Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Low Melting Mixtures: Neoteric Solvents and/or Catalysts for a Green Approach to Organic Reactions

Author(s): Letcy V. Theresa, Shaibuna Machingal and Krishnapillai Sreekumar*

Volume 20, Issue 3, 2023

Published on: 01 August, 2022

Page: [212 - 226] Pages: 15

DOI: 10.2174/1570193X19666220314100418

Price: $65

conference banner
Abstract

In the past two decades, low melting mixtures have become attractive because of their interesting characteristics such as physicochemical properties, low cost of components, easiness of preparation, low toxicity, biorenewability and biodegradability. Carbohydrates the most important and widespread renewable compounds on earth, are introduced in low melting mixtures to get more cost-effective and renewable solvents. The present review mainly focuses on the properties and applications of low melting mixtures, which completely satisfy the green chemistry principles. Many physicochemical properties of low melting mixtures have been studied recently. The various studies included thermal stability, glass transition temperature, density, viscosity, acidity, surface tension, refractive index, FT-IR spectra, conductivity, etc. The application towards organic synthesis makes the low melting mixtures very important. Low melting mixtures and their use as a solvent in organic synthesis and their dual role as catalyst and solvent are discussed.

Keywords: Low melting mixture, neoteric, solvent, catalysts, organic reactions, biorenewability.

Graphical Abstract

[1]
Marsh, K.N.; Deer, A.; Wu, A.C.T.; Tran, E.; Klamt, A. Room temperature ionic liquids as replacements for conventional solvents-A review. Korean J. Chem. Eng., 2002, 19(3), 357-362.
[http://dx.doi.org/10.1007/BF02697140]
[2]
Joshi, D.; Adhikari, N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int., 2019, 28, 1-18.
[http://dx.doi.org/10.9734/jpri/2019/v28i330203]
[3]
Kerton, F.M. Alternative Solvents for Green Chemistry; RSC, Green Chemistry Book Series: Canada, 2009.
[4]
Kidwai, M.; Mohan, R. Green chemistry: An innovative technology. Found. Chem., 2005, 7(3), 269-287.
[http://dx.doi.org/10.1007/s10698-004-2783-1]
[5]
Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim., 2018, 21(6), 628-638.
[http://dx.doi.org/10.1016/j.crci.2018.04.002]
[6]
Flieger, J.; Flieger, M. Ionic liquids toxicity-benefits and threats. Int. J. Mol. Sci., 2020, 21(17), 6267-6308.
[http://dx.doi.org/10.3390/ijms21176267 ] [PMID: 32872533]
[7]
Wagle, D.V.; Zhao, H.; Baker, G.A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res., 2014, 47(8), 2299-2308.
[http://dx.doi.org/10.1021/ar5000488 ] [PMID: 24892971]
[8]
Russ, C.; König, B. Low melting mixtures in organic synthesis - an alternative to ionic liquids? Green Chem., 2012, 14(11), 2969-2982.
[http://dx.doi.org/10.1039/c2gc36005e]
[9]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, (1), 70-71.
[http://dx.doi.org/10.1039/b210714g ] [PMID: 12610970]
[10]
Poletti, L.; Chiappe, C.; Lay, L.; Pieraccini, D.; Polito, L.; Russo, G. Glucose-derived ionic liquids: Exploring low-cost sources for novel chiral solvents. Green Chem., 2007, 9(4), 337-341.
[http://dx.doi.org/10.1039/b615650a]
[11]
Imperato, G.; Eibler, E.; Niedermaier, J.; König, B. Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions. Chem. Commun. (Camb.), 2005, (9), 1170-1172.
[http://dx.doi.org/10.1039/B414515A ] [PMID: 15726181]
[12]
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13(1), 82-90.
[http://dx.doi.org/10.1039/C0GC00395F]
[13]
Maugeri, Z.; de Maria, P.D. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Adv., 2012, 2(2), 421-425.
[http://dx.doi.org/10.1039/C1RA00630D]
[14]
Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H. Bio ionic liquids: Room temperature ionic liquids composed wholly of biomaterials. Green Chem., 2007, 9(11), 1155-1157.
[http://dx.doi.org/10.1039/b706571j]
[15]
Leal-Duaso, A.; Pérez, P.; Mayoral, J.A.; Pires, E.; García, J.I. Glycerol as a source of designer solvents: Physicochemical properties of low melting mixtures containing glycerol ethers and ammonium salts. Phys. Chem. Chem. Phys., 2017, 19(41), 28302-28312.
[http://dx.doi.org/10.1039/C7CP04987K ] [PMID: 29034391]
[16]
Garcia, J.I.; Garcia-Marin, H.; Mayoral, J.A.; Perez, P. Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers. Green Chem., 2010, 12(3), 426-434.
[http://dx.doi.org/10.1039/b923631g]
[17]
Häkkinen, R.; Keyriläinen, P.W.; Ropponen, J.; Virtanen, T. Effect of composition and water content on physicochemical properties of choline chloride-boric acid low-melting mixtures. J. Mol. Liq., 2019, 280, 104-110.
[http://dx.doi.org/10.1016/j.molliq.2019.02.011]
[18]
Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Prediction of deep eutectic solvents densities at different temperatures. Thermochim. Acta, 2011, 515(1-2), 67-72.
[http://dx.doi.org/10.1016/j.tca.2010.12.022]
[19]
Fischer, V.; Kunz, W. Properties of sugar-based low-melting mixtures. Mol. Phys., 2014, 112(9-10), 1241-1245.
[http://dx.doi.org/10.1080/00268976.2014.884249]
[20]
Silva, L.P.; Fernandez, L.; Conceic, J.H.F.; Martins, M.A.R.; Sosa, A.; Ortega, J.; Pinho, S.P.; Coutinho, J.A.P. Design and characterization of sugar-based deep eutectic solvents using conductor-like screening model for real solvents. ACS Sustain. Chem. Eng., 2018, 6(8), 10724-10734.
[http://dx.doi.org/10.1021/acssuschemeng.8b02042]
[21]
Yadav, A.; Pandey, S. Densities and viscosities of (choline chloride+ urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J. Chem. Eng. Data, 2014, 59(7), 2221-2229.
[http://dx.doi.org/10.1021/je5001796]
[22]
Abe, M.; Fukaya, Y.; Ohno, H. Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem., 2010, 12(7), 1274-1280.
[http://dx.doi.org/10.1039/c003976d]
[23]
Pernak, J.; Borucka, N.; Walkiewicz, F.; Markiewicz, B.; Fochtman, P.; Stolte, S.; Steudte, S.; Stepnowski, P. Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem., 2011, 13(10), 2901-2910.
[http://dx.doi.org/10.1039/c1gc15468k]
[24]
Nagare, A.S.; Kumar, A. Eutectic mixture-directed kinetics of Diels-Alder reaction. Indian J. Chem., 2011, 50A, 788-792.
[25]
Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Ferreira, I.M.M. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng., 2015, 3(10), 2469-2477.
[http://dx.doi.org/10.1021/acssuschemeng.5b00532]
[26]
Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry, 2007, 13(22), 6495-6501.
[http://dx.doi.org/10.1002/chem.200601738 ] [PMID: 17477454]
[27]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg. Chem., 2004, 43(11), 3447-3452.
[http://dx.doi.org/10.1021/ic049931s ] [PMID: 15154807]
[28]
Abood, H.M.A.; Abbott, A.P.; Ballantyne, A.D.; Ryder, K.S. Do all ionic liquids need organic cations? Characterisation of AlCl2·nAmide+ AlCl4(-) and comparison with imidazolium based systems. Chem. Commun. (Camb.), 2011, 47(12), 3523-3525.
[http://dx.doi.org/10.1039/c0cc04989a ] [PMID: 21301722]
[29]
Harris, K.R.; Kanakubo, M.; Woolf, L.A. Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data, 2007, 52(3), 1080-1085.
[http://dx.doi.org/10.1021/je700032n]
[30]
Lide, D. CRC Handbook of chemistry and physics, 88th Ed.; CRC Press, 2007.
[31]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p ] [PMID: 25300631]
[32]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j ] [PMID: 15264850]
[33]
Nockemann, P.; Thijs, B.; Driesen, K.; Janssen, C.R.; Van Hecke, K.; Van Meervelt, L.; Kossmann, S.; Kirchner, B.; Binnemans, K. Choline saccharinate and choline acesulfamate: Ionic liquids with low toxicities. J. Phys. Chem. B, 2007, 111(19), 5254-5263.
[http://dx.doi.org/10.1021/jp068446a ] [PMID: 17444674]
[34]
Fulcher, G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc., 1925, 8(6), 339-355.
[http://dx.doi.org/10.1111/j.1151-2916.1925.tb16731.x]
[35]
Rengstl, D.; Fischer, V.; Kunz, W. Low-melting mixtures based on choline ionic liquids. Phys. Chem. Chem. Phys., 2014, 16(41), 22815-22822.
[http://dx.doi.org/10.1039/C4CP02860K ] [PMID: 25242504]
[36]
Craveiro, R.I.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísio, M.; Paiva, A. Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq., 2016, 215, 534-540.
[http://dx.doi.org/10.1016/j.molliq.2016.01.038]
[37]
Ghaedi, H.; Ayoub, M.; Sufian, S.; Lal, B.; Uemura, Y. Thermal stability and FT-IR analysis of Phosphonium-based deep eutectic solvents with different hydrogen bond donors. J. Mol. Liq., 2017, 242, 395-403.
[http://dx.doi.org/10.1016/j.molliq.2017.07.016]
[38]
Sharma, M.; Mukesh, C.; Mondal, D.; Prasad, K. Dissolution of α-chitin in deep eutectic solvents. RSC Advances, 2013, 3(39), 18149-18155.
[http://dx.doi.org/10.1039/c3ra43404d]
[39]
Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta, 2013, 766, 61-68.
[http://dx.doi.org/10.1016/j.aca.2012.12.019 ] [PMID: 23427801]
[40]
Krishnakumar, V.; Vindhya, N.G.; Mandal, B.K.; Khan, F.N. Green chemical approach: Low-melting mixture as a green solvent for efficient Michael addition of homophthalimides with chalcones. Ind. Eng. Chem. Res., 2014, 26(26), 10814-10819.
[http://dx.doi.org/10.1021/ie501320a]
[41]
Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data, 2010, 55(11), 4632-4637.
[http://dx.doi.org/10.1021/je100104v]
[42]
Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashim, M.A. Glucose-based deep eutectic solvents: Physical properties. J. Mol. Liq., 2013, 178, 137-141.
[http://dx.doi.org/10.1016/j.molliq.2012.11.025]
[43]
Leron, R.B.; Soriano, A.N.; Li, M.H. Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K. J. Taiwan Inst. Chem. Eng., 2012, 43(4), 551-557.
[http://dx.doi.org/10.1016/j.jtice.2012.01.007]
[44]
Shahbaz, K.; Baroutian, S.; Mjalli, F.S.; Hashima, M.A.; AlNashef, I.M. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochim. Acta, 2012, 527, 59-66.
[http://dx.doi.org/10.1016/j.tca.2011.10.010]
[45]
Anouti, M.; Caravanier, M.C.; Dridi, Y.; Jacquemin, Y.; Hardacre, C.; Lemordant, D. Liquid densities, heat capacities, refractive index and excess quantities for {protic ionic liquids + water} binary system. J. Chem. Thermodyn., 2009, 41(6), 799-808.
[http://dx.doi.org/10.1016/j.jct.2009.01.011]
[46]
Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta, 2012, 541, 70-75.
[http://dx.doi.org/10.1016/j.tca.2012.04.030]
[47]
Kolbeck, C.; Lehmann, J.; Lovelock, K.R.J.; Cremer, T.; Paape, N.; Wasserscheid, P.; Fröba, A.P.; Maier, F.; Steinrück, H.P. Density and surface tension of ionic liquids. J. Phys. Chem. B, 2010, 114(51), 17025-17036.
[http://dx.doi.org/10.1021/jp1068413 ] [PMID: 21141903]
[48]
Meissner, H.P.; Michaels, A.S. Surface tensions of pure liquids and liquid mixtures. Ind. Eng. Chem., 1949, 12(12), 2782-2787.
[http://dx.doi.org/10.1021/ie50480a028]
[49]
Gajardo Parra, N.F.; Lubben, M.J.; Winnert, J.M.; Leiva, Á.; Brennecke, J.F.; Canales, R.I. Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol. J. Chem. Thermodyn., 2019, 133, 272-284.
[http://dx.doi.org/10.1016/j.jct.2019.02.010]
[50]
Egemen, E.; Nirmalakhandan, N.; Trevizo, C. Predicting surface tension of liquid organic solvents. Environ. Sci. Technol., 2000, 34(12), 2596-2600.
[http://dx.doi.org/10.1021/es991284u]
[51]
Olalla, G.S.; Gorica, R.I.; Mirjana, L. Kijevčanin, J.; Begoña, G.; Angeles, D.; Ivona, R.R. Densities and derived volumetric properties of ionic liquids with [NF₂] and [NTF₂] anions at high pressures. J. Chem. Eng. Data, 2018, 63(4), 954-964.
[http://dx.doi.org/10.1021/acs.jced.7b00771]
[52]
Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev., 1993, 22(6), 409-416.
[http://dx.doi.org/10.1039/cs9932200409]
[53]
Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev., 1994, 94(8), 2319-2358.
[http://dx.doi.org/10.1021/cr00032a005]
[54]
Carmiael, A.J.; Seddon, K.R. Polarity study of some 1‐alkyl‐3‐methylimidazolium ambient‐temperature ionic liquids with the solvatochromic dye. Nile Red. J. Phys. Org. Chem., 2000, 13(10), 591-595.
[http://dx.doi.org/10.1002/1099-1395(200010)13:10<591:AID-POC305>3.0.CO;2-2]
[55]
Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed; Wiley-VCH: Weinheim, 2003.
[56]
Imperato, G.; Hoger, S.; Lenoir, D.; Konig, B. Low melting sugar-urea-salt mixtures as solvents for organic reactions-estimation of polarity and use in catalysis. Green Chem., 2006, 8(12), 1051-1055.
[http://dx.doi.org/10.1039/B603660K]
[57]
Ilgen, F.; Konig, B. Organic reactions in low melting mixtures based on carbohydrates and l-carnitine-a comparison. Green Chem., 2009, 11(6), 848-854.
[http://dx.doi.org/10.1039/b816551c]
[58]
Dzyuba, S.V.; Bartsch, R.A. Expanding the polarity range of ionic liquids. Tetrahedron Lett., 2002, 43(26), 4657-4659.
[http://dx.doi.org/10.1016/S0040-4039(02)00858-4]
[59]
Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.; Konig, B. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem., 2009, 11(12), 1948-1954.
[http://dx.doi.org/10.1039/b917548m]
[60]
Gruber, M.; Chouzier, S.; Kohler, K.; Djakovitch, L. Palladium on activated carbon: A valuable heterogeneous catalyst for one-pot multi-step synthesis. Appl. Catal., A., 2004, 265, 161-169.
[61]
Chinchilla, R.; Nájera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x ] [PMID: 17305399]
[62]
Siemsen, P.; Livingston, R.C.; Diederich, F. Acetylenic coupling: A powerful tool in molecular construction. Angew. Chem. Int. Ed. Engl., 2000, 39(15), 2632-2657.
[http://dx.doi.org/10.1002/1521-3773(20000804)39:15<2632:AID-ANIE2632>3.0.CO;2-F ] [PMID: 10934391]
[63]
Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L.S. On the nature of the” copper effect” in the Stille cross-coupling. J. Org. Chem., 1994, 59(20), 5905-5911.
[http://dx.doi.org/10.1021/jo00099a018]
[64]
Milstein, D.; Stille, J.K. Palladium-catalyzed coupling of tetraorganotin compounds with aryl and benzyl halides. Synthetic utility and mechanism. J. Am. Chem. Soc., 1979, 101(17), 4992-4998.
[http://dx.doi.org/10.1021/ja00511a032]
[65]
Lee, V. Application of copper(i) salt and fluoride promoted Stille coupling reactions in the synthesis of bioactive molecules. Org. Biomol. Chem., 2019, 17(41), 9095-9123.
[http://dx.doi.org/10.1039/C9OB01602C ] [PMID: 31596305]
[66]
Imperato, G.; Vasold, R.; Konig, B. Stille reactions with tetraalkylstannanes and phenyltrialkylstannanes in low melting sugar‐urea‐salt mixtures. Adv. Synth. Catal., 2006, 348(15), 2243-2247.
[http://dx.doi.org/10.1002/adsc.200600248]
[67]
Kurihara, M.; Rouf, A.S.S.; Kansui, H.; Kagechika, H.; Okuda, H.; Miyata, N. Design and synthesis of cyclic urea compounds: A pharmacological study for retinoidal activity. Bioorg. Med. Chem. Lett., 2004, 14(16), 4131-4134.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.038 ] [PMID: 15261256]
[68]
Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V. Substituted ureas, Methods of synthesis and applications Russ. Chem. Rev. (Engl. Transl.), 1985, 54, 249-261.
[69]
Ghosh, A.K.; Brindisi, M. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. J. Med. Chem., 2020, 63(6), 2751-2788.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01541 ] [PMID: 31789518]
[70]
Di Fabio, R.; Conti, N.; De Magistris, E.; Feriani, A.; Provera, S.; Sabbatini, F.M.; Reggiani, A.; Rovatti, L.; Barnaby, R.J. Substituted analogues of GV150526 as potent glycine binding site antagonists in animal models of cerebral ischemia. J. Med. Chem., 1999, 42(18), 3486-3493.
[http://dx.doi.org/10.1021/jm980576n ] [PMID: 10479281]
[71]
Kruijtzer, J.A.W.; Lefeber, D.J.; Liskamp, R.M.J. Approaches to the synthesis of ureapeptoid peptidomimetics. Tetrahedron Lett., 1997, 38(30), 5335-5338.
[http://dx.doi.org/10.1016/S0040-4039(97)01166-0]
[72]
Mahajan, H.; Bhardwaj, M.; Paul, S. Selective synthesis of mono-substituted ureas in low melting citric acid-urea-mannitol mixture. Org. Prep. Proced. Int., 2014, 46(5), 463-468.
[http://dx.doi.org/10.1080/00304948.2014.944408]
[73]
Ferreira, M.; Jérôme, F.; Bricout, H.; Menuel, S.; Landy, D.; Fourmentin, S.; Tilloy, S.; Monflier, E. Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N, N′-dimethylurea. Catal. Commun., 2015, 63, 62-65.
[http://dx.doi.org/10.1016/j.catcom.2014.11.001]
[74]
Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances: Syntheses, Patents and Applications of the Most Relevant APIs; Thieme: Stuttgart, 2008.
[75]
Martin, S.F.; Rueger, H.; Williamson, S.A.; Grzejszczak, S. General strategies for the synthesis of indole alkaloids. Total synthesis of (+-.)-reserpine and (.+-.)-. alpha. -yohimbine. J. Am. Chem. Soc., 1987, 109(20), 6124-6134.
[http://dx.doi.org/10.1021/ja00254a036]
[76]
Handy, S.T.; Okello, M.; Dickinson, G. Solvents from biorenewable sources: Ionic liquids based on fructose. Org. Lett., 2003, 5(14), 2513-2515.
[http://dx.doi.org/10.1021/ol034778b ] [PMID: 12841768]
[77]
Vidal, C.; Suárez, F.J.; Álvarez, J.G. Greener catalytic processes and technologies. Catal., 2014, 44, 76-79.
[78]
Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev., 2006, 106(7), 2875-2911.
[http://dx.doi.org/10.1021/cr0505270 ] [PMID: 16836303]
[79]
Chen, H.; Eberlin, L.S.; Nefliu, M.; Augusti, R.; Cooks, R.G. Organic reactions of ionic intermediates promoted by atmospheric-pressure thermal activation. Angew. Chem. Int. Ed. Engl., 2008, 47(18), 3422-3425.
[http://dx.doi.org/10.1002/anie.200800072 ] [PMID: 18357600]
[80]
Nakazaki, M.; Yamamoto, K. Direct synthesis of indole by the Fischer indole synthesis. J. Org. Chem., 1976, 41(10), 1872-1877.
[http://dx.doi.org/10.1021/jo00872a045]
[81]
Liu, K.G.; Robichaud, A.J.; Lo, J.R.; Mattes, J.F.; Cai, Y. Rearrangement of 3,3-disubstituted indolenines and synthesis of 2,3-substituted indoles. Org. Lett., 2006, 8(25), 5769-5771.
[http://dx.doi.org/10.1021/ol0623567 ] [PMID: 17134268]
[82]
Mun, H.S.; Ham, W.H.; Jeong, J.H. Synthesis of 2,3-disubstituted indole on solid phase by the Fischer indole synthesis. J. Comb. Chem., 2005, 7(1), 130-135.
[http://dx.doi.org/10.1021/cc049922e ] [PMID: 15638492]
[83]
Dhakshinamoorthy, A.; Pitchumani, K. Facile clay-induced Fischer indole synthesis: A new approach to synthesis of 1, 2, 3, 4-tetrahydrocarbazole and indoles. Appl. Catal. A Gen., 2005, 292, 305-311.
[http://dx.doi.org/10.1016/j.apcata.2005.06.011]
[84]
Gore, S.; Baskaran, S.; König, B. Fischer indole synthesis in low melting mixtures. Org. Lett., 2012, 14(17), 4568-4571.
[http://dx.doi.org/10.1021/ol302034r ] [PMID: 22905733]
[85]
Hopkins, C.R. ACS chemical neuroscience molecule spotlight on dimebon. ACS Chem. Neurosci., 2010, 1(9), 587-588.
[http://dx.doi.org/10.1021/cn1000588 ] [PMID: 22778847]
[86]
Zhang, L.H.; Meier, W.; Wats, E.; Costello, T.D.; Ma, P.; Ensinger, C.L.; Rodgers, J.M.; Jacobson, I.C.; Rajagopalan, P. Pictet-Spengler reaction in trifluoroacetic acid. Large scale synthesis of pyridoindolobenzodiazepine as an atypical antipsychotic agent. Tetrahedron Lett., 1995, 36(46), 8387-8390.
[http://dx.doi.org/10.1016/0040-4039(95)01812-V]
[87]
Jella, R.R.; Nagarajan, R. Synthesis of indole alkaloids arsindoline A, arsindoline B and their analogues in low melting mixture. Tetrahedron, 2013, 69(48), 10249-10253.
[http://dx.doi.org/10.1016/j.tet.2013.10.037]
[88]
Gong, Y.; Sohn, H.; Xue, L.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res., 2006, 66(9), 4880-4887.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4162 ] [PMID: 16651444]
[89]
Shantharjun, B.; Vani, D.; Unnava, R.; Sandeep, M.; Reddy, K.R. Hydroxymethylation of quinolines via iron promoted oxidative CH functionalization: Synthesis of arsindoline-A and its derivatives. Org. Biomol. Chem., 2021, 19(3), 645-652.
[http://dx.doi.org/10.1039/D0OB02212H ] [PMID: 33393550]
[90]
Verma, G.K.; Raghuvanshi, K.; Verma, R.K.; Dwivedi, P.; Singh, M.S. An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1, 8-diones. Tetrahedron, 2011, 67(20), 3698-3704.
[http://dx.doi.org/10.1016/j.tet.2011.03.078]
[91]
Khurana, J.M.; Chaudhary, A.; Lumb, A.; Nand, B. Efficient one-pot syntheses of dibenzoa,ixanthene-diones and evaluation of their antioxidant activity. Can. J. Chem., 2012, 90(9), 739-746.
[http://dx.doi.org/10.1139/v2012-033]
[92]
Li, P.; Ma, F.; Wang, P.; Zhang, Z. highly efficient low melting mixture catalyzed synthesis of 1, 8‐dioxo‐dodecahydroxanthene derivatives. Chin. J. Chem., 2013, 31(6), 757-763.
[http://dx.doi.org/10.1002/cjoc.201300152]
[93]
Devi, P.; Lambu, M.R.; Baskaran, S. A novel one-pot method for the stereoselective synthesis of tetrahydropyrimidinones in a low melting mixture. Org. Biomol. Chem., 2020, 18(22), 4164-4168.
[http://dx.doi.org/10.1039/D0OB00697A ] [PMID: 32436516]
[94]
Zhu, Y.; Huang, S.; Wan, J.; Yan, L.; Pan, Y.; Wu, A. Vibralactone: A lipase inhibitor with an unusual fused β-lactone produced by cultures of the basidiomycete boreostereum vibrans. Org. Lett., 2006, 8, 2599-2609.
[http://dx.doi.org/10.1021/ol060874b ] [PMID: 16737323]
[95]
Hantzsch, A. About the synthesis of pyridine-like compounds from acetic acid ether and aldehyde ammonia. Justus Liebigs Ann. Chem., 1882, 215, 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[96]
Nicholas, R.N. Learning from the Hantzsch synthesis. Chem. Innov., 2000, 30, 22-28.
[97]
Subudhi, B.B.; Panda, P.K.; Bhatta, D. Synthesis and antiulcer activity study of 1,4-dihydropyridines and their mannich bases with sulfanilamide. ChemInform, 2009, 48(38), 725-728.
[http://dx.doi.org/10.1002/chin.200938133]
[98]
Rao, N.S.; Lakshmi, K. Synthesis and antimicrobial activity of some 1,4-dihydropyridines derivatives Sci. Rev. Chem. Commun., 2013, 3, 141-149.
[99]
Rostamnia, S.; Hassankhani, A. Covalently bonded ionic liquid-type sulfamic acid onto SBA-15: SBA-15/NHSO3H as a highly active, reusable, and selective green catalyst for solvent-free synthesis of polyhydroquinolines and dihydropyridines. Synlett, 2014, 25(19), 2753-2756.
[http://dx.doi.org/10.1055/s-0034-1379477]
[100]
Sohal, H.S.; Goyal, A.; Sharma, R.; Khare, R. One‐pot, multicomponent synthesis of symmetrical Hantzsch 1,4‐dihydropyridine derivatives using glycerol as clean and green solvent. Eur. J. Chem., 2014, 5(1), 171-175.
[http://dx.doi.org/10.5155/eurjchem.5.1.171-175.943]
[101]
Xia, J.J.; Zhang, K.H. Synthesis of n-substituted acridinediones and polyhydroquinoline derivatives in refluxing water. Molecules, 2012, 17, 5339-5345.
[102]
Kumar, A. Efficient Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives in Aqueous Micelles Synlett., 2008, 6, 883-885.
[103]
Stout, D.M.; Takaya, T.; Meyers, A.I. Unequivocal synthesis of N-substituted 1,4-dihydropyridines. J. Org. Chem., 1975, 40(5), 563-569.
[http://dx.doi.org/10.1021/jo00893a005]
[104]
Kumar, J.A.; Shridhar, G.; Ladage, S.; Ravishankar, L. Synthesis of 1,4-dihydropyridine esters using low melting sugar mixtures as green solvents. Synth. Commun., 2016, 46(24), 1989-1998.
[http://dx.doi.org/10.1080/00397911.2016.1242750]
[105]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j ] [PMID: 18648680]
[106]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed., 2005, 44(29), 4442-4489.
[http://dx.doi.org/10.1002/anie.200500368 ] [PMID: 15991198]
[107]
Jabeen, S.; Chat, O.A.; Rather, G.M.; Dar, A.A. Investigation of antioxidant activity of Quercetin (2-(3, 4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) in aqueous micellar media. Food Res. Int., 2013, 51(1), 294-302.
[http://dx.doi.org/10.1016/j.foodres.2012.12.022]
[108]
Sherif, S.M.; Youssef, M.M.; Mobarak, K.M.; Abdel-Fattah, A.S.M. A convenient synthesis of thiazolopyrimidines, thiazolodipyrimidines and heterocyclothiazolopyrimidines. Eur. J. Med. Chem., 2012, 55, 195-204.
[109]
Danel, K.; Pedersen, E.B.; Nielsen, C. Synthesis and anti-HIV-1 activity of novel 2,3-dihydro-7H-thiazolo[3,2-a]pyrimidin-7-ones. J. Med. Chem., 1998, 41(2), 191-198.
[http://dx.doi.org/10.1021/jm970443m ] [PMID: 9457243]
[110]
Ram Reddy, T.; Srinivasula Reddy, L.; Rajeshwar Reddy, G.; Nuthalapati, V.S.; Lingappa, Y.; Sandra, S.; Kapavarapu, R.; Misra, P.; Pal, M. A Pd-mediated new strategy to functionalized 2-aminochromenes: Their in vitro evaluation as potential anti tuberculosis agents. Bioorg. Med. Chem. Lett., 2011, 21(21), 6433-6439.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.088 ] [PMID: 21920745]
[111]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.029 ] [PMID: 22846796]
[112]
Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem., 2013, 59, 15-22.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.044 ] [PMID: 23202485]
[113]
Reddy, A.V.S.; Jeong, Y.T. Highly efficient and facile synthesis of densely functionalized thiazolo[3,2-a] chromeno[4,3-d] pyrimidin-6(7H)-ones using [Bmim]BF4 as a reusable catalyst under solvent-free conditions. Tetrahedron, 2016, 72(1), 116-122.
[http://dx.doi.org/10.1016/j.tet.2015.11.010]
[114]
Mohire, P.P.; Chandam, D.R.; Patil, R.B.; Patravale, A.A.; Ghosh, J.S.; Deshmukh, M.B. Low melting mixture glycerol: Proline as an innovative designer solvent for the synthesis of novel chromeno fused thiazolopyrimidinone derivatives: An excellent correlation with green chemistry metrics. J. Mol. Liq., 2019, 283, 69-80.
[http://dx.doi.org/10.1016/j.molliq.2019.03.058]
[115]
Kinen, C.O.; Rossi, L.I.; Rossi, R.H. The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem., 2009, 11(2), 223-228.
[http://dx.doi.org/10.1039/B815986F]
[116]
Tiwari, R.; Chhabra, G. Evaluation of antibacterial activity of novel quinazoline derivative. Asian J. Chem., 2010, 22, 5981-5986.
[117]
Balakumar, C.; Lamba, P.; Kishore, D.P.; Narayana, B.L.; Rao, K.V.; Rajwinder, K.; Rao, A.R.; Shireesha, B.; Narsaiah, B. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur. J. Med. Chem., 2010, 45(11), 4904-4913.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.063 ] [PMID: 20800934]
[118]
Kabri, Y.; Azas, N.; Dumètre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. Original quinazoline derivatives displaying antiplasmodial properties. Eur. J. Med. Chem., 2010, 45(2), 616-622.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.005 ] [PMID: 19926173]
[119]
Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem., 2011, 46(6), 2327-2346.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.015 ] [PMID: 21458891]
[120]
Barraja, P.; Caracausi, L.; Diana, P.; Montalbano, A.; Carbone, A.; Salvador, A.; Brun, P.; Castagliuolo, I.; Tisi, S.; Dall’Acqua, F.; Vedaldi, D.; Cirrincione, G. Pyrrolo[3,2-h]quinazolines as photochemotherapeutic agents. ChemMedChem, 2011, 6(7), 1238-1248.
[http://dx.doi.org/10.1002/cmdc.201100085 ] [PMID: 21574254]
[121]
Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Direct synthesis of quinazolines through copper-catalyzed reaction of aniline-derived benzamidines. Org. Lett., 2010, 12(17), 3963-3965.
[http://dx.doi.org/10.1021/ol1016756 ] [PMID: 20795747]
[122]
Maheswari, C.U.; Kumar, G.S.; Venkateshwar, M.; Kumar, R.A.; Kantam, M.L.; Reddy, K.R. Highly efficient one-pot synthesis of 2-substituted quinazolines and 4H-benzo[d,][1,3]oxazines via cross dehydrogenative coupling using sodium hypochlorite. Adv. Synth. Catal., 2010, 352(2-3), 341-346.
[http://dx.doi.org/10.1002/adsc.200900715]
[123]
Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp(3) C-H functionalization. Org. Lett., 2010, 12(12), 2841-2843.
[http://dx.doi.org/10.1021/ol100954x ] [PMID: 20481477]
[124]
Kumar, V.; Mohan, C.; Gupta, M.; Mahajan, M.P. A catalyst- and solvent-free selective approach to biologically important quinazolines and benzo[g]quinazoline. Tetrahedron, 2005, 61(14), 3533-3538.
[http://dx.doi.org/10.1016/j.tet.2005.01.118]
[125]
Zhang, Z.; Zhang, X.; Mo, L.; Li, Y.; Ma, F. Catalyst-free synthesis of quinazoline derivatives using low melting sugar-urea-salt mixture as a solvent. Green Chem., 2012, 14(5), 1502-1506.
[http://dx.doi.org/10.1039/c2gc35258c]
[126]
Chandam, D.R.; Patravale, A.A.; Jadhav, S.D.; Deshmukh, V. Low melting oxalic acid dihydrate: Proline mixture as dual solvent/catalyst for synthesis of spiro[indoline-3,9′-xanthene] trione and dibarbiturate derivatives. J. Mol. Liq., 2017, 240, 98-105.
[http://dx.doi.org/10.1016/j.molliq.2017.05.070]
[127]
Theresa, L.V.; Shaibuna, M.; Sreekumar, K. Glucose: Urea: NH4Cl low melting mixture for the synthesis of symmetric azines. Synth. Commun., 2019, 49(22), 3148-3160.
[http://dx.doi.org/10.1080/00397911.2019.1657151]
[128]
Egor, V.V.; Gennady, L.R.; Oleg, N.C.; Valery, N.C. Azines as unconventional anchoring groups for dye-sensitized solar cells: The first decade of research advances and a future outlook. Dyes Pigment, 2021, 194, 109650.
[http://dx.doi.org/10.1016/j.dyepig.2021.109650]
[129]
Lasri, J.; Aly, M.M.; Eltayeb, N.E.; Babgi, B.A. Synthesis of symmetrical and asymmetrical azines from hydrazones and/or ferrocene carboxaldehyde as potential antimicrobial-antitumor agents. J. Mol. Struct., 2018, 1164, 1-8.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.030]
[130]
Bondock, S.; Gieman, H.; El-Shafei, A. Selective synthesis, structural studies and antitumor evaluation of some novel unsymmetrical 1-hetaryl-4-(2-chloroquinolin-3-yl)azines. J. Saudi Chem. Soc., 2016, 20(6), 695-702.
[http://dx.doi.org/10.1016/j.jscs.2015.01.005]
[131]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a ] [PMID: 22806597]
[132]
Zhu, S.; Li, H.; Zhu, W.; Jiang, W.; Wang, C.; Wu, P.; Zhang, Q.; Li, H. Vibrational analysis and formation mechanism of typical deep eutectic solvents: An experimental and theoretical study. J. Mol. Graph. Model., 2016, 68, 158-175.
[http://dx.doi.org/10.1016/j.jmgm.2016.05.003 ] [PMID: 27450770]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy