Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antimutagenic and Antiproliferative Activity of the Coccoloba uvifera L. Extract Loaded in Nanofibers of Gelatin/Agave Fructans Elaborated by Electrospinning

Author(s): Carla N. Cruz-Salas, Cristina Prieto, Montserrat Calderón-Santoyo, José M. Lagarón, Jorge A. Ramos-Hernández and Juan A. Ragazzo-Sánchez*

Volume 22, Issue 15, 2022

Published on: 29 April, 2022

Page: [2788 - 2798] Pages: 11

DOI: 10.2174/1871520622666220316161957

Price: $65

Abstract

Background: The Coccoloba uvifera L. species is currently considered an important source of compounds of high biological value such as lupeol. This is related to different and important biological activities to human health.

Objective: The objective of this study was to encapsulate the C. uvifera extract in nanofibers made with the biopolymers gelatin (G)/high-grade polymerization agave fructans (HDPAF) in the proportions 1:0, 1:1, 1:2, 1:3 and 0:1, through the electrospinning process, in addition to evaluating the antimutagenic and antiproliferative properties of the encapsulated extract.

Methods: The physicochemical characteristics of the nanofibers were evaluated, as well as the antiproliferative and antimutagenic activities of the encapsulated and unencapsulated extract. SEM evaluation shows nanofibers of smooth, continuous morphology and nanometric size (50-250 nm). The TGA, FTIR-ATR, HPLC-MS analyses reveal the presence of the extract in the nanofibers.

Results: The extract did not show a mutagenic effect during the development of the Ames test, on the other hand, the MTT test showed the antiproliferative effect at the concentrations of 50 and 100 μg/mL of extract.

Conclusion: The extract of C. uvifera loaded in nanofibers elaborated by electrospinning with the G/HDPAF biopolymers conserves its antimutagenic and antiproliferative properties.

Keywords: Biopolymers, nanofibers, encapsulation, Coccoloba uvifera, electrospinning, high grade polymerization agave fructans.

Graphical Abstract

[1]
Cruz-Salas, C.N.; Prieto, C.; Calderón-Santoyo, M.; Lagarón, J.M.; Ragazzo-Sánchez, J.A. Micro- and nanostructures of Agave fructans to stabilize compounds of high biological value via electrohydrodynamic processing. Nanomaterials (Basel), 2019, 9(12), 1-12.
[http://dx.doi.org/10.3390/nano9121659] [PMID: 31766573]
[2]
Ramos-Hernández, J.A.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; Ortiz-Basurto, R.I.; Prieto, C.; Lagaron, J.M. Use of electrosprayed Agave fructans as nanoencapsulating hydrocolloids for bioactives. Nanomaterials (Basel), 2018, 8(11), 868.
[http://dx.doi.org/10.3390/nano8110868] [PMID: 30360537]
[3]
Lopez, M.G.; Mancilla-Margalli, N.A.; Mendoza-Diaz, G. Molecular structures of fructans from Agave tequilana Weber var. azul. J. Agric. Food Chem., 2003, 51(27), 7835-7840.
[http://dx.doi.org/10.1021/jf030383v] [PMID: 14690361]
[4]
Rodríguez-González, F.; Parra-Montes de Oca, M.A.; Ávila-Reyes, S.V.; Camacho-Díaz, B.H.; Alamilla-Beltrán, L.; Jiménez-Aparicio, A.R.; Arenas-Ocampo, M.L. A rheological study of chicory and Agave tequilana fructans for use in foods. Lebensm. Wiss. Technol., 2019, 115(May), 108137.
[http://dx.doi.org/10.1016/j.lwt.2019.05.035]
[5]
Mancilla-Margalli, N.A.; López, M.G. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J. Agric. Food Chem., 2006, 54(20), 7832-7839.
[http://dx.doi.org/10.1021/jf060354v] [PMID: 17002459]
[6]
Farías Cervantes, V.S.; Delgado Lincon, E.; Solís Soto, A.; Medrano Roldan, H.; Andrade González, I. Effect of spray drying temperature and Agave fructans concentration as carrier agent on the quality properties of blackberry powder. Int. J. Food Eng., 2016, 12(5), 451-459.
[http://dx.doi.org/10.1515/ijfe-2015-0287]
[7]
Andrade, A.I.C.; Bautista, C.R.; Cabrera, M.A.R.; Guerra, R.E.S.; Chávez, E.G.; Ahumada, C.F.; Lagunes, A.G. Agave salmiana fructans as gut health promoters: Prebiotic activity and inflammatory response in Wistar healthy rats. Int. J. Biol. Macromol., 2019, 136, 785-795.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.045] [PMID: 31189087]
[8]
Miramontes-Corona, C.; Escalante, A.; Delgado, E.; Corona-González, R.I.; Vázquez-Torres, H.; Toriz, G. Hydrophobic Agave fructans for sustained drug delivery to the human colon. React. Funct. Polym., 2020, 146, 104396.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104396]
[9]
Dobrange, E.; Peshev, D.; Loedolff, B.; Van den Ende, W. Fructans as immunomodulatory and antiviral agents: The case of Echinacea. Biomolecules, 2019, 9(10), 1-12.
[http://dx.doi.org/10.3390/biom9100615] [PMID: 31623122]
[10]
Ranganathan, S.; Balagangadharan, K.; Selvamurugan, N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int. J. Biol. Macromol., 2019, 133, 354-364.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.115] [PMID: 31002907]
[11]
Dulnik, J.; Denis, P.; Sajkiewicz, P.; Kołbuk, D.; Choińska, E. Biodegradation of bicomponent PCL/Gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polym. Degrad. Stabil., 2016, 130, 10-21.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.05.022]
[12]
Bakhsheshi-Rad, H.R.; Hadisi, Z.; Hamzah, E.; Ismail, A.F.; Aziz, M.; Kashefian, M. Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy. Mater. Lett., 2017, 207, 179-182.
[http://dx.doi.org/10.1016/j.matlet.2017.07.072]
[13]
Ghorani, B.; Tucker, N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll., 2015, 51, 227-240.
[http://dx.doi.org/10.1016/j.foodhyd.2015.05.024]
[14]
Baiguera, S.; Del Gaudio, C.; Lucatelli, E.; Kuevda, E.; Boieri, M.; Mazzanti, B.; Bianco, A.; Macchiarini, P. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials, 2014, 35(4), 1205-1214.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.060] [PMID: 24215734]
[15]
Jing, X.; Salick, M.R.; Cordie, T.; Mi, H.Y.; Peng, X.F.; Turng, L.S. Electrospinning homogeneous nanofibrous poly(propylene car-bonate)/gelatin composite scaffolds for tissue engineering. Ind. Eng. Chem. Res., 2014, 53(22), 9391-9400.
[http://dx.doi.org/10.1021/ie500762z]
[16]
Ren, K.; Wang, Y.; Sun, T.; Yue, W.; Zhang, H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regener-ation membranes. Mater. Sci. Eng. C, 2017, 78, 324-332.
[http://dx.doi.org/10.1016/j.msec.2017.04.084] [PMID: 28575991]
[17]
Jalaja, K.; James, N.R. Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. Int. J. Biol. Macromol., 2015, 73(1), 270-278.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.018] [PMID: 25478965]
[18]
Pan, J.F.; Liu, N.H.; Sun, H.; Xu, F. Preparation and characterization of electrospun PLCL/Poloxamer nanofibers and dextran/gelatin hy-drogels for skin tissue engineering. PLoS One, 2014, 9(11), e112885.
[http://dx.doi.org/10.1371/journal.pone.0112885] [PMID: 25405611]
[19]
Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.L.; Alam, M.S.; Gupta, B. Composite wound dressings of pectin and gelatin with Aloe vera and curcumin as bioactive agents. Int. J. Biol. Macromol., 2016, 82, 104-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087] [PMID: 26529192]
[20]
Jin, G.; Prabhakaran, M.P.; Kai, D.; Ramakrishna, S. Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A)(3 PART A), 689-698.
[http://dx.doi.org/10.1016/j.ejpb.2013.06.002] [PMID: 23791682]
[21]
Dias, J.R.; Baptista-Silva, S.; Oliveira, C.M.T.d.; Sousa, A.; Oliveira, A.L.; Bártolo, P.J.; Granja, P.L. In situ crosslinked electrospun gelatin nanofibers for skin regeneration. Eur. Polym. J., 2017, 95(April), 161-173.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.015]
[22]
Schiffman, J.D.; Schauer, C.L.A. Review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. (Phila. Pa.), 2008, 48(2), 317-352.
[http://dx.doi.org/10.1080/15583720802022182]
[23]
Mercante, L.A.; Scagion, V.P.; Migliorini, F.L.; Mattoso, L.H.C.; Correa, D.S. Electrospinning-based (bio)sensors for food and agricultural applications: A review. Trends Analyt. Chem., 2017, 91, 91-103.
[http://dx.doi.org/10.1016/j.trac.2017.04.004]
[24]
Zong, H.; Xia, X.; Liang, Y.; Dai, S.; Alsaedi, A.; Hayat, T.; Kong, F.; Pan, J.H. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater. Sci. Eng. C, 2018, 92(September), 1075-1091.
[http://dx.doi.org/10.1016/j.msec.2017.11.007] [PMID: 30184730]
[25]
Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 2018, 11(8), 1165-1188.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.015]
[26]
Kai, D.; Liow, S.S.; Loh, X.J. Biodegradable polymers for electrospinning: Towards biomedical applications. Mater. Sci. Eng. C, 2014, 45, 659-670.
[http://dx.doi.org/10.1016/j.msec.2014.04.051] [PMID: 25491875]
[27]
Wen, P.; Zong, M.H.; Linhardt, R.J.; Feng, K.; Wu, H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci. Technol., 2017, 70, 56-68.
[http://dx.doi.org/10.1016/j.tifs.2017.10.009]
[28]
Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, J.M. Preparation, characterization and antimicro-bial properties of electrospun polylactide films containing Allium ursinum L. Extract. Food Packag. Shelf Life, 2019, 21(July), 100357.
[http://dx.doi.org/10.1016/j.fpsl.2019.100357]
[29]
Parvez, M.K.; Alam, P.; Arbab, A.H.; Al-Dosari, M.S.; Alhowiriny, T.A.; Alqasoumi, S.I. Analysis of antioxidative and antiviral bi-omarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm. J., 2018, 26(5), 685-693.
[http://dx.doi.org/10.1016/j.jsps.2018.02.022] [PMID: 29991912]
[30]
Ramos-Hernández, J.A.; Calderón-Santoyo, M.; Navarro-Ocaña, A.; Barros-Castillo, J.C.; Ragazzo-Sánchez, J.A. Use of emerging technol-ogies in the extraction of lupeol, α-amyrin and β-amyrin from sea grape (Coccoloba uvifera L.). J. Food Sci. Technol., 2018, 55(7), 2377-2383.
[http://dx.doi.org/10.1007/s13197-018-3152-8] [PMID: 30042552]
[31]
Siddique, H.R.; Saleem, M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Sci., 2011, 88(7-8), 285-293.
[http://dx.doi.org/10.1016/j.lfs.2010.11.020] [PMID: 21118697]
[32]
Nyaboke, H.O.; Moraa, M.; Omosa, L.K.; Mbaveng, A.T.; Vaderament-Alexe, N-N.; Masila, V.; Okemwa, E.; Heydenreich, M.; Efferth, T.; Kuete, V. Cytotoxicity of lupeol from the stem bark of Zanthoxylum gilletii against multi-factorial drug resistant cancer cell lines. Inves-tig. Med. Chem. Pharmacol., 2018, 1(1), 10.
[33]
Gallo, M.B.C.; Sarachine, M.J. Biological activities of lupeol. Int J Biomed Pharmaceut Sci., 2009, 3(1), 46-66.
[34]
Khan, N.; Khan, I.; Azam, S.; Ahmad, F.; Khan, H.A.; Shah, A.; Ullah, M. Potential cytotoxic and mutagenic effect of Pinus wallichiana, Daphne oleiodes and Bidens chinensis. Saudi J. Biol. Sci., 2021, 28(8), 4793-4799.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.005] [PMID: 34354468]
[35]
Gao, L.; Schäfer, C.; O’Reardon, K.; Gorgus, E.; Schulte-Hubbert, R.; Schrenk, D. The mutagenic potency of onion juice vs. its contents of quercetin and rutin. Food Chem. Toxicol., 2021, 148, 111923.
[http://dx.doi.org/10.1016/j.fct.2020.111923] [PMID: 33316355]
[36]
Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int. J. Biol. Macromol., 2018, 107(Pt B), 1888-1897.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.056] [PMID: 29037874]
[37]
Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res., 1983, 113(3-4), 173-215.
[http://dx.doi.org/10.1016/0165-1161(83)90010-9] [PMID: 6341825]
[38]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[39]
Ganzera, M.; Sturm, S. Recent advances on HPLC/MS in medicinal plant analysis-an update covering 2011-2016. J. Pharm. Biomed. Anal., 2018, 147, 211-233.
[http://dx.doi.org/10.1016/j.jpba.2017.07.038] [PMID: 28823765]
[40]
Ratanavaraporn, J.; Rangkupan, R.; Jeeratawatchai, H.; Kanokpanont, S.; Damrongsakkul, S. Influences of physical and chemical cross-linking techniques on electrospun type A and B gelatin fiber mats. Int. J. Biol. Macromol., 2010, 47(4), 431-438.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.06.008] [PMID: 20637227]
[41]
Deng, L.; Kang, X.; Liu, Y.; Feng, F.; Zhang, H. Effects of surfactants on the formation of gelatin nanofibres for controlled release of cur-cumin. Food Chem., 2017, 231, 70-77.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.027] [PMID: 28450025]
[42]
Cleeton, C.; Keirouz, A.; Chen, X.; Radacsi, N. Electrospun nanofibers for drug delivery and biosensing. ACS Biomater. Sci. Eng., 2019, 5(9), 4183-4205.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00853] [PMID: 33417777]
[43]
Mohammad Ali Zadeh, M.; Keyanpour-Rad, M.; Ebadzadeh, T. Effect of viscosity of polyvinyl alcohol solution on morphology of the electrospun mullite nanofibres. Ceram. Int., 2014, 40(4), 5461-5466.
[http://dx.doi.org/10.1016/j.ceramint.2013.10.132]
[44]
Pérez-Masiá, R.; Lagaron, J.M.; Lopez-Rubio, A. Morphology and stability of edible lycopene-containing micro- and nanocapsules pro-duced through electrospraying and spray drying. Food Bioprocess Technol., 2015, 8(2), 459-470.
[http://dx.doi.org/10.1007/s11947-014-1422-7]
[45]
Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll., 2014, 39, 19-26.
[http://dx.doi.org/10.1016/j.foodhyd.2013.12.022]
[46]
Kołbuk, D.; Sajkiewicz, P.; Maniura-Weber, K.; Fortunato, G. Structure and morphology of electrospun polycaprolactone/gelatine nano-fibres. Eur. Polym. J., 2013, 49(8), 2052-2061.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.04.036]
[47]
Ewaldz, E.; Brettmann, B. Molecular interactions in electrospinning: From polymer mixtures to supramolecular assemblies. ACS Appl. Polym. Mater., 2019, 1(3), 298-308.
[http://dx.doi.org/10.1021/acsapm.8b00073]
[48]
Espinosa-Andrews, H.; Urias-Silvas, J.E. Thermal properties of Agave fructans (Agave Tequilana Weber Var. Azul). Carbohydr. Polym., 2012, 87(4), 2671-2676.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.053]
[49]
Nguyen, D.T.; Dinh, V.T.; Dang, L.H.; Nguyen, D.N.; Giang, B.L.; Nguyen, C.T.; Nguyen, T.B.T.; Thu, L.V.; Tran, N.Q. Dual interactions of amphiphilic gelatin copolymer and nanocurcumin improving the delivery efficiency of the nanogels. Polymers (Basel), 2019, 11(5), E814.
[http://dx.doi.org/10.3390/polym11050814] [PMID: 31067644]
[50]
Pourjavadi, A.; Soleyman, R. Silver nanoparticles with gelatin nanoshells: Photochemical facile green synthesis and their antimicrobial activity. J. Nanopart. Res., 2011, 13(10), 4647-4658.
[http://dx.doi.org/10.1007/s11051-011-0428-6]
[51]
Ahammed, S.; Liu, F.; Khin, M.N.; Yokoyama, W.H.; Zhong, F. Improvement of the water resistance and ductility of gelatin film by zein. Food Hydrocoll., 2020, 105, 105804A.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105804]
[52]
Deng, L.; Zhang, X.; Li, Y.; Que, F.; Kang, X.; Liu, Y.; Feng, F.; Zhang, H. Characterization of gelatin/zein nanofibers by hybrid electro-spinning. Food Hydrocoll., 2018, 75, 72-80.
[http://dx.doi.org/10.1016/j.foodhyd.2017.09.011]
[53]
Tonda-Turo, C.; Cipriani, E.; Gnavi, S.; Chiono, V.; Mattu, C.; Gentile, P.; Perroteau, I.; Zanetti, M.; Ciardelli, G. Crosslinked gelatin nano-fibres: Preparation, characterisation and in vitro studies using glial-like cells. Mater. Sci. Eng. C, 2013, 33(5), 2723-2735.
[http://dx.doi.org/10.1016/j.msec.2013.02.039] [PMID: 23623089]
[54]
Wal, A.; Srivastava, R.S.; Wal, P.; Rai, A.; Sharma, S. Lupeol as a magical drug. Pharm. Biol. Eval., 2015, 2(5), 142-151.
[55]
Dantas, F.G.D.S.; Castilho, P.F.; Almeida-Apolonio, A.A.; Araújo, R.P.; Oliveira, K.M.P. Mutagenic potential of medicinal plants evaluated by the Ames Salmonella/microsome assay: A systematic review. Mutat. Res. Rev. Mutat. Res., 2020, 786, 108338.
[http://dx.doi.org/10.1016/j.mrrev.2020.108338] [PMID: 33339578]
[56]
Ramos-Hernández, J.A.; Calderón-Santoyo, M.; Burgos-Hernández, A.; García-Romo, J.S.; Navarro-Ocaña, A.; Burboa-Zazueta, M.G.; Sandoval-Petris, E.; Ragazzo-Sánchez, J.A. Antimutagenic, antiproliferative and antioxidant properties of sea grape leaf extract fractions (Coccoloba uvifera L.). Anticancer. Agents Med. Chem., 2021, 21(16), 2250-2257.
[http://dx.doi.org/10.2174/1871520621999210104201242] [PMID: 33397268]
[57]
Gautam, V.; Sharma, A.; Arora, S.; Bhardwaj, R.; Ahmad, A.; Ahamad, B.; Ahmad, P. In-vitro antioxidant, antimutagenic and cancer cell growth inhibition activities of Rhododendron arboreum leaves and flowers. Saudi J. Biol. Sci., 2020, 27(7), 1788-1796.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.030] [PMID: 32565697]
[58]
Basgedik, B.; Ugur, A.; Sarac, N. Antimicrobial, antioxidant and antimutagenic properties of Iris albicans. Ind. Crops Prod., 2015, 69, 480-484.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.060]
[59]
Zahin, M.; Aqil, F.; Ahmad, I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat. Res., 2010, 703(2), 99-107.
[http://dx.doi.org/10.1016/j.mrgentox.2010.08.001] [PMID: 20708098]
[60]
Kim, Y-J.; Park, M.R.; Kim, M.S.; Kwon, O.H. Polyphenol-loaded polycaprolactone nanofibers for effective growth inhibition of human cancer cells. Mater. Chem. Phys., 2012, 133(2–3), 674-680.
[http://dx.doi.org/10.1016/j.matchemphys.2012.01.050]
[61]
Ruiz-Montañez, G.; Burgos-Hernández, A.; Calderón-Santoyo, M.; López-Saiz, C.M.; Velázquez-Contreras, C.A.; Navarro-Ocaña, A.; Ragazzo-Sánchez, J.A. Screening antimutagenic and antiproliferative properties of extracts isolated from Jackfruit pulp (Artocarpus hetero-phyllus Lam). Food Chem., 2015, 175, 409-416.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.122] [PMID: 25577099]
[62]
Torres Moreno, H.; Ianni, F.; Robles Zepeda, R.E.; López-Romero, J.C.; Vidal-Gutiérrez, M.; Jocobi Durán, M.D.; Galarini, R.; Ca-maioni, E.; Sardella, R.; Marcotullio, M.C. Quantitative analysis of cucurbitane-type triterpenes in Ibervillea sonorae extracts: Relation-ship study with their antiproliferative activity. Steroids, 2020, 161, 108676.
[http://dx.doi.org/10.1016/j.steroids.2020.108676]
[63]
Sahin Yaglioglu, A.; Eser, F. Screening of some Juniperus extracts for the phenolic compounds and their antiproliferative activities. S. Afr. J. Bot., 2017, 113, 29-33.
[http://dx.doi.org/10.1016/j.sajb.2017.07.005]
[64]
Raheel, R.; Saddiqe, Z.; Iram, M.; Afzal, S. In vitro antimitotic, antiproliferative and antioxidant activity of stem bark extracts of Ficus benghalensis L. S. Afr. J. Bot., 2017, 111, 248-257.
[http://dx.doi.org/10.1016/j.sajb.2017.03.037]
[65]
Abirami, S.; Priyalakshmi, M.; Soundariya, A.; Samrot, A.V.; Saigeetha, S.; Emilin, R.R.; Dhiva, S.; Inbathamizh, L. Antimicrobial activity, antiproliferative activity, amylase inhibitory activity and phytochemical analysis of ethanol extract of corn (Zea Mays L.) silk. Curr. Res. Green Sustain. Chem, 2021, 4(January), 100089.
[http://dx.doi.org/10.1016/j.crgsc.2021.100089]
[66]
Rivera-Aguilar, J.O.; Calderón-Santoyo, M.; González-Cruz, E.M.; Ramos-Hernández, J.A.; Ragazzo-Sánchez, J.A. Encapsulation by elec-trospraying of anticancer compounds from jackfruit extract (Artocarpus heterophyllus lam): identification, characterization and antiprolif-erative properties. Anticancer. Agents Med. Chem., 2021, 21(4), 523-531.
[http://dx.doi.org/10.2174/1871520620666200804102952] [PMID: 32753023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy