Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1)

Author(s): Igor José dos Santos Nascimento*, Thiago Mendonça de Aquino and Edeildo Ferreira da Silva Júnior

Volume 29, Issue 33, 2022

Published on: 28 June, 2022

Page: [5397 - 5419] Pages: 23

DOI: 10.2174/0929867329666220317122948

Price: $65

Abstract

Inflammation is a natural reaction to external stimuli to protect the organism. However, if it is exaggerated, it can cause severe physiopathological damage, linked to diseases like rheumatoid arthritis, cancer, diabetes, allergies, and infections. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy for developing anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. Thus, in recent years, computer-aided drug design (CADD) approaches have been increasingly used to design new inhibitors, decreasing costs and increasing the probability of discovering active substances. Finally, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, and quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.

Keywords: Anti-inflammatory, drug design, mPGES-1, molecular modeling, CADD, microsomal prostaglandin.

[1]
Punchard, N.A.; Whelan, C.J.; Adcock, I. The journal of inflammation. J. Inflamm. (Lond.), 2004, 1(1), 1.
[http://dx.doi.org/10.1186/1476-9255-1-1] [PMID: 15813979]
[2]
Buckley, C.D.; Gilroy, D.W.; Serhan, C.N.; Stockinger, B.; Tak, P.P. The resolution of inflammation. Nat. Rev. Immunol., 2013, 13(1), 59-66.
[http://dx.doi.org/10.1038/nri3362] [PMID: 23197111]
[3]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[4]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[5]
Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology, 2013, 69, 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.004] [PMID: 22521336]
[6]
Rainsford, K.D. Anti-inflammatory drugs in the 21st century. Subcell. Biochem., 2007, 42, 3-27.
[7]
Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3A), 2S-8S.
[http://dx.doi.org/10.1016/S0002-9343(97)00203-9] [PMID: 9572314]
[8]
Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res., 1998, 47(Suppl. 2), S78-S87.
[http://dx.doi.org/10.1007/s000110050284] [PMID: 9831328]
[9]
Vane, J.R. The mechanism of action of anti-inflammatory drugs. In: Advances in Eicosanoid Research; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; pp. 1-23.
[http://dx.doi.org/10.1007/978-3-662-04047-8_1]
[10]
Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res., 2007, 5(1), 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[11]
Ward, S.G. New drug targets in inflammation: Efforts to expand the anti-inflammatory armoury. Br. J. Pharmacol., 2008, 153(S1)(Suppl. 1), S5-S6.
[http://dx.doi.org/10.1038/sj.bjp.0707628] [PMID: 18246097]
[12]
Bergqvist, F.; Morgenstern, R.; Jakobsson, P-J. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat., 2020, 147, 106383.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106383] [PMID: 31698145]
[13]
Dos Santos Nascimento, I.J.; da Silva-Júnior, E.F. TNF-α Inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents. Comb. Chem. High Throughput Screen., 2021, 24, 24.
[http://dx.doi.org/10.2174/1386207324666210715165943] [PMID: 34269666]
[14]
Brune, ; Patrignani, P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J. Pain Res., 2015, 8, 105-118.
[http://dx.doi.org/10.2147/JPR.S75160]
[15]
Simmons, D.L. What makes a good anti-inflammatory drug target? Drug Discov. Today, 2006, 11(5-6), 210-219.
[http://dx.doi.org/10.1016/S1359-6446(05)03721-9] [PMID: 16580598]
[16]
Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[17]
Huang, J.; Fu, X.; Chen, X.; Li, Z.; Huang, Y.; Liang, C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol., 2021, 12, 686155.
[http://dx.doi.org/10.3389/fimmu.2021.686155] [PMID: 34305919]
[18]
Pintér, E.; Pozsgai, G.; Hajna, Z.; Helyes, Z.; Szolcsányi, J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br. J. Clin. Pharmacol., 2014, 77(1), 5-20.
[http://dx.doi.org/10.1111/bcp.12097] [PMID: 23432438]
[19]
Szollosi, D.E.; Manzoor, M.K.; Aquilato, A.; Jackson, P.; Ghoneim, O.M.; Edafiogho, I.O. Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases. J. Pharm. Pharmacol., 2018, 70(1), 18-26.
[http://dx.doi.org/10.1111/jphp.12811] [PMID: 28872680]
[20]
Chang, H-H.; Meuillet, E.J. Identification and development of mPGES-1 inhibitors: Where we are at? Future Med. Chem., 2011, 3(15), 1909-1934.
[http://dx.doi.org/10.4155/fmc.11.136] [PMID: 22023034]
[21]
Kihara, Y.; Matsushita, T.; Kita, Y.; Uematsu, S.; Akira, S.; Kira, J.; Ishii, S.; Shimizu, T. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21807-21812.
[http://dx.doi.org/10.1073/pnas.0906891106] [PMID: 19995978]
[22]
Fahmi, H. mPGES-1 as a novel target for arthritis. Curr. Opin. Rheumatol., 2004, 16(5), 623-627.
[http://dx.doi.org/10.1097/01.bor.0000129664.81052.8e] [PMID: 15314505]
[23]
Nakanishi, M.; Montrose, D.C.; Clark, P.; Nambiar, P.R.; Belinsky, G.S.; Claffey, K.P.; Xu, D.; Rosenberg, D.W. Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res., 2008, 68(9), 3251-3259.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6100] [PMID: 18451151]
[24]
Riendeau, D.; Aspiotis, R.; Ethier, D.; Gareau, Y.; Grimm, E.L.; Guay, J.; Guiral, S.; Juteau, H.; Mancini, J.A.; Méthot, N.; Rubin, J.; Friesen, R.W. Inhibitors of the inducible microsomal prostaglandin E2 synthase (mPGES-1) derived from MK-886. Bioorg. Med. Chem. Lett., 2005, 15(14), 3352-3355.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.027] [PMID: 15953724]
[25]
Trebino, C.E.; Eskra, J.D.; Wachtmann, T.S.; Perez, J.R.; Carty, T.J.; Audoly, L.P. Redirection of eicosanoid metabolism in mPGES-1-deficient macrophages. J. Biol. Chem., 2005, 280(17), 16579-16585.
[http://dx.doi.org/10.1074/jbc.M412075200] [PMID: 15722356]
[26]
Wang, Q.; Li, Y.; Wu, M.; Huang, S.; Zhang, A.; Zhang, Y.; Jia, Z. Targeting microsomal prostaglandin E synthase 1 to develop drugs treating the inflammatory diseases. Am. J. Transl. Res., 2021, 13(1), 391-419.
[PMID: 33527033]
[27]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[28]
da Silva Santos-Junior, P.F.; dos Santos Nascimento, I.J.; de Aquino, T.M.; de Araujo-Jr., J.X.; da Silva-Junior, E.F. Drug discovery strategies against emerging coronaviruses: A global threat. Front. Anti-Infect. Drug Discov., 2020, 8, 35-90.
[http://dx.doi.org/10.2174/9789811412387120080004]
[29]
Dos Santos Nascimento, I.J.; da Silva-Júnior, E.F.; de Aquino, T.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses. Curr. Drug Targets, 2021, 22, 22.
[http://dx.doi.org/10.2174/1389450122666210809090909] [PMID: 34370633]
[30]
Dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/0929867327666200812215852] [PMID: 32787752]
[31]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva Santos-Jr., P.J.; de Araújo-Jr., J.X.; da Silva-Jr., E.F. Molecular modeling applied to design of cysteine protease inhibitors – a powerful tool for the identification of hit compounds against neglected tropical diseases. 2020, 2020, 63-110.
[32]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[33]
de Sousa Luis, J.A.; Barros, R.P.C.; de Sousa, N.F.; Muratov, E.; Scotti, L.; Scotti, M.T. Virtual screening of natural products database. Mini-Rev. Med. Chem., 2020, 21(18), 2657-2730.
[34]
Sherwood, E.R.; Toliver-Kinsky, T. Mechanisms of the inflammatory response. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2004, 18(3), 385-405.
[http://dx.doi.org/10.1016/j.bpa.2003.12.002] [PMID: 15212335]
[35]
Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules, 2021, 26(1), 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[36]
Götte, M. Syndecans in inflammation. FASEB J., 2003, 17(6), 575-591.
[http://dx.doi.org/10.1096/fj.02-0739rev] [PMID: 12665470]
[37]
Megha, K.B.; Joseph, X.; Akhil, V.; Mohanan, P.V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine, 2021, 91, 153712.
[http://dx.doi.org/10.1016/j.phymed.2021.153712] [PMID: 34511264]
[38]
Barnes, P.J. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat. Rev. Drug Discov., 2013, 12(7), 543-559.
[http://dx.doi.org/10.1038/nrd4025] [PMID: 23977698]
[39]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[http://dx.doi.org/10.18433/J3T886] [PMID: 19203472]
[40]
Meek, I.L.; Van de Laar, M.A.F.J.; E Vonkeman, H.; Non-Steroidal Anti-Inflammatory Drugs, H. Non-steroidal anti-inflammatory drugs: An overview of cardiovascular risks. Pharmaceuticals (Basel), 2010, 3(7), 2146-2162.
[http://dx.doi.org/10.3390/ph3072146] [PMID: 27713346]
[41]
Marjoribanks, J.; Proctor, M.; Farquhar, C.; Sangkomkamhang, U.S.; Derks, R.S. Nonsteroidal anti-inflammatory drugs for primary dysmenorrhoea. In: The Cochrane Database of Systematic Reviews; Marjoribanks, J., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2003.
[http://dx.doi.org/10.1002/14651858.CD001751]
[42]
Hugo, H.J.; Saunders, C.; Ramsay, R.G.; Thompson, E.W. New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J. Mammary Gland Biol. Neoplasia, 2015, 20(3-4), 109-119.
[http://dx.doi.org/10.1007/s10911-015-9333-4] [PMID: 26193871]
[43]
McCarberg, B.H.; Cryer, B. Evolving therapeutic strategies to improve nonsteroidal anti-inflammatory drug safety. Am. J. Ther., 2015, 22(6), e167-e178.
[http://dx.doi.org/10.1097/MJT.0000000000000123] [PMID: 25251373]
[44]
Petrie, B.; Camacho-Muñoz, D. Analysis, fate and toxicity of chiral non-steroidal anti-inflammatory drugs in wastewaters and the environment: A review. Environ. Chem. Lett., 2021, 19(1), 43-75.
[http://dx.doi.org/10.1007/s10311-020-01065-y]
[45]
Ospelt, C.; Gay, S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol., 2010, 42(4), 495-505.
[http://dx.doi.org/10.1016/j.biocel.2009.10.010] [PMID: 19840864]
[46]
Mokry, J.; Giembycz, M.; Mokra, D. Editorial: Phosphodiesterases as drug targets in airway and inflammatory diseases. Front. Pharmacol., 2021, 12, 657596.
[http://dx.doi.org/10.3389/fphar.2021.657596] [PMID: 33912063]
[47]
da Silva, I.V.; Soveral, G. Aquaporins in immune cells and inflammation: New targets for drug development. Int. J. Mol. Sci., 2021, 22(4), 1845.
[http://dx.doi.org/10.3390/ijms22041845] [PMID: 33673336]
[48]
Emon, N.U.; Alam, S.; Rudra, S.; Haidar, I.K.A.; Farhad, M.; Rana, M.E.H.; Ganguly, A. Antipyretic activity of Caesalpinia digyna (Rottl.) leaves extract along with phytoconstituent’s binding affinity to COX-1, COX-2, and mPGES-1 receptors: In vivo and in silico approaches. Saudi J. Biol. Sci., 2021, 28(9), 5302-5309.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.050] [PMID: 34466108]
[49]
Ikeda-Matsuo, Y. The role of mPGES-1 in inflammatory brain diseases. Biol. Pharm. Bull., 2017, 40(5), 557-563.
[http://dx.doi.org/10.1248/bpb.b16-01026] [PMID: 28458341]
[50]
Mbalaviele, G.; Pauley, A.M.; Shaffer, A.F.; Zweifel, B.S.; Mathialagan, S.; Mnich, S.J.; Nemirovskiy, O.V.; Carter, J.; Gierse, J.K.; Wang, J.L.; Vazquez, M.L.; Moore, W.M.; Masferrer, J.L. Distinction of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition from cyclooxygenase-2 inhibition in cells using a novel, selective mPGES-1 inhibitor. Biochem. Pharmacol., 2010, 79(10), 1445-1454.
[http://dx.doi.org/10.1016/j.bcp.2010.01.003] [PMID: 20067770]
[51]
Friesen, R.W.; Mancini, J.A. Microsomal prostaglandin E2 synthase-1 (mPGES-1): A novel anti-inflammatory therapeutic target. J. Med. Chem., 2008, 51(14), 4059-4067.
[http://dx.doi.org/10.1021/jm800197b] [PMID: 18459759]
[52]
Scholich, K.; Geisslinger, G. Is mPGES-1 a promising target for pain therapy? Trends Pharmacol. Sci., 2006, 27(8), 399-401.
[http://dx.doi.org/10.1016/j.tips.2006.06.001] [PMID: 16815559]
[53]
Idborg, H.; Olsson, P.; Leclerc, P.; Raouf, J.; Jakobsson, P-J.; Korotkova, M. Effects of mPGES-1 deletion on eicosanoid and fatty acid profiles in mice. Prostaglandins Other Lipid Mediat., 2013, 107, 18-25.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.07.004] [PMID: 23916744]
[54]
Nakanishi, M.; Gokhale, V.; Meuillet, E.J.; Rosenberg, D.W. mPGES-1 as a target for cancer suppression: A comprehensive invited review “Phospholipase A2 and lipid mediators”. Biochimie, 2010, 92(6), 660-664.
[http://dx.doi.org/10.1016/j.biochi.2010.02.006] [PMID: 20159031]
[55]
Smith, W.L.; Urade, Y.; Jakobsson, P-J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev., 2011, 111(10), 5821-5865.
[http://dx.doi.org/10.1021/cr2002992] [PMID: 21942677]
[56]
Koeberle, A.; Laufer, S.A.; Werz, O. Design and development of microsomal prostaglandin E2 synthase-1 inhibitors: Challenges and future directions. J. Med. Chem., 2016, 59(13), 5970-5986.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01750] [PMID: 26791385]
[57]
Jegerschöld, C.; Pawelzik, S-C.; Purhonen, P.; Bhakat, P.; Gheorghe, K.R.; Gyobu, N.; Mitsuoka, K.; Morgenstern, R.; Jakobsson, P-J.; Hebert, H. Structural basis for induced formation of the inflammatory mediator prostaglandin E2. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11110-11115.
[http://dx.doi.org/10.1073/pnas.0802894105] [PMID: 18682561]
[58]
Bahia, M.S.; Katare, Y.K.; Silakari, O.; Vyas, B.; Silakari, P. Inhibitors of microsomal prostaglandin E2 synthase-1 enzyme as emerging anti-inflammatory candidates. Med. Res. Rev., 2014, 34(4), 825-855.
[http://dx.doi.org/10.1002/med.21306] [PMID: 25019142]
[59]
Koeberle, A.; Werz, O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem. Pharmacol., 2015, 98(1), 1-15.
[http://dx.doi.org/10.1016/j.bcp.2015.06.022] [PMID: 26123522]
[60]
Sjögren, T.; Nord, J.; Ek, M.; Johansson, P.; Liu, G.; Geschwindner, S. Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 3806-3811.
[http://dx.doi.org/10.1073/pnas.1218504110] [PMID: 23431194]
[61]
Hamza, A.; Tong, M.; AbdulHameed, M.D.; Liu, J.; Goren, A.C.; Tai, H.H.; Zhan, C.G. Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: Insights from computational alanine scanning and site-directed mutagenesis. J. Phys. Chem. B, 2010, 114(16), 5605-5616.
[http://dx.doi.org/10.1021/jp100668y] [PMID: 20369883]
[62]
Ho, J.D.; Lee, M.R.; Rauch, C.T.; Aznavour, K.; Park, J.S.; Luz, J.G.; Antonysamy, S.; Condon, B.; Maletic, M.; Zhang, A.; Hickey, M.J.; Hughes, N.E.; Chandrasekhar, S.; Sloan, A.V.; Gooding, K.; Harvey, A.; Yu, X-P.; Kahl, S.D.; Norman, B.H. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP). Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(2), 129800.
[http://dx.doi.org/10.1016/j.bbagen.2020.129800] [PMID: 33246032]
[63]
Sasaki, Y.; Nakatani, Y.; Hara, S. Role of microsomal prostaglandin E synthase-1 (mPGES-1)-derived prostaglandin E2 in colon carcinogenesis. Prostaglandins Other Lipid Mediat., 2015, 121(Pt A), 42-45.
[http://dx.doi.org/10.1016/j.prostaglandins.2015.06.006] [PMID: 26150361]
[64]
Jia, Z.; Liu, G.; Sun, Y.; Kakizoe, Y.; Guan, G.; Zhang, A.; Zhou, S-F.; Yang, T. mPGES-1-derived PGE2 mediates dehydration natriuresis. Am. J. Physiol. Renal Physiol., 2013, 304(2), F214-F221.
[http://dx.doi.org/10.1152/ajprenal.00588.2011] [PMID: 23171554]
[65]
Psarra, A.; Nikolaou, A.; Kokotou, M.G.; Limnios, D.; Kokotos, G. Microsomal prostaglandin E2 synthase-1 inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(9), 1047-1059.
[http://dx.doi.org/10.1080/13543776.2017.1344218] [PMID: 28627961]
[66]
Jin, Y.; Smith, C.L.; Hu, L.; Campanale, K.M.; Stoltz, R.; Huffman, L.G., Jr; McNearney, T.A.; Yang, X.Y.; Ackermann, B.L.; Dean, R.; Regev, A.; Landschulz, W. Pharmacodynamic comparison of LY3023703, a novel microsomal prostaglandin e synthase 1 inhibitor, with celecoxib. Clin. Pharmacol. Ther., 2016, 99(3), 274-284.
[http://dx.doi.org/10.1002/cpt.260] [PMID: 26351780]
[67]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[68]
Zhao, L.; Ciallella, H.L.; Aleksunes, L.M.; Zhu, H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov. Today, 2020, 25(9), 1624-1638.
[http://dx.doi.org/10.1016/j.drudis.2020.07.005] [PMID: 32663517]
[69]
Surabhi, S.; Singh, B. Computer aided drug design: An overview. J. Drug Deliv. Ther., 2018, 8(5), 504-509.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[70]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement. (N.Y.), 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[71]
Yu, W.; Jr., MacKerell, A.D. Jr. Computer-aided drug design methods. Antibiot. Methods Protoc., 2017, 1520, 85-106.
[72]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[73]
Idris, M.O.; Yekeen, A.A.; Alakanse, O.S.; Durojaye, O.A. Computer-aided screening for potential TMPRSS2 inhibitors: A combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn., 2020, 39(15), 5638-5656.
[PMID: 32672528]
[74]
Li, Q.; Wang, Z.; Zheng, Q.; Liu, S. Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2. Comput. Struct. Biotechnol. J., 2020, 18, 2200-2208.
[http://dx.doi.org/10.1016/j.csbj.2020.08.016] [PMID: 32868983]
[75]
Elmezayen, A.D.; Al-Obaidi, A.; Şahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn., 2021, 39(8), 2980-2992.
[PMID: 32306862]
[76]
Huggins, D.J. Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2. J. Mol. Graph. Model., 2020, 100, 107710.
[http://dx.doi.org/10.1016/j.jmgm.2020.107710] [PMID: 32829149]
[77]
Waltenberger, B.; Wiechmann, K.; Bauer, J.; Markt, P.; Noha, S.M.; Wolber, G.; Rollinger, J.M.; Werz, O.; Schuster, D.; Stuppner, H. Pharmacophore modeling and virtual screening for novel acidic inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1). J. Med. Chem., 2011, 54(9), 3163-3174.
[http://dx.doi.org/10.1021/jm101309g] [PMID: 21466167]
[78]
Noha, S.M.; Fischer, K.; Koeberle, A.; Garscha, U.; Werz, O.; Schuster, D. Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorg. Med. Chem., 2015, 23(15), 4839-4845.
[http://dx.doi.org/10.1016/j.bmc.2015.05.045] [PMID: 26088337]
[79]
Hamza, A.; Zhao, X.; Tong, M.; Tai, H-H.; Zhan, C-G. Novel human mPGES-1 inhibitors identified through structure-based virtual screening. Bioorg. Med. Chem., 2011, 19(20), 6077-6086.
[http://dx.doi.org/10.1016/j.bmc.2011.08.040] [PMID: 21920764]
[80]
Bauer, J.; Waltenberger, B.; Noha, S.M.; Schuster, D.; Rollinger, J.M.; Boustie, J.; Chollet, M.; Stuppner, H.; Werz, O. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem, 2012, 7(12), 2077-2081.
[http://dx.doi.org/10.1002/cmdc.201200345] [PMID: 23109349]
[81]
Kharkar, P.S.; Borhade, S.; Dangi, A.; Warrier, S. In search of novel anti-inflammatory agents: Computational repositioning of approved drugs. J. Comput. Sci., 2015, 10, 217-224.
[http://dx.doi.org/10.1016/j.jocs.2015.01.002]
[82]
Corso, G.; Alisi, M.A.; Cazzolla, N.; Coletta, I.; Furlotti, G.; Garofalo, B.; Mangano, G.; Mancini, F.; Vitiello, M.; Ombrato, R. A novel multi-step virtual screening for the identification of human and mouse mPGES-1 inhibitors. Mol. Inform., 2016, 35(8-9), 358-368.
[http://dx.doi.org/10.1002/minf.201600024] [PMID: 27546040]
[83]
Zhou, Z.; Yuan, Y.; Zhou, S.; Ding, K.; Zheng, F.; Zhan, C-G. Selective inhibitors of human mPGES-1 from structure-based computational screening. Bioorg. Med. Chem. Lett., 2017, 27(16), 3739-3743.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.075] [PMID: 28689972]
[84]
Shekfeh, S.; Çalışkan, B.; Fischer, K.; Yalçın, T.; Garscha, U.; Werz, O.; Banoglu, E. A multi‐step virtual screening protocol for identification of novel non‐acidic microsomal prostaglandin E2 synthase‐1 (MPGES‐1) inhibitors. Chem. Med. Chem., 2019, 14(2), 273-281.
[85]
Chini, M.G.; Giordano, A.; Potenza, M.; Terracciano, S.; Fischer, K.; Vaccaro, M.C.; Colarusso, E.; Bruno, I.; Riccio, R.; Koeberle, A.; Werz, O.; Bifulco, G. Targeting mPGES-1 by a combinatorial approach: Identification of the aminobenzothiazole scaffold to suppress PGE2 levels. ACS Med. Chem. Lett., 2020, 11(5), 783-789.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00618] [PMID: 32435385]
[86]
Zhou, S.; Zhou, Z.; Ding, K.; Yuan, Y.; Loftin, C.; Zheng, F.; Zhan, C-G. DREAM-in-CDM approach and identification of a new generation of anti-inflammatory drugs targeting mPGES-1. Sci. Rep., 2020, 10(1), 10187.
[http://dx.doi.org/10.1038/s41598-020-67283-0] [PMID: 32576928]
[87]
De Simone, R.; Chini, M.G.; Bruno, I.; Riccio, R.; Mueller, D.; Werz, O.; Bifulco, G. Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: Promising hits for the development of new anti-inflammatory agents. J. Med. Chem., 2011, 54(6), 1565-1575.
[http://dx.doi.org/10.1021/jm101238d] [PMID: 21323313]
[88]
Park, S-J.; Han, S-G.; Ahsan, H.M.; Lee, K.; Lee, J.Y.; Shin, J-S.; Lee, K-T.; Kang, N-S.; Yu, Y.G. Identification of novel mPGES-1 inhibitors through screening of a chemical library. Bioorg. Med. Chem. Lett., 2012, 22(24), 7335-7339.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.085] [PMID: 23147075]
[89]
He, S.; Li, C.; Liu, Y.; Lai, L. Discovery of highly potent microsomal prostaglandin e2 synthase 1 inhibitors using the active conformation structural model and virtual screen. J. Med. Chem., 2013, 56(8), 3296-3309.
[http://dx.doi.org/10.1021/jm301900x] [PMID: 23527738]
[90]
Huang, X.; Yan, W.; Gao, D.; Tong, M.; Tai, H-H.; Zhan, C-G. Structural and functional characterization of human microsomal prostaglandin E synthase-1 by computational modeling and site-directed mutagenesis. Bioorg. Med. Chem., 2006, 14(10), 3553-3562.
[http://dx.doi.org/10.1016/j.bmc.2006.01.010] [PMID: 16439136]
[91]
Gupta, A.; Aparoy, P. Insights into the structure activity relationship of mPGES-1 inhibitors: Hints for better inhibitor design. Int. J. Biol. Macromol., 2016, 88, 624-632.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.038] [PMID: 27012893]
[92]
Gupta, A.; Chaudhary, N.; Aparoy, P. MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. Int. J. Biol. Macromol., 2018, 119, 352-359.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.050] [PMID: 30031079]
[93]
He, S.; Lai, L. Molecular docking and competitive binding study discovered different binding modes of microsomal prostaglandin E synthase-1 inhibitors. J. Chem. Inf. Model., 2011, 51(12), 3254-3261.
[http://dx.doi.org/10.1021/ci200427k] [PMID: 22077876]
[94]
Ding, K.; Zhou, Z.; Hou, S.; Yuan, Y.; Zhou, S.; Zheng, X.; Chen, J.; Loftin, C.; Zheng, F.; Zhan, C-G. Structure-based discovery of mPGES-1 inhibitors suitable for preclinical testing in wild-type mice as a new generation of anti-inflammatory drugs. Sci. Rep., 2018, 8(1), 5205.
[http://dx.doi.org/10.1038/s41598-018-23482-4] [PMID: 29581541]
[95]
Luz, J.G.; Antonysamy, S.; Kuklish, S.L.; Condon, B.; Lee, M.R.; Allison, D.; Yu, X-P.; Chandrasekhar, S.; Backer, R.; Zhang, A.; Russell, M.; Chang, S.S.; Harvey, A.; Sloan, A.V.; Fisher, M.J. Crystal structures of mPGES-1 inhibitor complexes form a basis for the rational design of potent analgesic and anti-inflammatory therapeutics. J. Med. Chem., 2015, 58(11), 4727-4737.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00330] [PMID: 25961169]
[96]
Lee, K.; Pham, V.C.; Choi, M.J.; Kim, K.J.; Lee, K-T.; Han, S-G.; Yu, Y.G.; Lee, J.Y. Fragment-based discovery of novel and selective mPGES-1 inhibitors Part 1: Identification of sulfonamido-1,2,3-triazole-4,5-dicarboxylic acid. Bioorg. Med. Chem. Lett., 2013, 23(1), 75-80.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.019] [PMID: 23218602]
[97]
Lauro, G.; Manfra, M.; Pedatella, S.; Fischer, K.; Cantone, V.; Terracciano, S.; Bertamino, A.; Ostacolo, C.; Gomez-Monterrey, I.; De Nisco, M.; Riccio, R.; Novellino, E.; Werz, O.; Campiglia, P.; Bifulco, G. Identification of novel microsomal prostaglandin E2 synthase-1 (mPGES-1) lead inhibitors from Fragment Virtual Screening. Eur. J. Med. Chem., 2017, 125, 278-287.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.042] [PMID: 27688183]
[98]
Lauro, G.; Terracciano, S.; Cantone, V.; Ruggiero, D.; Fischer, K.; Pace, S.; Werz, O.; Bruno, I.; Bifulco, G. A combinatorial virtual screening approach driving the synthesis of 2,4-thiazolidinedione-based molecules as new dual mPGES-1/5-LO inhibitors. ChemMedChem, 2020, 15(6), 481-489.
[http://dx.doi.org/10.1002/cmdc.201900694] [PMID: 32022480]
[99]
Di Micco, S.; Terracciano, S.; Cantone, V.; Fischer, K.; Koeberle, A.; Foglia, A.; Riccio, R.; Werz, O.; Bruno, I.; Bifulco, G. Discovery of new potent molecular entities able to inhibit mPGES-1. Eur. J. Med. Chem., 2018, 143, 1419-1427.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.039] [PMID: 29133047]
[100]
AbdulHameed, M.D.; Hamza, A.; Liu, J.; Huang, X.; Zhan, C.G. Human microsomal prostaglandin E synthase-1 (mPGES-1) binding with inhibitors and the quantitative structure-activity correlation. J. Chem. Inf. Model., 2008, 48(1), 179-185.
[http://dx.doi.org/10.1021/ci700315c] [PMID: 18052142]
[101]
Chen, C.Y-C. Pharmacoinformatics approach for MPGES-1 in anti-inflammation by 3D-QSAR pharmacophore mapping. J. Taiwan Inst. Chem. Eng., 2009, 40(2), 155-161.
[http://dx.doi.org/10.1016/j.jtice.2008.07.010]
[102]
Chang, T-T.; Sun, M-F.; Wong, Y-H.; Yang, S-C.; Chen, K-C.; Chen, H-Y.; Tsai, F-J.; Chen, C.Y-C. Drug design for MPGES-1 from traditional chinese medicine database: A screening, docking, QSAR, molecular dynamics, and pharmacophore mapping study. J. Taiwan Inst. Chem. Eng., 2011, 42(4), 580-591.
[http://dx.doi.org/10.1016/j.jtice.2010.11.009]
[103]
Misra, S.; Saini, M.; Ojha, H.; Sharma, D.; Sharma, K. Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity. SAR QSAR Environ. Res., 2017, 28(1), 17-39.
[http://dx.doi.org/10.1080/1062936X.2016.1273971] [PMID: 28094550]
[104]
Fasihi Mohd Aluwi, M.F.; Rullah, K.; Koeberle, A.; Werz, O.; Abdul Razak, N.S.; Wei, L.S.; Salim, F.; Ismail, N.H.; Jantan, I.; Wai, L.K. Design and synthesis of a novel MPGES-1 lead inhibitor guided by 3D-QSAR CoMFA. J. Mol. Struct., 2019, 1196, 844-850.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.004]
[105]
Woolbright, B.L.; Pilbeam, C.C.; Taylor, J.A., III Prostaglandin E2 as a therapeutic target in bladder cancer: From basic science to clinical trials. Prostaglandins Other Lipid Mediat., 2020, 148, 106409.
[http://dx.doi.org/10.1016/j.prostaglandins.2020.106409] [PMID: 31931078]
[106]
Samuelsson, B.; Morgenstern, R.; Jakobsson, P-J. Membrane prostaglandin E synthase-1: A novel therapeutic target. Pharmacol. Rev., 2007, 59(3), 207-224.
[http://dx.doi.org/10.1124/pr.59.3.1] [PMID: 17878511]
[107]
Iyer, J.P.; Srivastava, P.K.; Dev, R.; Dastidar, S.G.; Ray, A. Prostaglandin E(2) synthase inhibition as a therapeutic target. Expert Opin. Ther. Targets, 2009, 13(7), 849-865.
[http://dx.doi.org/10.1517/14728220903018932] [PMID: 19530988]
[108]
Larsson, K.; Kock, A.; Idborg, H.; Arsenian Henriksson, M.; Martinsson, T.; Johnsen, J.I.; Korotkova, M.; Kogner, P.; Jakobsson, P-J. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc. Natl. Acad. Sci. USA, 2015, 112(26), 8070-8075.
[http://dx.doi.org/10.1073/pnas.1424355112] [PMID: 26080408]
[109]
Avendaño, M.S.; García-Redondo, A.B.; Zalba, G.; González-Amor, M.; Aguado, A.; Martínez-Revelles, S.; Beltrán, L.M.; Camacho, M.; Cachofeiro, V.; Alonso, M.J.; Salaices, M.; Briones, A.M. mPGES-1 (Microsomal Prostaglandin E Synthase-1) mediates vascular dysfunction in hypertension through oxidative stress. Hypertension, 2018, 72(2), 492-502.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10833] [PMID: 29891646]
[110]
Gomez, I.; Foudi, N.; Longrois, D.; Norel, X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 89(2-3), 55-63.
[http://dx.doi.org/10.1016/j.plefa.2013.04.004] [PMID: 23756023]
[111]
Chen, Y.; Liu, H.; Xu, S.; Wang, T.; Li, W. Targeting microsomal prostaglandin E 2 synthase-1 (MPGES-1): The development of inhibitors as an alternative to Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). MedChemComm, 2015, 6(12), 2081-2123.
[http://dx.doi.org/10.1039/C5MD00278H]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy