]
Rajasekaran, S.A.; Ball, W.J., Jr; Bander, N.H.; Liu, H.; Pardee, J.D.; Rajasekaran, A.K. Reduced expression of beta-subunit of Na,K-ATPase in human clear-cell renal cell carcinoma. J. Urol., 1999, 162(2), 574-580.
[http://dx.doi.org/10.1016/S0022-5347(05)68629-6] [PMID: 10411090]
[227]
Kawazoe, N.; Aiuchi, T.; Masuda, Y.; Nakajo, S.; Nakaya, K. Induction of apoptosis by bufalin in human tumor cells is associated with a change of intracellular concentration of Na+ ions. J. Biochem., 1999, 126(2), 278-286.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022446] [PMID: 10423518]
[228]
Raghavendra, P.B.; Sreenivasan, Y.; Ramesh, G.T.; Manna, S.K. Cardiac glycoside induces cell death via FasL by activating calcineurin and NF-AT, but apoptosis initially proceeds through activation of caspases. Apoptosis, 2007, 12(2), 307-318.
[http://dx.doi.org/10.1007/s10495-006-0626-3] [PMID: 17203245]
[229]
Manna, S.K.; Sah, N.K.; Newman, R.A.; Cisneros, A.; Aggarwal, B.B. Oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res., 2000, 60(14), 3838-3847.
[PMID: 10919658]
[230]
Bielawski, K.; Winnicka, K.; Bielawska, A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull., 2006, 29(7), 1493-1497.
[http://dx.doi.org/10.1248/bpb.29.1493] [PMID: 16819197]
[231]
Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin, B.; Westman-Naeser, S. Cardiac glycosides and breast cancer. Lancet, 1979, 1(8115), 563.
[http://dx.doi.org/10.1016/S0140-6736(79)90996-6] [PMID: 85158]
[232]
Stenkvist, B.; Bengtsson, E.; Dahlqvist, B.; Eriksson, O.; Jarkrans, T.; Nordin, B. Cardiac glycosides and breast cancer, revisited. N. Engl. J. Med., 1982, 306(8), 484.
[http://dx.doi.org/10.1056/NEJM198202253060813] [PMID: 7057849]
[233]
Stenkvist, B. Is digitalis a therapy for breast carcinoma? Oncol. Rep., 1999, 6(3), 493-496.
[http://dx.doi.org/10.3892/or.6.3.493] [PMID: 10203580]
[234]
Haux, J.; Klepp, O.; Spigset, O.; Tretli, S. Digitoxin medication and cancer; case control and internal dose-response studies. BMC Cancer, 2001, 1, 11.
[http://dx.doi.org/10.1186/1471-2407-1-11] [PMID: 11532201]
[235]
Ahern, T.P.; Lash, T.L.; Sørensen, H.T.; Pedersen, L. Digoxin treatment is associated with an increased incidence of breast cancer: A pop-ulation-based case-control study. Breast Cancer Res., 2008, 10(6), R102.
[http://dx.doi.org/10.1186/bcr2205] [PMID: 19055760]
[236]
Biggar, R.J.; Wohlfahrt, J.; Oudin, A.; Hjuler, T.; Melbye, M. Digoxin use and the risk of breast cancer in women. J. Clin. Oncol., 2011, 29(16), 2165-2170.
[http://dx.doi.org/10.1200/JCO.2010.32.8146] [PMID: 21422417]
[237]
Biggar, R.J.; Wohlfahrt, J.; Melbye, M. Digoxin use and the risk of cancers of the corpus uteri, ovary and cervix. Int. J. Cancer, 2012, 131(3), 716-721.
[http://dx.doi.org/10.1002/ijc.26424] [PMID: 21913187]
[238]
Platz, E.A.; Yegnasubramanian, S.; Liu, J.O.; Chong, C.R.; Shim, J.S.; Kenfield, S.A.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E.; Nel-son, W.G. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov., 2011, 1(1), 68-77.
[http://dx.doi.org/10.1158/2159-8274.CD-10-0020] [PMID: 22140654]
[239]
Demierre, M-F.; Higgins, P.D.R.; Gruber, S.B.; Hawk, E.; Lippman, S.M. Statins and cancer prevention. Nat. Rev. Cancer, 2005, 5(12), 930-942.
[http://dx.doi.org/10.1038/nrc1751] [PMID: 16341084]
[240]
Ogunwobi, O.O.; Beales, I.L. Statins inhibit proliferation and induce apoptosis in Barrett’s esophageal adenocarcinoma cells. Am. J. Gastroenterol., 2008, 103(4), 825-837.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01773.x] [PMID: 18371146]
[241]
Kang, S.; Kim, E.S.; Moon, A. Simvastatin and lovastatin inhibit breast cell invasion induced by H-Ras. Oncol. Rep., 2009, 21(5), 1317-1322.
[PMID: 19360310]
[242]
Denoyelle, C.; Vasse, M.; Körner, M.; Mishal, Z.; Ganné, F.; Vannier, J.P.; Soria, J.; Soria, C. Cerivastatin, an inhibitor of HMG-CoA re-ductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: An in vitro study. Carcinogenesis, 2001, 22(8), 1139-1148.
[http://dx.doi.org/10.1093/carcin/22.8.1139] [PMID: 11470741]
[243]
Graaf, M.R.; Beiderbeck, A.B.; Egberts, A.C.; Richel, D.J.; Guchelaar, H-J. The risk of cancer in users of statins. J. Clin. Oncol., 2004, 22(12), 2388-2394.
[http://dx.doi.org/10.1200/JCO.2004.02.027] [PMID: 15197200]
[244]
Blais, L.; Desgagné, A.; LeLorier, J. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer: A nested case-control study. Arch. Intern. Med., 2000, 160(15), 2363-2368.
[http://dx.doi.org/10.1001/archinte.160.15.2363] [PMID: 10927735]
[245]
Bansal, D.; Undela, K.; D’Cruz, S.; Schifano, F. Statin use and risk of prostate cancer: A meta-analysis of observational studies. PLoS One, 2012, 7(10), e46691.
[http://dx.doi.org/10.1371/journal.pone.0046691] [PMID: 23049713]
[246]
Singh, S.; Singh, A.G.; Singh, P.P.; Murad, M.H.; Iyer, P.G. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett’s esophagus: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol., 2013, 11(6), 620-629.
[http://dx.doi.org/10.1016/j.cgh.2012.12.036] [PMID: 23357487]
[247]
Wu, X-D.; Zeng, K.; Xue, F-Q.; Chen, J-H.; Chen, Y-Q. Statins are associated with reduced risk of gastric cancer: A meta-analysis. Eur. J. Clin. Pharmacol., 2013, 69(10), 1855-1860.
[http://dx.doi.org/10.1007/s00228-013-1547-z] [PMID: 23748751]
[248]
Emberson, J.R.; Kearney, P.M.; Blackwell, L.; Newman, C.; Reith, C.; Bhala, N.; Holland, L.; Peto, R.; Keech, A.; Collins, R.; Simes, J.; Baigent, C. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PLoS One, 2012, 7(1), e29849.
[http://dx.doi.org/10.1371/journal.pone.0029849] [PMID: 22276132]
[249]
Tan, M.; Song, X.; Zhang, G.; Peng, A.; Li, X.; Li, M.; Liu, Y.; Wang, C. Statins and the risk of lung cancer: A meta-analysis. PLoS One, 2013, 8(2), e57349.
[http://dx.doi.org/10.1371/journal.pone.0057349] [PMID: 23468972]
[250]
Li, X.; Wu, X.B.; Chen, Q. Statin use is not associated with reduced risk of skin cancer: A meta-analysis. Br. J. Cancer, 2014, 110(3), 802-807.
[http://dx.doi.org/10.1038/bjc.2013.762] [PMID: 24366301]
[251]
Kornblau, S.M.; Banker, D.E.; Stirewalt, D.; Shen, D.; Lemker, E.; Verstovsek, S.; Estrov, Z.; Faderl, S.; Cortes, J.; Beran, M.; Jackson, C.E.; Chen, W.; Estey, E.; Appelbaum, F.R. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: A phase 1 study. Blood, 2007, 109(7), 2999-3006.
[http://dx.doi.org/10.1182/blood-2006-08-044446] [PMID: 17158228]
[252]
Graf, H.; Jüngst, C.; Straub, G.; Dogan, S.; Hoffmann, R-T.; Jakobs, T.; Reiser, M.; Waggershauser, T.; Helmberger, T.; Walter, A.; Walli, A.; Seidel, D.; Goke, B.; Jüngst, D. Chemoembolization combined with pravastatin improves survival in patients with hepatocellular carci-noma. Digestion, 2008, 78(1), 34-38.
[http://dx.doi.org/10.1159/000156702] [PMID: 18797167]
[253]
Gilbert, D.C.; Vale, C.; Haire, R.; Coyle, C.; Langley, R.E. Repurposing vitamin D as an anticancer drug. Clin. Oncol. (R. Coll. Radiol.), 2016, 28(1), 36-41.
[http://dx.doi.org/10.1016/j.clon.2015.10.004] [PMID: 26520788]
[254]
Ertem, F.U.; Zhang, W.; Chang, K.; Mohaiza Dashwood, W.; Rajendran, P.; Sun, D.; Abudayyeh, A.; Vilar, E.; Abdelrahim, M.; Dash-wood, R.H. Oncogenic targets Mmp7, S100a9, Nppb and Aldh1a3 from transcriptome profiling of FAP and Pirc adenomas are downregu-lated in response to tumor suppression by Clotam. Int. J. Cancer, 2017, 140(2), 460-468.
[http://dx.doi.org/10.1002/ijc.30458] [PMID: 27706811]
[255]
Phillips, R.K.; Wallace, M.H.; Lynch, P.M.; Hawk, E.; Gordon, G.B.; Saunders, B.P.; Wakabayashi, N.; Shen, Y.; Zimmerman, S.; Godio, L.; Rodrigues-Bigas, M.; Su, L.K.; Sherman, J.; Kelloff, G.; Levin, B.; Steinbach, G.; Group, F.A.P.S. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut, 2002, 50(6), 857-860.
[http://dx.doi.org/10.1136/gut.50.6.857] [PMID: 12010890]
[256]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial ade-nomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[257]
Gontier, E.; Fourme, E.; Wartski, M.; Blondet, C.; Bonardel, G.; Le Stanc, E.; Mantzarides, M.; Foehrenbach, H.; Pecking, A.P.; Alberini, J.L. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(1), 95-99.
[http://dx.doi.org/10.1007/s00259-007-0563-6] [PMID: 17786437]
[258]
Zakikhani, M.; Dowling, R.J.; Sonenberg, N.; Pollak, M.N. The effects of adiponectin and metformin on prostate and colon neoplasia in-volve activation of AMP-activated protein kinase. Cancer Prev. Res. (Phila.), 2008, 1(5), 369-375.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0081] [PMID: 19138981]
[259]
Giardiello, F.M.; Hamilton, S.R.; Krush, A.J.; Piantadosi, S.; Hylind, L.M.; Celano, P.; Booker, S.V.; Robinson, C.R.; Offerhaus, G.J. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med., 1993, 328(18), 1313-1316.
[http://dx.doi.org/10.1056/NEJM199305063281805] [PMID: 8385741]
[260]
Veettil, S.K.; Lim, K.G.; Ching, S.M.; Saokaew, S.; Phisalprapa, P.; Chaiyakunapruk, N. Effects of aspirin and non-aspirin nonsteroidal anti-inflammatory drugs on the incidence of recurrent colorectal adenomas: A systematic review with meta-analysis and trial sequential analysis of randomized clinical trials. BMC Cancer, 2017, 17(1), 763.
[http://dx.doi.org/10.1186/s12885-017-3757-8] [PMID: 29137605]
[261]
Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; Willson, J.K.; Mar-kowitz, S.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670), 554.
[http://dx.doi.org/10.1126/science.1096502] [PMID: 15016963]
[262]
Varnat, F.; Duquet, A.; Malerba, M.; Zbinden, M.; Mas, C.; Gervaz, P.; Ruiz i Altaba, A. Human colon cancer epithelial cells harbour ac-tive HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol. Med., 2009, 1(6-7), 338-351.
[http://dx.doi.org/10.1002/emmm.200900039] [PMID: 20049737]
[263]
Stecca, B.; Mas, C.; Clement, V.; Zbinden, M.; Correa, R.; Piguet, V.; Beermann, F.; Ruiz i Altaba, A. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5895-5900.
[http://dx.doi.org/10.1073/pnas.0700776104] [PMID: 17392427]
[264]
Mitrugno, A.; Sylman, J.L.; Ngo, A.T.; Pang, J.; Sears, R.C.; Williams, C.D.; McCarty, O.J. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC. Am. J. Physiol. Cell Physiol., 2017, 312(2), C176-C189.
[http://dx.doi.org/10.1152/ajpcell.00196.2016] [PMID: 27903583]
[265]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[266]
Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P.A.; Kaminker, J.S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J.K.; Sukumar, S.; Polyak, K.; Park, B.H.; Pethiyagoda, C.L.; Pant, P.V.; Ballinger, D.G.; Sparks, A.B.; Hartigan, J.; Smith, D.R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853), 1108-1113.
[http://dx.doi.org/10.1126/science.1145720] [PMID: 17932254]
[267]
Lynch, P.M.; Burke, C.A.; Phillips, R.; Morris, J.S.; Slack, R.; Wang, X.; Liu, J.; Patterson, S.; Sinicrope, F.A.; Rodriguez-Bigas, M.A.; Half, E.; Bulow, S.; Latchford, A.; Clark, S.; Ross, W.A.; Malone, B.; Hasson, H.; Richmond, E.; Hawk, E. An international randomised trial of celecoxib versus celecoxib plus difluoromethylornithine in patients with familial adenomatous polyposis. Gut, 2016, 65(2), 286-295.
[http://dx.doi.org/10.1136/gutjnl-2014-307235] [PMID: 25792707]
[268]
Bresalier, R.S.; Sandler, R.S.; Quan, H.; Bolognese, J.A.; Oxenius, B.; Horgan, K.; Lines, C.; Riddell, R.; Morton, D.; Lanas, A.; Konstam, M.A.; Baron, J.A.I. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med., 2005, 352(11), 1092-1102.
[http://dx.doi.org/10.1056/NEJMoa050493] [PMID: 15713943]
[269]
Kerr, D.J.; Dunn, J.A.; Langman, M.J.; Smith, J.L.; Midgley, R.S.; Stanley, A.; Stokes, J.C.; Julier, P.; Iveson, C.; Duvvuri, R.; McConkey, C.C.; Group, V.T. Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer. N. Engl. J. Med., 2007, 357(4), 360-369.
[http://dx.doi.org/10.1056/NEJMoa071841] [PMID: 17652651]
[270]
Duca, F.A.; Côté, C.D.; Rasmussen, B.A.; Zadeh-Tahmasebi, M.; Rutter, G.A.; Filippi, B.M.; Lam, T.K. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med., 2015, 21(5), 506-511.
[http://dx.doi.org/10.1038/nm.3787] [PMID: 25849133]
[271]
Pierotti, M.A.; Berrino, F.; Gariboldi, M.; Melani, C.; Mogavero, A.; Negri, T.; Pasanisi, P.; Pilotti, S. Targeting metabolism for cancer treatment and prevention: Metformin, an old drug with multi-faceted effects. Oncogene, 2013, 32(12), 1475-1487.
[http://dx.doi.org/10.1038/onc.2012.181] [PMID: 22665053]
[272]
Higurashi, T.; Nakajima, A. Metformin and colorectal cancer. Front. Endocrinol. (Lausanne), 2018, 9, 622.
[http://dx.doi.org/10.3389/fendo.2018.00622] [PMID: 30405532]
[273]
Tomimoto, A.; Endo, H.; Sugiyama, M.; Fujisawa, T.; Hosono, K.; Takahashi, H.; Nakajima, N.; Nagashima, Y.; Wada, K.; Nakagama, H.; Nakajima, A. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci., 2008, 99(11), 2136-2141.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00933.x] [PMID: 18803638]
[274]
Hosono, K.; Endo, H.; Takahashi, H.; Sugiyama, M.; Uchiyama, T.; Suzuki, K.; Nozaki, Y.; Yoneda, K.; Fujita, K.; Yoneda, M.; Inamori, M.; Tomatsu, A.; Chihara, T.; Shimpo, K.; Nakagama, H.; Nakajima, A. Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol. Carcinog., 2010, 49(7), 662-671.
[http://dx.doi.org/10.1002/mc.20637] [PMID: 20564343]
[275]
Bekusova, V.V.; Patsanovskii, V.M.; Nozdrachev, A.D.; Trashkov, A.P.; Artemenko, M.R.; Anisimov, V.N. Metformin prevents hormo-nal and metabolic disturbances and 1,2-dimethylhydrazine-induced colon carcinogenesis in non-diabetic rats. Cancer Biol. Med., 2017, 14(1), 100-107.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0088] [PMID: 28443209]
[276]
Higurashi, T.; Takahashi, H.; Endo, H.; Hosono, K.; Yamada, E.; Ohkubo, H.; Sakai, E.; Uchiyama, T.; Hata, Y.; Fujisawa, N.; Uchiyama, S.; Ezuka, A.; Nagase, H.; Kessoku, T.; Matsuhashi, N.; Yamanaka, S.; Inayama, Y.; Morita, S.; Nakajima, A. Metformin efficacy and safety for colorectal polyps: A double-blind randomized controlled trial. BMC Cancer, 2012, 12, 118.
[http://dx.doi.org/10.1186/1471-2407-12-118] [PMID: 22443173]
[277]
Lynch, P.M. Chemoprevention of familial adenomatous polyposis. Fam. Cancer, 2016, 15(3), 467-475.
[http://dx.doi.org/10.1007/s10689-016-9901-9] [PMID: 27083160]
[278]
Samadder, N.J.; Neklason, D.W.; Boucher, K.M.; Byrne, K.R.; Kanth, P.; Samowitz, W.; Jones, D.; Tavtigian, S.V.; Done, M.W.; Berry, T.; Jasperson, K.; Pappas, L.; Smith, L.; Sample, D.; Davis, R.; Topham, M.K.; Lynch, P.; Strait, E.; McKinnon, W.; Burt, R.W.; Kuwada, S.K. Effect of sulindac and erlotinib vs placebo on duodenal neoplasia in familial adenomatous polyposis: A randomized clinical trial. JAMA, 2016, 315(12), 1266-1275.
[http://dx.doi.org/10.1001/jama.2016.2522] [PMID: 27002448]
[279]
Meyskens, F.L., Jr; McLaren, C.E.; Pelot, D.; Fujikawa-Brooks, S.; Carpenter, P.M.; Hawk, E.; Kelloff, G.; Lawson, M.J.; Kidao, J.; McCracken, J.; Albers, C.G.; Ahnen, D.J.; Turgeon, D.K.; Goldschmid, S.; Lance, P.; Hagedorn, C.H.; Gillen, D.L.; Gerner, E.W. Difluo-romethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prev. Res. (Phila.), 2008, 1(1), 32-38.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0042] [PMID: 18841250]
[280]
Chan, A.T.; Ogino, S.; Fuchs, C.S. Aspirin use and survival after diagnosis of colorectal cancer. JAMA, 2009, 302(6), 649-658.
[http://dx.doi.org/10.1001/jama.2009.1112] [PMID: 19671906]
[281]
Liao, X.; Lochhead, P.; Nishihara, R.; Morikawa, T.; Kuchiba, A.; Yamauchi, M.; Imamura, Y.; Qian, Z.R.; Baba, Y.; Shima, K.; Sun, R.; Nosho, K.; Meyerhardt, J.A.; Giovannucci, E.; Fuchs, C.S.; Chan, A.T.; Ogino, S. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med., 2012, 367(17), 1596-1606.
[http://dx.doi.org/10.1056/NEJMoa1207756] [PMID: 23094721]
[282]
Drew, D.A.; Chin, S.M.; Gilpin, K.K.; Parziale, M.; Pond, E.; Schuck, M.M.; Stewart, K.; Flagg, M.; Rawlings, C.A.; Backman, V.; Carolan, P.J.; Chung, D.C.; Colizzo, F.P., III; Freedman, M.; Gala, M.; Garber, J.J.; Huttenhower, C.; Kedrin, D.; Khalili, H.; Kwon, D.S.; Marko-witz, S.D.; Milne, G.L.; Nishioka, N.S.; Richter, J.M.; Roy, H.K.; Staller, K.; Wang, M.; Chan, A.T. ASPirin Intervention for the REDuction of colorectal cancer risk (ASPIRED): A study protocol for a randomized controlled trial. Trials, 2017, 18(1), 50.
[http://dx.doi.org/10.1186/s13063-016-1744-z] [PMID: 28143522]
[283]
Dihlmann, S.; Siermann, A.; von Knebel Doeberitz, M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene, 2001, 20(5), 645-653.
[http://dx.doi.org/10.1038/sj.onc.1204123] [PMID: 11313997]
[284]
Díaz-Carballo, D.; Acikelli, A.H.; Klein, J.; Jastrow, H.; Dammann, P.; Wyganowski, T.; Guemues, C.; Gustmann, S.; Bardenheuer, W.; Malak, S.; Tefett, N.S.; Khosrawipour, V.; Giger-Pabst, U.; Tannapfel, A.; Strumberg, D. Therapeutic potential of antiviral drugs targeting chemorefractory colorectal adenocarcinoma cells overexpressing endogenous retroviral elements. J. Exp. Clin. Cancer Res., 2015, 34, 81.
[http://dx.doi.org/10.1186/s13046-015-0199-5] [PMID: 26260344]
[285]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[286]
Yamamoto, S.; Tomita, Y.; Hoshida, Y.; Sakon, M.; Kameyama, M.; Imaoka, S.; Sekimoto, M.; Nakamori, S.; Monden, M.; Aozasa, K. Expression of valosin-containing protein in colorectal carcinomas as a predictor for disease recurrence and prognosis. Clin. Cancer Res., 2004, 10(2), 651-657.
[http://dx.doi.org/10.1158/1078-0432.CCR-1576-03] [PMID: 14760088]
[287]
Falkowski, M.; Skogstad, S.; Shahzidi, S.; Smedsröd, B.; Sveinbjörnsson, B. The effect of cyclooxygenase inhibitor diclofenac on experi-mental murine colon carcinoma. Anticancer Res., 2003, 23(3B), 2303-2308.
[PMID: 12894507]
[288]
Neo, J.H.; Malcontenti-Wilson, C.; Muralidharan, V.; Christophi, C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J. Gastroenterol. Hepatol., 2007, 22(4), 577-584.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04797.x] [PMID: 17376054]
[289]
Miyajima, A.; Kosaka, T.; Asano, T.; Asano, T.; Seta, K.; Kawai, T.; Hayakawa, M. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res., 2002, 62(15), 4176-4179.
[PMID: 12154013]
[290]
Reinacher-Schick, A.; Schoeneck, A.; Graeven, U.; Schwarte-Waldhoff, I.; Schmiegel, W. Mesalazine causes a mitotic arrest and induces caspase-dependent apoptosis in colon carcinoma cells. Carcinogenesis, 2003, 24(3), 443-451.
[http://dx.doi.org/10.1093/carcin/24.3.443] [PMID: 12663503]
[291]
Fina, D.; Franchi, L.; Caruso, R.; Peluso, I.; Naccari, G.C.; Bellinvia, S.; Testi, R.; Pallone, F.; Monteleone, G. 5-aminosalicylic acid en-hances anchorage-independent colorectal cancer cell death. Eur. J. Cancer, 2006, 42(15), 2609-2616.
[http://dx.doi.org/10.1016/j.ejca.2006.03.030] [PMID: 16914308]
[292]
Stolfi, C.; Pallone, F.; Monteleone, G. Colorectal cancer chemoprevention by mesalazine and its derivatives. J. Biomed. Biotechnol., 2012, 2012, 980458.
[http://dx.doi.org/10.1155/2012/980458] [PMID: 22701310]
[293]
Adams, W.J.; Morris, D.L.; Ross, W.B.; Lubowski, D.Z.; King, D.W.; Peters, L. Cimetidine preserves non-specific immune function after colonic resection for cancer. Aust. N. Z. J. Surg., 1994, 64(12), 847-852.
[http://dx.doi.org/10.1111/j.1445-2197.1994.tb04562.x] [PMID: 7980260]
[294]
Matsumoto, S.; Imaeda, Y.; Umemoto, S.; Kobayashi, K.; Suzuki, H.; Okamoto, T. Cimetidine increases survival of colorectal cancer pa-tients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells. Br. J. Cancer, 2002, 86(2), 161-167.
[http://dx.doi.org/10.1038/sj.bjc.6600048] [PMID: 11870500]
[295]
Plosker, G.L.; Faulds, D. Epirubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs, 1993, 45(5), 788-856.
[http://dx.doi.org/10.2165/00003495-199345050-00011] [PMID: 7686469]
[296]
Stoye, J.P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol., 2012, 10(6), 395-406.
[http://dx.doi.org/10.1038/nrmicro2783] [PMID: 22565131]
[297]
Rhyu, D.W.; Kang, Y.J.; Ock, M.S.; Eo, J.W.; Choi, Y.H.; Kim, W.J.; Leem, S.H.; Yi, J.M.; Kim, H.S.; Cha, H.J. Expression of human endogenous retrovirus env genes in the blood of breast cancer patients. Int. J. Mol. Sci., 2014, 15(6), 9173-9183.
[http://dx.doi.org/10.3390/ijms15069173] [PMID: 24964007]
[298]
Lee, S.H.; Kang, Y.J.; Jo, J.O.; Ock, M.S.; Baek, K.W.; Eo, J.; Lee, W.J.; Choi, Y.H.; Kim, W.J.; Leem, S.H.; Kim, H.S.; Cha, H.J. Elevation of human ERV3-1 env protein expression in colorectal cancer. J. Clin. Pathol., 2014, 67(9), 840-844.
[http://dx.doi.org/10.1136/jclinpath-2013-202089] [PMID: 25016529]
[299]
Liang, Q.; Xu, Z.; Xu, R.; Wu, L.; Zheng, S. Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS One, 2012, 7(1), e29950.
[http://dx.doi.org/10.1371/journal.pone.0029950] [PMID: 22238681]
[300]
Ohnuki, M.; Tanabe, K.; Sutou, K.; Teramoto, I.; Sawamura, Y.; Narita, M.; Nakamura, M.; Tokunaga, Y.; Nakamura, M.; Watanabe, A.; Yamanaka, S.; Takahashi, K. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differ-entiation potential. Proc. Natl. Acad. Sci. USA, 2014, 111(34), 12426-12431.
[http://dx.doi.org/10.1073/pnas.1413299111] [PMID: 25097266]
[301]
Lan, Z.; Chong, Z.; Liu, C.; Feng, D.; Fang, D.; Zang, W.; Zhou, J. Amantadine inhibits cellular proliferation and induces the apoptosis of hepatocellular cancer cells in vitro. Int. J. Mol. Med., 2015, 36(3), 904-910.
[http://dx.doi.org/10.3892/ijmm.2015.2289] [PMID: 26201988]
[302]
Rotbart, H.A.; Webster, A.D.; Pleconaril, G. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin. Infect. Dis., 2001, 32(2), 228-235.
[http://dx.doi.org/10.1086/318452] [PMID: 11170912]
[303]
Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol., 2021, 87(2), 159-172.
[http://dx.doi.org/10.1007/s00280-020-04216-8] [PMID: 33426580]
[304]
Pantziarka, P.; Sukhatme, V.; Bouche, G.; Meheus, L.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience, 2016, 10, 610.
[http://dx.doi.org/10.3332/ecancer.2016.610] [PMID: 26823679]
[305]
Mayorek, N.; Naftali-Shani, N.; Grunewald, M. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity. PLoS One, 2010, 5(9), e12715.
[http://dx.doi.org/10.1371/journal.pone.0012715] [PMID: 20856806]
[306]
Seed, M.P.; Brown, J.R.; Freemantle, C.N.; Papworth, J.L.; Colville-Nash, P.R.; Willis, D.; Somerville, K.W.; Asculai, S.; Willoughby, D.A. The inhibition of colon-26 adenocarcinoma development and angiogenesis by topical diclofenac in 2.5% hyaluronan. Cancer Res., 1997, 57(9), 1625-1629.
[PMID: 9134996]
[307]
Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabe-tes and cancer: A consensus report. Diabetes Care, 2010, 33(7), 1674-1685.
[http://dx.doi.org/10.2337/dc10-0666] [PMID: 20587728]
[308]
Schumacher, F.R.; Schmit, S.L.; Jiao, S.; Edlund, C.K.; Wang, H.; Zhang, B.; Hsu, L.; Huang, S.C.; Fischer, C.P.; Harju, J.F.; Idos, G.E.; Lejbkowicz, F.; Manion, F.J.; McDonnell, K.; McNeil, C.E.; Melas, M.; Rennert, H.S.; Shi, W.; Thomas, D.C.; Van Den Berg, D.J.; Hutter, C.M.; Aragaki, A.K.; Butterbach, K.; Caan, B.J.; Carlson, C.S.; Chanock, S.J.; Curtis, K.R.; Fuchs, C.S.; Gala, M.; Giovannucci, E.L.; Gogarten, S.M.; Hayes, R.B.; Henderson, B.; Hunter, D.J.; Jackson, R.D.; Kolonel, L.N.; Kooperberg, C.; Küry, S.; LaCroix, A.; Laurie, C.C.; Laurie, C.A.; Lemire, M.; Levine, D.; Ma, J.; Makar, K.W.; Qu, C.; Taverna, D.; Ulrich, C.M.; Wu, K.; Kono, S.; West, D.W.; Berndt, S.I.; Bezieau, S.; Brenner, H.; Campbell, P.T.; Chan, A.T.; Chang-Claude, J.; Coetzee, G.A.; Conti, D.V.; Duggan, D.; Figueiredo, J.C.; Fortini, B.K.; Gallinger, S.J.; Gauderman, W.J.; Giles, G.; Green, R.; Haile, R.; Harrison, T.A.; Hoffmeister, M.; Hopper, J.L.; Hudson, T.J.; Jacobs, E.; Iwasaki, M.; Jee, S.H.; Jenkins, M.; Jia, W.H.; Joshi, A.; Li, L.; Lindor, N.M.; Matsuo, K.; Moreno, V.; Mukherjee, B.; New-comb, P.A.; Potter, J.D.; Raskin, L.; Rennert, G.; Rosse, S.; Severi, G.; Schoen, R.E.; Seminara, D.; Shu, X.O.; Slattery, M.L.; Tsugane, S.; White, E.; Xiang, Y.B.; Zanke, B.W.; Zheng, W.; Le Marchand, L.; Casey, G.; Gruber, S.B.; Peters, U. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat. Commun., 2015, 6, 7138.
[http://dx.doi.org/10.1038/ncomms8138] [PMID: 26151821]
[309]
Kuniyasu, H. Multiple roles of angiotensin in colorectal cancer. World J. Clin. Oncol., 2012, 3(12), 150-154.
[http://dx.doi.org/10.5306/wjco.v3.i12.150] [PMID: 23293754]
[310]
Escobar, E.; Rodríguez-Reyna, T.S.; Arrieta, O.; Sotelo, J. Angiotensin II, cell proliferation and angiogenesis regulator: Biologic and thera-peutic implications in cancer. Curr. Vasc. Pharmacol., 2004, 2(4), 385-399.
[http://dx.doi.org/10.2174/1570161043385556] [PMID: 15320819]
[311]
Luo, Y.; Ohmori, H.; Shimomoto, T.; Fujii, K.; Sasahira, T.; Chihara, Y.; Kuniyasu, H. Anti-angiotensin and hypoglycemic treatments suppress liver metastasis of colon cancer cells. Pathobiology, 2011, 78(5), 285-290.
[http://dx.doi.org/10.1159/000330169] [PMID: 21849810]
[312]
Koh, S.L.; Ager, E.I.; Costa, P.L.; Malcontenti-Wilson, C.; Muralidharan, V.; Christophi, C. Blockade of the renin-angiotensin system inhibits growth of colorectal cancer liver metastases in the regenerating liver. Clin. Exp. Metastasis, 2014, 31(4), 395-405.
[http://dx.doi.org/10.1007/s10585-014-9635-8] [PMID: 24442969]
[313]
Zhou, L.; Luo, Y.; Sato, S.; Tanabe, E.; Kitayoshi, M.; Fujiwara, R.; Sasaki, T.; Fujii, K.; Ohmori, H.; Kuniyasu, H. Role of two types of angiotensin II receptors in colorectal carcinoma progression. Pathobiology, 2014, 81(4), 169-175.
[http://dx.doi.org/10.1159/000362092] [PMID: 25138435]
[314]
Brimblecombe, R. Mesalazine: A global safety evaluation. Scand. J. Gastroenterol. Suppl., 1990, 172, 66.
[http://dx.doi.org/10.3109/00365529009091915] [PMID: 1972297]
[315]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)-cimetidine as an anti-cancer agent. Ecancermedicalscience, 2014, 8, 485.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25525463]
[316]
Kobayashi, K.; Matsumoto, S.; Morishima, T.; Kawabe, T.; Okamoto, T. Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression. Cancer Res., 2000, 60(14), 3978-3984.
[PMID: 10919677]
[317]
Matsumoto, S. Cimetidine and survival with colorectal cancer. Lancet, 1995, 346(8967), 115.
[http://dx.doi.org/10.1016/S0140-6736(95)92136-2] [PMID: 7603185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy