Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

The Application of Nanotechnology in Immunotherapy based Combinations for Cancer Treatment

Author(s): Hongxia Li, Qiuxia Fu, Tobias Achu Muluh, Shafiu A. Umar Shinge, Shaozhi Fu* and JingBo Wu*

Volume 18, Issue 1, 2023

Published on: 13 May, 2022

Page: [53 - 65] Pages: 13

DOI: 10.2174/1574892817666220308090954

open access plus

Abstract

There has been a great amount of advancement in the early field of nano-immunotherapy and combination therapy. Persistent consideration regarding the clinical challenges and therapeutic hindrance should be tended to achieve therapeutic efficacy and potential. In this review, we will address how nanotechnology could defeat the difficulties resulting from cancer immunotherapy, how nanoparticles’ utilization can enhance the efficacy of immune checkpoint blockers, and reconstituting the tumor microenvironment can promote antitumor responses. Moreover, this review discusses how nanoparticles mediate therapeutic modalities like chemotherapy, photodynamic therapy, photothermal therapy, and radiotherapy, which are used to target and destroy cancerous cells, initiate the release of tumor antigens, and can trigger anti-tumor immunity reactions. Furthermore, we analyzed the potential benefits of immunotherapy combinatorial using the nanoparticle delivery system to prevent tumor recurrence, hinder metastases, and decrease systemic toxicity of major organs and healthy cells common with uncontrolled targeting.

Keywords: Immunity, Combinatorial Therapy, Immunotherapy, Nanoparticles, Tumor Microenvironment, Immune Checkpoint Blockers.

[1]
Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet 2021; 397(10278): 1010-22.
[http://dx.doi.org/10.1016/S0140-6736(20)32598-8] [PMID: 33285141]
[2]
Carlson RD, Flickinger JC Jr, Snook AE. Talkin’ Toxins: From coley’s to modern cancer immunotherapy. Toxins (Basel) 2020; 12(4): E241.
[http://dx.doi.org/10.3390/toxins12040241] [PMID: 32283684]
[3]
Gupta J, Safdari HA, Hoque M. Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol 2021; 69: 307-24.
[PMID: 32259643]
[4]
Kethireddy N, Thomas S, Bindal P, Shukla P, Hegde U. Multiple autoimmune side effects of immune checkpoint inhibitors in a patient with metastatic melanoma receiving pembrolizumab. J Oncol Pharm Pract 2021; 27(1): 207-11.
[http://dx.doi.org/10.1177/1078155220921543] [PMID: 32390537]
[5]
Viana IMO, Roussel S, Defrêne J, Lima EM, Barabé F, Bertrand N. Innate and adaptive immune responses toward nanomedicines. Acta Pharm Sin B 2021; 11(4): 852-70.
[http://dx.doi.org/10.1016/j.apsb.2021.02.022] [PMID: 33747756]
[6]
Landry MR, Walker JM, Sun C. Exploiting phagocytic checkpoints in nanomedicine: Applications in imaging and combination therapies. Front Chem 2021; 9: 642530.
[http://dx.doi.org/10.3389/fchem.2021.642530] [PMID: 33748077]
[7]
Post CCB, Westermann AM, Bosse T, Creutzberg CL, Kroep JR. PARP and PD-1/PD-L1 checkpoint inhibition in recurrent or metastatic endometrial cancer. Crit Rev Oncol Hematol 2020; 152: 102973.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102973] [PMID: 32497971]
[8]
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination therapy and nanoparticulate systems: Smart approaches for the effective treatment of breast cancer. Pharmaceutics 2020; 12(6): E524.
[http://dx.doi.org/10.3390/pharmaceutics12060524] [PMID: 32521684]
[9]
Saleh T, Shojaosadati SA. Multifunctional nanoparticles for cancer immunotherapy. Hum Vaccin Immunother 2016; 12(7): 1863-75.
[PMID: 26901287]
[10]
Liu J, Zhang R, Xu ZP. Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions. Small 2019; 15(32): e1900262.
[http://dx.doi.org/10.1002/smll.201900262] [PMID: 30908864]
[11]
Cremolini C, Vitale E, Rastaldo R, Giachino C. Advanced nanotechnology for enhancing immune checkpoint blockade therapy. Nanomaterials (Basel) 2021; 11(3): 661.
[http://dx.doi.org/10.3390/nano11030661] [PMID: 33800368]
[12]
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu Rev Pathol 2021; 16: 223-49.
[http://dx.doi.org/10.1146/annurev-pathol-042020-042741] [PMID: 33197221]
[13]
Xu J, Brosseau JP, Shi H. Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene 2020; 39(48): 7106-13.
[http://dx.doi.org/10.1038/s41388-020-01491-w] [PMID: 33024277]
[14]
Dodagatta-Marri E, Meyer DS, Reeves MQ, et al. α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J Immunother Cancer 2019; 7(1): 62.
[http://dx.doi.org/10.1186/s40425-018-0493-9] [PMID: 30832732]
[15]
Velpurisiva P, Gad A, Piel B, Jadia R, Rai P. Nanoparticle design strategies for effective cancer immunotherapy. J Biomed (Syd) 2017; 2(2): 64-77.
[http://dx.doi.org/10.7150/jbm.18877] [PMID: 28503405]
[16]
Dianat-Moghadam H, Mahari A, Heidarifard M, et al. NK cells-directed therapies target circulating tumor cells and metastasis. Cancer Lett 2021; 497: 41-53.
[http://dx.doi.org/10.1016/j.canlet.2020.09.021] [PMID: 32987138]
[17]
Ravindranath MH, Filippone EJ, Devarajan A, Asgharzadeh S. Enhancing natural killer and CD8+ T cell-mediated anticancer cytotoxicity and proliferation of CD8+ T cells with HLA-E monospecific monoclonal antibodies. Monoclon Antib Immunodiagn Immunother 2019; 38(2): 38-59.
[http://dx.doi.org/10.1089/mab.2018.0043] [PMID: 31009335]
[18]
Yamamoto K, Venida A, Perera RM, Kimmelman AC. Selective autophagy of MHC-I promotes immune evasion of pancreatic cancer. Autophagy 2020; 16(8): 1524-5.
[http://dx.doi.org/10.1080/15548627.2020.1769973] [PMID: 32459143]
[19]
Kaboli PJ, Zhang L, Xiang S, et al. Molecular markers of regulatory T cells in cancer immunotherapy with special focus on acute myeloid leukemia (AML) - A systematic review. Curr Med Chem 2020; 27(28): 4673-98.
[http://dx.doi.org/10.2174/0929867326666191004164041] [PMID: 31584362]
[20]
O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019; 16(3): 151-67.
[http://dx.doi.org/10.1038/s41571-018-0142-8] [PMID: 30523282]
[21]
Muluh TA, Chen Z, Li Y, et al. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system. Int J Nanomedicine 2021; 16: 2389-404.
[http://dx.doi.org/10.2147/IJN.S295300] [PMID: 33790556]
[22]
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2020; 20(1): 7-24.
[http://dx.doi.org/10.1038/s41577-019-0210-z] [PMID: 31467405]
[23]
Qu Q, Zhai Z, Xu J, Li S, Chen C, Lu B. IL36 cooperates with anti-CTLA-4 mAbs to facilitate antitumor immune responses. Front Immunol 2020; 11: 634.
[http://dx.doi.org/10.3389/fimmu.2020.00634] [PMID: 32351508]
[24]
Gang M, Marin ND, Wong P, et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 2020; 136(20): 2308-18.
[http://dx.doi.org/10.1182/blood.2020006619] [PMID: 32614951]
[25]
Carlisle JW, Steuer CE, Owonikoko TK, Saba NF. An update on the immune landscape in lung and head and neck cancers. CA Cancer J Clin 2020; 70(6): 505-17.
[http://dx.doi.org/10.3322/caac.21630] [PMID: 32841388]
[26]
Saeed M, Gao J, Shi Y, Lammers T, Yu H. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics 2019; 9(26): 7981-8000.
[http://dx.doi.org/10.7150/thno.37568] [PMID: 31754376]
[27]
Chen MC, Pangilinan CR, Lee CH. Salmonella breaks tumor immune tolerance by downregulating tumor programmed death-ligand 1 expression. Cancers (Basel) 2019; 12(1): E57.
[http://dx.doi.org/10.3390/cancers12010057] [PMID: 31878272]
[28]
Hernández-Luna MA, Luria-Pérez R. Cancer immunotherapy: priming the host immune response with live attenuated Salmonella enterica. J Immunol Res 2018; 2018: 2984247.
[http://dx.doi.org/10.1155/2018/2984247] [PMID: 30302344]
[29]
Wan Z, Sun R, Moharil P, et al. Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. J Leukoc Biol 2021; 109(2): 425-36.
[http://dx.doi.org/10.1002/JLB.5MR0620-063RR] [PMID: 33259068]
[30]
Prajapati S, Hinchliffe T, Roy V, Shah N, Jones CN, Obaid G. Biomimetic nanotechnology: a natural path forward for tumor-selective and tumor-specific NIR activable photonanomedicines. Pharmaceutics 2021; 13(6): 786.
[http://dx.doi.org/10.3390/pharmaceutics13060786] [PMID: 34070233]
[31]
Lakshmanan VK, Jindal S, Packirisamy G, et al. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther 2021; 28(9): 911-23.
[http://dx.doi.org/10.1038/s41417-021-00299-4] [PMID: 33558704]
[32]
Zhong XF, Sun X. Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol Sin 2020; 41(7): 928-35.
[http://dx.doi.org/10.1038/s41401-020-0414-6] [PMID: 32355277]
[33]
Zhu C, Zhu Y, Pan H, Chen Z, Zhu Q. Current progresses of functional nanomaterials for imaging diagnosis and treatment of melanoma. Curr Top Med Chem 2019; 19(27): 2494-506.
[http://dx.doi.org/10.2174/1568026619666191023130524] [PMID: 31642783]
[34]
Matos AI, Carreira B, Peres C, et al. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J Control Release 2019; 307: 108-38.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.017] [PMID: 31226355]
[35]
Mi Y, Hagan CT IV, Vincent BG, Wang AZ. Emerging nano-/Microapproaches for cancer immunotherapy. Adv Sci (Weinh) 2019; 6(6): 1801847.
[http://dx.doi.org/10.1002/advs.201801847] [PMID: 30937265]
[36]
Bergman PJ. Cancer immunotherapies. Vet Clin North Am Small Anim Pract 2019; 49(5): 881-902.
[http://dx.doi.org/10.1016/j.cvsm.2019.04.010] [PMID: 31186125]
[37]
Caster JM, Callaghan C, Seyedin SN, Henderson K, Sun B, Wang AZ. Optimizing advances in nanoparticle delivery for cancer immunotherapy. Adv Drug Deliv Rev 2019; 144: 3-15.
[http://dx.doi.org/10.1016/j.addr.2019.07.009] [PMID: 31330165]
[38]
Mahvi DA, Liu R, Grinstaff MW, Colson YL, Raut CP. Local cancer recurrence: The realities, challenges, and opportunities for new therapies. CA Cancer J Clin 2018; 68(6): 488-505.
[http://dx.doi.org/10.3322/caac.21498] [PMID: 30328620]
[39]
Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin 2011; 61(2): 91-112.
[http://dx.doi.org/10.3322/caac.20102] [PMID: 21303969]
[40]
Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58(2): 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[41]
Wang T, Suita Y, Miriyala S, Dean J, Tapinos N, Shen J. Advances in lipid-based nanoparticles for cancer chemoimmunotherapy. Pharmaceutics 2021; 13(4): 520.
[http://dx.doi.org/10.3390/pharmaceutics13040520] [PMID: 33918635]
[42]
Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics 2021; 13(6): 853.
[http://dx.doi.org/10.3390/pharmaceutics13060853] [PMID: 34201333]
[43]
Tarantino P, Gandini S, Trapani D, Criscitiello C, Curigliano G. Immunotherapy addition to neoadjuvant chemotherapy for early triple negative breast cancer: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2021; 159: 103223.
[http://dx.doi.org/10.1016/j.critrevonc.2021.103223] [PMID: 33482345]
[44]
Kim J, Hong J, Lee J, Fakhraei Lahiji S, Kim YH. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332: 109-26.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.002] [PMID: 33571549]
[46]
Gurunathan S, Qasim M, Kang MH, Kim JH. Role and therapeutic potential of melatonin in various type of cancers. OncoTargets Ther 2021; 14: 2019-52.
[http://dx.doi.org/10.2147/OTT.S298512] [PMID: 33776451]
[47]
Hussain Z, Rahim MA, Jan N, et al. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335: 130-57.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.018] [PMID: 34015400]
[48]
Yang C, Xia BR, Zhang ZC, Zhang YJ, Lou G, Jin WL. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front Immunol 2020; 11: 577869.
[http://dx.doi.org/10.3389/fimmu.2020.577869] [PMID: 33123161]
[49]
Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021; 50(2): 1111-37.
[http://dx.doi.org/10.1039/D0CS00664E] [PMID: 33245316]
[50]
Kim J, Manspeaker MP, Thomas SN. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomater 2019; 88: 1-14.
[http://dx.doi.org/10.1016/j.actbio.2019.02.012] [PMID: 30769136]
[51]
Springfeld C, Jäger D, Büchler MW, et al. Chemotherapy for pancreatic cancer. Presse Med 2019; 48(3 Pt 2): e159-74.
[http://dx.doi.org/10.1016/j.lpm.2019.02.025] [PMID: 30879894]
[52]
Shih CY, Wang PT, Su WC, Teng H, Huang WL. Nanomedicine-based strategies assisting photodynamic therapy for hypoxic tumors: State-of-the-art approaches and emerging trends. Biomedicines 2021; 9(2): 137.
[http://dx.doi.org/10.3390/biomedicines9020137] [PMID: 33535466]
[53]
Xu C, Jiang Y, Han Y, Pu K, Zhang R. A polymer multicellular nanoengager for synergistic nir-ii photothermal immunotherapy. Adv Mater 2021; 33(14): e2008061.
[http://dx.doi.org/10.1002/adma.202008061] [PMID: 33634897]
[54]
Tang RZ, Liu ZZ, Gu SS, Liu XQ. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Mater Chem B Mater Biol Med 2021; 9(6): 1521-35.
[http://dx.doi.org/10.1039/D0TB02737E] [PMID: 33474559]
[55]
Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(4): 10.1002/wnan.1449.
[http://dx.doi.org/10.1002/wnan.1449] [PMID: 28160445]
[56]
Dash BS, Jose G, Lu YJ, Chen JP. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int J Mol Sci 2021; 22(6): 2989.
[http://dx.doi.org/10.3390/ijms22062989] [PMID: 33804239]
[57]
Xu P, Liang F. Nanomaterial-based tumor photothermal immunotherapy. Int J Nanomedicine 2020; 15: 9159-80.
[http://dx.doi.org/10.2147/IJN.S249252] [PMID: 33244232]
[58]
Liaw JW, Kuo CY, Tsai SW. The effect of quasi-spherical gold nanoparticles on two-photon induced reactive oxygen species for cell damage. Nanomaterials 2021; 11(5): 1180.
[59]
Yu N, Ding M, Li J. Near-infrared photoactivatable immunomodulatory nanoparticles for combinational immunotherapy of cancer. Front Chem 2021; 9: 701427.
[http://dx.doi.org/10.3389/fchem.2021.701427] [PMID: 34109160]
[60]
Xu M, Zhou L, Zheng L, et al. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett 2021; 497: 229-42.
[http://dx.doi.org/10.1016/j.canlet.2020.10.037] [PMID: 33122099]
[61]
Wang L, Liu J. Engineered drug-loaded cells and cell derivatives as a delivery platform for cancer immunotherapy. Biomater Sci 2021; 9(4): 1104-16.
[http://dx.doi.org/10.1039/D0BM01676D] [PMID: 33201163]
[62]
Peng J, Xiao Y, Li W, et al. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv Sci 2018; 1: 147.
[63]
Kim K, Khang D. Past, present, and future of anticancer nanomedicine. Int J Nanomedicine 2020; 15: 5719-43.
[http://dx.doi.org/10.2147/IJN.S254774] [PMID: 32821098]
[64]
Scheetz L, Park KS, Li Q, et al. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019; 3(10): 768-82.
[http://dx.doi.org/10.1038/s41551-019-0436-x] [PMID: 31406259]
[65]
Huang S, Zhao Q. Nanomedicine-combined immunotherapy for cancer. Curr Med Chem 2020; 27(34): 5716-29.
[http://dx.doi.org/10.2174/0929867326666190618161610] [PMID: 31250752]
[66]
Sanaei MJ, Pourbagheri-Sigaroodi A, Kaveh V, Sheikholeslami SA, Salari S, Bashash D. The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: Recent advances and opportunities. Crit Rev Oncol Hematol 2021; 157: 103160.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103160] [PMID: 33220601]
[67]
Judd J, Borghaei H. Combining immunotherapy and chemotherapy for non-small cell lung cancer. Thorac Surg Clin 2020; 30(2): 199-206.
[http://dx.doi.org/10.1016/j.thorsurg.2020.01.006] [PMID: 32327178]
[68]
Kim SY, Halmos B. Choosing the best first-line therapy: NSCLC with no actionable oncogenic driver. Lung Cancer Manag 2020; 9(3): LMT36.
[http://dx.doi.org/10.2217/lmt-2020-0003] [PMID: 32774467]
[69]
DuRoss AN, Neufeld MJ, Rana S, Thomas CR Jr, Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 2019; 144: 35-56.
[http://dx.doi.org/10.1016/j.addr.2019.07.002] [PMID: 31279729]
[70]
Kong X, Liu Y, Huang X, et al. Cancer therapy based on smart drug delivery with advanced nanoparticles. Anticancer Agents Med Chem 2019; 19(6): 720-30.
[http://dx.doi.org/10.2174/1871520619666190212124944] [PMID: 30747081]
[71]
Luo Q, Zhang L, Luo C, Jiang M. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy. Cancer Lett 2019; 454: 191-203.
[http://dx.doi.org/10.1016/j.canlet.2019.04.017] [PMID: 30998963]
[72]
Leonetti A, Wever B, Mazzaschi G, et al. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resist Updat 2019; 46: 100644.
[http://dx.doi.org/10.1016/j.drup.2019.100644] [PMID: 31585395]
[73]
Rocco D, Della Gravara L, Battiloro C, Gridelli C. The role of combination chemo-immunotherapy in advanced non-small cell lung cancer. Expert Rev Anticancer Ther 2019; 19(7): 561-8.
[http://dx.doi.org/10.1080/14737140.2019.1631800] [PMID: 31188040]
[74]
Zhi D, Yang T, O’Hagan J, Zhang S, Donnelly RF. Photothermal therapy. J Control Release 2020; 325: 52-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.032] [PMID: 32619742]
[75]
Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020; 8(19): 5241-59.
[http://dx.doi.org/10.1039/D0BM01158D] [PMID: 32996922]
[76]
Chen J, Zeng Z, Huang L, et al. Photothermal therapy technology of metastatic colorectal cancer. Am J Transl Res 2020; 12(7): 3089-115.
[PMID: 32774688]
[77]
de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2019; 7(9): 3534-51.
[http://dx.doi.org/10.1039/C9BM00577C] [PMID: 31250854]
[78]
Li Z, Chen Y, Yang Y, et al. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front Bioeng Biotechnol 2019; 7: 293.
[http://dx.doi.org/10.3389/fbioe.2019.00293] [PMID: 31696114]
[79]
Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for photodynamic therapy. Adv Healthc Mater 2019; 8(13): e1900132.
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[80]
Li Y, Li X, Zhou F, et al. Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett 2019; 442: 429-38.
[http://dx.doi.org/10.1016/j.canlet.2018.10.044] [PMID: 30476523]
[81]
Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(5): e1560.
[http://dx.doi.org/10.1002/wnan.1560] [PMID: 31058443]
[82]
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17(11): 657-74.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[83]
Shahiwala A, Qawoogha SS, Tambuwala MM. Oral adjuvant therapy for colorectal cancer: recent developments and future targets. Ther Deliv 2019; 10(10): 659-69.
[http://dx.doi.org/10.4155/tde-2019-0067] [PMID: 31702443]
[84]
Hagan CT IV, Mi Y, Knape NM, Wang AZ. Enhancing combined immunotherapy and radiotherapy through nanomedicine. Bioconjug Chem 2020; 31(12): 2668-78.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00520] [PMID: 33251789]
[85]
Wang Y, Yang P, Zhao X, et al. Multifunctional cargo-free nanomedicine for cancer therapy. Int J Mol Sci 2018; 19(10): E2963.
[http://dx.doi.org/10.3390/ijms19102963] [PMID: 30274177]
[86]
Bhargava A, Srivastava RK, Mishra DK, Tiwari RR, Sharma RS, Mishra PK. Dendritic cell engineering for selective targeting of female reproductive tract cancers. Indian J Med Res 2018; 148: S50-63.
[PMID: 30964081]
[87]
Revia RA, Stephen ZR, Zhang M. Theranostic nanoparticles for RNA-based cancer treatment. Acc Chem Res 2019; 52(6): 1496-506.
[http://dx.doi.org/10.1021/acs.accounts.9b00101] [PMID: 31135134]
[88]
Mei Y, Wang R, Jiang W, et al. Recent progress in nanomaterials for nucleic acid delivery in cancer immunotherapy. Biomater Sci 2019; 7(7): 2640-51.
[http://dx.doi.org/10.1039/C9BM00214F] [PMID: 31090764]
[89]
Panigaj M, Johnson MB, Ke W, et al. Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 2019; 13(11): 12301-21.
[http://dx.doi.org/10.1021/acsnano.9b06522] [PMID: 31664817]
[90]
Lynn GM, Laga R, Jewell CM. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett 2019; 459: 192-203.
[http://dx.doi.org/10.1016/j.canlet.2019.114427] [PMID: 31185250]
[91]
Dhas N, Kudarha R, Garkal A, et al. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2021; 330: 257-83.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.015] [PMID: 33345832]
[92]
Nath S, Obaid G, Hasan T. The course of immune stimulation by photodynamic therapy: bridging fundamentals of photochemically induced immunogenic cell death to the enrichment of T-cell repertoire. Photochem Photobiol 2019; 95(6): 1288-305.
[http://dx.doi.org/10.1111/php.13173] [PMID: 31602649]
[93]
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56(12): 2543-57.
[http://dx.doi.org/10.1002/mc.22690] [PMID: 28574612]
[94]
Sun S, Ding Z, Yang X, et al. Nanobody: a small antibody with big implications for tumor therapeutic strategy. Int J Nanomedicine 2021; 16: 2337-56.
[http://dx.doi.org/10.2147/IJN.S297631] [PMID: 33790553]
[95]
Qi J, Jin F, Xu X, Du Y. Combination cancer immunotherapy of nanoparticle-based immunogenic cell death inducers and immune checkpoint inhibitors. Int J Nanomedicine 2021; 16: 1435-56.
[http://dx.doi.org/10.2147/IJN.S285999] [PMID: 33654395]
[96]
Castillo RR, Vallet-Regí M. Emerging strategies in anticancer combination therapy employing silica-based nanosystems. Biotechnol J 2021; 16(3): e1900438.
[http://dx.doi.org/10.1002/biot.201900438] [PMID: 33079451]
[97]
Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev 2020; 49(13): 4234-53.
[http://dx.doi.org/10.1039/C9CS00773C] [PMID: 32452475]
[98]
Li J, Burgess DJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 2020; 10(11): 2110-24.
[http://dx.doi.org/10.1016/j.apsb.2020.05.008] [PMID: 33304781]
[99]
Dolatkhah M, Hashemzadeh N, Barar J, et al. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids Surf B Biointerfaces 2020; 193: 111104.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111104] [PMID: 32417466]
[100]
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18(1): 180.
[http://dx.doi.org/10.1186/s12951-020-00741-z] [PMID: 33298099]
[101]
Wu L, de Perrot M. Radio-immunotherapy and chemo-immunotherapy as a novel treatment paradigm in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6(3): 325-34.
[http://dx.doi.org/10.21037/tlcr.2017.06.03] [PMID: 28713677]
[102]
Jin J, Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnology 2020; 18(1): 75.
[http://dx.doi.org/10.1186/s12951-020-00629-y] [PMID: 32408880]
[103]
Boreel DF, Span PN, Heskamp S, Adema GJ, Bussink J. Targeting oxidative phosphorylation to increase the efficacy of radio- and immune-combination therapy. Clin Cancer Res 2021; 27(11): 2970-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3913] [PMID: 33419779]
[104]
Pilard C, Ancion M, Delvenne P, Jerusalem G, Hubert P, Herfs M. Cancer immunotherapy: it’s time to better predict patients’ response. Br J Cancer 2021; 125(7): 927-38.
[http://dx.doi.org/10.1038/s41416-021-01413-x] [PMID: 34112949]
[105]
Khalifa J, Mazieres J, Gomez-Roca C, Ayyoub M, Moyal EC. radiotherapy in the era of immunotherapy with a focus on non-small-cell lung cancer: time to revisit ancient dogmas? Front Oncol 2021; 11: 662236.
[http://dx.doi.org/10.3389/fonc.2021.662236] [PMID: 33968769]
[106]
Corrò C, Dutoit V, Koessler T. Emerging trends for radio-immunotherapy in rectal cancer. Cancers (Basel) 2021; 13(6): 1374.
[http://dx.doi.org/10.3390/cancers13061374] [PMID: 33803620]
[107]
Zaheer J, Kim H, Lee YJ, Kim JS, Lim SM. Combination radioimmunotherapy strategies for solid tumors. Int J Mol Sci 2019; 20(22): E5579.
[http://dx.doi.org/10.3390/ijms20225579] [PMID: 31717302]
[108]
Arina A, Gutiontov SI, Weichselbaum RR. Radiotherapy and immunotherapy for cancer: from “systemic” to “multisite”. Clin Cancer Res 2020; 26(12): 2777-82.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2034] [PMID: 32047000]
[110]
Saxena P, Singh PK, Malik PS, Singh N. Immunotherapy alone or in combination with chemotherapy as first-line treatment of non-small cell lung cancer. Curr Treat Options Oncol 2020; 21(8): 69.
[http://dx.doi.org/10.1007/s11864-020-00768-2] [PMID: 32720019]
[111]
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020; 1874(1): 188377.
[http://dx.doi.org/10.1016/j.bbcan.2020.188377] [PMID: 32418899]
[112]
Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and immunotherapy: advancing cancer treatment by combination. Cancers (Basel) 2020; 12(5): E1295.
[http://dx.doi.org/10.3390/cancers12051295] [PMID: 32455560]
[113]
Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol 2019; 234(10): 16824-37.
[http://dx.doi.org/10.1002/jcp.28358] [PMID: 30784085]
[114]
Cyprian FS, Akhtar S, Gatalica Z, Vranic S. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: A new clinical paradigm in the treatment of triple-negative breast cancer. Bosn J Basic Med Sci 2019; 19(3): 227-33.
[http://dx.doi.org/10.17305/bjbms.2019.4204] [PMID: 30915922]
[115]
Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 2018; 18(8): 498-513.
[http://dx.doi.org/10.1038/s41577-018-0014-6] [PMID: 29743717]
[116]
Ni H, Xue J, Wang F, Sun X, Niu M. Nanomedicine approach to immunotherapy of hepatocellular carcinoma. J Biomed Nanotechnol 2021; 17(5): 771-92.
[http://dx.doi.org/10.1166/jbn.2021.3055] [PMID: 34082866]
[117]
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78(12): 5139-61.
[http://dx.doi.org/10.1007/s00018-021-03842-6] [PMID: 33963442]
[118]
Li J, Luo Y, Pu K. Electromagnetic nanomedicines for combinational cancer immunotherapy. Angew Chem Int Ed Engl 2021; 60(23): 12682-705.
[http://dx.doi.org/10.1002/anie.202008386] [PMID: 32671893]
[119]
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020; 41(7): 911-27.
[http://dx.doi.org/10.1038/s41401-020-0372-z] [PMID: 32123302]
[120]
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2021; 69: 238-48.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.010] [PMID: 31883449]
[121]
Hashemi V, Farhadi S, Ghasemi Chaleshtari M, et al. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol 2020; 83: 106446.
[http://dx.doi.org/10.1016/j.intimp.2020.106446] [PMID: 32244048]
[122]
Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 2020; 17(4): 251-66.
[http://dx.doi.org/10.1038/s41571-019-0308-z] [PMID: 32034288]
[123]
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol 2019; 14(11): 1007-17.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]

© 2025 Bentham Science Publishers | Privacy Policy