Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Screening of Phytoconstituents from Traditional Plants against SARSCoV- 2 using Molecular Docking Approach

Author(s): Deepika Saini, Kumud Madan and Shilpi Chauhan*

Volume 19, Issue 11, 2022

Published on: 13 May, 2022

Page: [1022 - 1038] Pages: 17

DOI: 10.2174/1570180819666220307163058

Price: $65

Abstract

Background: The emergence of COVID-19 as a fatal viral disease encourages researchers to develop effective and efficient therapeutic agents. The intervention of in silico studies has led to revolutionary changes in the conventional method of testing the bioactivity of plant constituents.

Objective: The current study deals with the investigation of some traditional immunomodulators of plant origin to combat this ailment.

Materials and Methods: A total of 151 phytomolecules of 12 immunomodulatory plants were evaluated for their inhibitory action against the main protease (PDB ID: 7D1M) and NSP15 endoribonuclease (PDB ID: 6WLC) by structure-based virtual screening. In addition, the promising molecules with ligand efficiency of more than -0.3(kcal/mol)/heavy atoms were further predicted for pharmacokinetic properties and druggability using the SwissADME web server, and their toxicity was also evaluated using Protox-II.

Results: Myricetin-3-O-arabinofuranoside of cranberry plant was found to be the most potential candidate against both enzymes: main protease (–14.2 kcal/mol) and NSP15 endoribonuclease (–12.2 kcal/mol).

Conclusion: The promising outcomes of the current study may be implemented in future drug development against coronavirus. The findings also help in the development of lead candidates of plant origin with a better ADMET profile in the future.

Keywords: COVID-19, virtual screening, phytoconstituents, main protease, NSP15 endoribonuclease, ADME.

Graphical Abstract

[1]
Gajjar, N.D.; Dhameliya, T.M.; Shah, G.B. In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. J. Mol. Struct., 2021, 1239, 130488.
[http://dx.doi.org/10.1016/j.molstruc.2021.130488] [PMID: 33903778]
[2]
Omokhua-Uyi, A.G.; Van Staden, J. Natural product remedies for COVID-19: A focus on safety. S. Afr. J. Bot., 2021, 139, 386-398.
[http://dx.doi.org/10.1016/j.sajb.2021.03.012] [PMID: 33753960]
[3]
Kamboj, S.; Kamboj, R.; Kamboj, S.; Guarve, K.; Dutt, R. Novel coronavirus 2019 outbreak: A global epidemic. Lett. Drug Des. Discov., 2020, 17(1), 1458-1464.
[http://dx.doi.org/10.2174/1570180817999200802033916]
[4]
Pawar, H.A.; Pawar, A.H.; Pawar, S.A.; Pawar, P.A. Coronavirus and covid-19: A systematic review and perspective. Curr. Drug Ther., 2020, 15(5), 423-435.
[http://dx.doi.org/10.2174/1574885515999200719142835]
[5]
Unhale, S.; Bilal, Q.; Sanap, S.; Thakhre, S.; Wadatkar, S.; Bairagi, R.; Sagrule, P.; Biyani, D. A review on corona virus (covid-19). Int. J. Pharm. Life Sci, 2020, 6, 109-115.
[6]
Bhat, M.A.; Rahman, S.; Rather, I.A.; Banday, I.; Syed, S.; Koser, H.; Kamal, M.A.; Minakshi, R.; Jan, A.T. Coronavirus disease-2019 (covid-19) in 2020: A perspective study of a global pandemic. Curr. Pharm. Des., 2020, 26, 1-11.
[PMID: 33213324]
[7]
Pooja; Veer, K. Initial remedial action to coronavirus in India: A study. Curr. Respir. Med. Rev., 2020, 16(3), 139-143.
[8]
Ray, S.K.; Meshram, Y.; Mukherjee, S. Impact and inescapable effects of coronavirus: history to modern pandemic episode. Coronaviruses, 2021, 2(1), 44-58.
[http://dx.doi.org/10.2174/2666796701999200701123714]
[9]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of covid-19 main protease (Mpro): In-silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[10]
Yarnell, E. Herbs for viral respiratory infections. Altern. Complement. Ther., 2017, 24(1), 35-43.
[http://dx.doi.org/10.1089/act.2017.29150.eya]
[11]
Khan, M.F.; Khan, M.A.; Khan, Z.A.; Ahamad, T.; Ansari, W.A. In-silico study to identify dietary molecules as potential SARS-COV-2 agents. Lett. Drug Des. Discov., 2021, 18(6), 562-573.
[http://dx.doi.org/10.2174/1570180817999201209204153]
[12]
Boozari, M.; Hosseinzadeh, H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res., 2021, 35(2), 864-876.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[13]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328, 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[14]
Saleh, M.S.M.; Kamisah, Y. Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomolecules, 2020, 11(1), 42.
[http://dx.doi.org/10.3390/biom11010042] [PMID: 33396926]
[15]
Adhikari, B.; Marasini, B.P.; Rayamajhee, B.; Bhattarai, B.R.; Lamichhane, G.; Khadayat, K.; Adhikari, A.; Khanal, S.; Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother. Res., 2021, 35(3), 1298-1312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[16]
Mohan, S.; Elhassan Taha, M.M.; Makeen, H.A.; Alhazmi, H.A.; Al Bratty, M.; Sultana, S.; Ahsan, W.; Najmi, A.; Khalid, A. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. Molecules, 2020, 25(21), 4878.
[http://dx.doi.org/10.3390/molecules25214878] [PMID: 33105694]
[17]
Shahzad, F.; Anderson, D.; Najafzadeh, M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-COV-2 infection. Nutrients, 2020, 12(9), 2573.
[http://dx.doi.org/10.3390/nu12092573] [PMID: 32854262]
[18]
Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z.; Qin, P. Current and perspective diagnostic techniques for COVID-19. ACS Infect. Dis., 2020, 6(8), 1998-2016.
[http://dx.doi.org/10.1021/acsinfecdis.0c00365] [PMID: 32677821]
[19]
Krishnamurthy, P.T. Coronavirus disease 2019: Virology and drug targets. Infect. Disord. Drug Targets, 2020, 20, 1-9.
[PMID: 33297920]
[20]
De Clercq, E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev. Anti Infect. Ther., 2006, 4(2), 291-302.
[http://dx.doi.org/10.1586/14787210.4.2.291] [PMID: 16597209]
[21]
Khater, I.; Nassar, A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem. Biophys. Rep., 2021, 27, 101032.
[http://dx.doi.org/10.1016/j.bbrep.2021.101032] [PMID: 34099985]
[22]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[23]
Mengist, H.M.; Dilnessa, T.; Jin, T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem., 2021, 9, 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[24]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[25]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[26]
Kumar, Y.; Singh, H.; Patel, C.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health, 2020, 13(9), 1210-1223.
[http://dx.doi.org/10.1016/j.jiph.2020.06.016] [PMID: 32561274]
[27]
Joshi, G.; Poduri, R. Selection of active antiviral compounds against covid-19 disease targeting coronavirus endoribonuclease Nendou/NSP15 via ligandbased virtual screening and molecular docking. Lett. Drug Des. Discov., 2021, 18(6), 610-619.
[http://dx.doi.org/10.2174/1570180817999201211191445]
[28]
Savale, R.U.; Bhowmick, S.; Osman, S.M.; Alasmary, F.A.; Almutairi, T.M.; Abdullah, D.S.; Patil, P.C.; Islam, M.A. Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Arch. Biochem. Biophys., 2021, 700, 108771.
[http://dx.doi.org/10.1016/j.abb.2021.108771] [PMID: 33485847]
[29]
Krishnan, D.A.; Sangeetha, G.; Vajravijayan, S.; Nandhagopal, N.; Gunasekaran, K. Structure-based drug designing towards the identification of potential anti-viral for COVID-19 by targeting endoribonuclease NSP15. Inform. Med. Unlocked, 2020, 20, 100392.
[http://dx.doi.org/10.1016/j.imu.2020.100392] [PMID: 32835078]
[30]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.; Chan, J.F.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[31]
Athmer, J.; Fehr, A.R.; Grunewald, M.; Smith, E.C.; Denison, M.R.; Perlman, S. In situ tagged NSP15 reveals interactions with coronavirus replication/transcription complex-associated proteins. MBio, 2017, 8(1), e02320-e16.
[http://dx.doi.org/10.1128/mBio.02320-16] [PMID: 28143984]
[32]
Sa Ribero, M.; Jouvenet, N.; Dreux, M.; Nisole, S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog., 2020, 16(7), e1008737.
[http://dx.doi.org/10.1371/journal.ppat.1008737] [PMID: 32726355]
[33]
Cava, C.; Bertoli, G.; Castiglioni, I. In silico discovery of candidate drugs against covid-19. Viruses, 2020, 12(4), 404.
[http://dx.doi.org/10.3390/v12040404] [PMID: 32268515]
[34]
Shivanika, C.; Kumar, S.; Ragunathan, V.; Tiwari, P.; Sumitha, A.; Devi, B.P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn., 2020, 2020, 1-27.
[http://dx.doi.org/10.1080/07391102.2020.1815584] [PMID: 32897178]
[35]
Borse, S.; Joshi, M.; Saggam, A.; Bhat, V.; Walia, S.; Marathe, A.; Sagar, S.; Chavan-Gautam, P.; Girme, A.; Hingorani, L.; Tillu, G. Ayurveda botanicals in COVID-19 management: An in silico multi-target approach. PLoS One, 2021, 16(6), e0248479.
[http://dx.doi.org/10.1371/journal.pone.0248479] [PMID: 34115763]
[36]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med., 2020, 124, 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[37]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[PMID: 32373991]
[38]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886, 173448.
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[39]
Chatterjee, S.; Maity, A.; Chowdhury, S.; Islam, M.A.; Muttinini, R.K.; Sen, D. In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme. J. Biomol. Struct. Dyn., 2021, 39(14), 5290-5303.
[http://dx.doi.org/10.1080/07391102.2020.1787228] [PMID: 32608329]
[40]
Silva, J.K.R.D.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential oils as antiviral agents. potential of essential oils to treat SARS-COV-2 infection: an in-silico investigation. Int. J. Mol. Sci., 2020, 21(10), 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[41]
Percival, S.S. Grape consumption supports immunity in animals and humans. J. Nutr., 2009, 139(9), 1801S-1805S.
[http://dx.doi.org/10.3945/jn.109.108324] [PMID: 19640969]
[42]
Terra, X.; Valls, J.; Vitrac, X.; Mérrillon, J.M.; Arola, L.; Ardèvol, A.; Bladé, C.; Fernandez-Larrea, J.; Pujadas, G.; Salvadó, J.; Blay, M. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J. Agric. Food Chem., 2007, 55(11), 4357-4365.
[http://dx.doi.org/10.1021/jf0633185] [PMID: 17461594]
[43]
Islam, M.R.; Oomah, D.B.; Diarra, M.S. Potential immunomodulatory effects of non-dialyzable materials of cranberry extract in poultry production. Poult. Sci., 2017, 96(2), 341-350.
[http://dx.doi.org/10.3382/ps/pew302] [PMID: 27587728]
[44]
Moussa, S.D.; Andrew, M.H. Potential of cranberry extracts as immuno-modulatory agent in organic broiler chicken production. In: Proceedings of the 4th ISOFAR Scientific Conference; Istanbul, TurkeyOctober 13-15, 2014
[45]
Manu, K.A.; Kuttan, G. Immunomodulatory activities of Punarnavine, an alkaloid from Boerhaavia diffusa. Immunopharmacol. Immunotoxicol., 2009, 31(3), 377-387.
[http://dx.doi.org/10.1080/08923970802702036] [PMID: 19555203]
[46]
Patil, K.S.; Bhalsing, S.R. Ethnomedicinal uses, phytochemistry and pharmacological properties of the genus Boerhavia. J. Ethnopharmacol., 2016, 182, 200-220.
[http://dx.doi.org/10.1016/j.jep.2016.01.042] [PMID: 26844923]
[47]
Ziauddin, M.; Phansalkar, N.; Patki, P.; Diwanay, S.; Patwardhan, B. Studies on the immunomodulatory effects of Ashwagandha. J. Ethnopharmacol., 1996, 50(2), 69-76.
[http://dx.doi.org/10.1016/0378-8741(95)01318-0] [PMID: 8866726]
[48]
Priyanka, G.; Anil Kumar, B.; Lakshman, M.; Manvitha, V.; Kala Kumar, B. Adaptogenic and immunomodulatory activity of ashwagandha root extract: an experimental study in an equine model. Front. Vet. Sci., 2020, 7, 541112.
[http://dx.doi.org/10.3389/fvets.2020.541112] [PMID: 33134345]
[49]
Chandran, U.; Patwardhan, B. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J. Ethnopharmacol., 2017, 197, 250-256.
[PMID: 10904163]
[50]
Davis, L.; Kuttan, G. Immunomodulatory activity of Withania somnifera. J. Ethnopharmacol., 2000, 71(1-2), 193-200.
[51]
Dibazar, S.P.; Fateh, S.; Daneshmandi, S. Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: In vitro evaluations of aqueous and ethanolic components. J. Immunotoxicol., 2015, 12(2), 124-131.
[http://dx.doi.org/10.3109/1547691X.2014.912698] [PMID: 24873744]
[52]
Carrasco, F.R.; Schmidt, G.; Romero, A.L.; Sartoretto, J.L.; Caparroz-Assef, S.M.; Bersani-Amado, C.A.; Cuman, R.K. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: Evidence for humor- and cell-mediated responses. J. Pharm. Pharmacol., 2009, 61(7), 961-967.
[http://dx.doi.org/10.1211/jpp/61.07.0017] [PMID: 19589240]
[53]
Niphade, S.R.; Asad, M.; Chandrakala, G.K.; Toppo, E.; Deshmukh, P. Immunomodulatory activity of Cinnamomum zeylanicum bark. Pharm. Biol., 2009, 47(12), 1168-1173.
[http://dx.doi.org/10.3109/13880200903019234]
[54]
Lee, B-J.; Kim, Y-J.; Cho, D-H.; Sohn, N-W.; Kang, H. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation. Immunopharmacol. Immunotoxicol., 2011, 33(4), 714-722.
[http://dx.doi.org/10.3109/08923973.2011.564185] [PMID: 22053946]
[55]
Amri, M.; Touil-Boukoffa, C. In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. Asian Pac. J. Trop. Med., 2016, 9(8), 749-756.
[http://dx.doi.org/10.1016/j.apjtm.2016.06.013] [PMID: 27569883]
[56]
Bhaskar, A.; Kumari, A.; Singh, M.; Kumar, S.; Kumar, S.; Dabla, A.; Chaturvedi, S.; Yadav, V.; Chattopadhyay, D.; Prakash Dwivedi, V. [6]-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis. Int. Immunopharmacol., 2020, 87, 106809.
[http://dx.doi.org/10.1016/j.intimp.2020.106809] [PMID: 32693356]
[57]
Eftekhar, N.; Moghimi, A.; Mohammadian Roshan, N.; Saadat, S.; Boskabady, M.H. Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. BMC Complement. Altern. Med., 2019, 19(1), 349.
[http://dx.doi.org/10.1186/s12906-019-2765-4] [PMID: 31801507]
[58]
Mediratta, P.K.; Sharma, K.K.; Singh, S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J. Ethnopharmacol., 2002, 80(1), 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[59]
Moutia, M.; Habti, N.; Badou, A. In vitro and In vivo immunomodulator activities of Allium sativum L. Evid.-. Based Complementary Altern, 2018, 2018, 4984659.
[60]
Arreola, R.; Fabián, S.Q.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res., 2015, 2015, 401630.
[http://dx.doi.org/10.1155/2015/401630]
[61]
El Shanawany, E.E.; Fouad, E.A.; Keshta, H.G.; Hassan, S.E.; Hegazi, A.G.; Abdel-Rahman, E.H. Immunomodulatory effects of Moringa oleifera leaves aqueous extract in sheep naturally co-infected with Fasciola gigantica and Clostridium novyi. J. Parasit. Dis., 2019, 43(4), 583-591.
[http://dx.doi.org/10.1007/s12639-019-01130-6] [PMID: 31749528]
[62]
Gupta, A.; Gautam, M.K.; Singh, R.K.; Kumar, M.V.; Rao, ChV.; Goel, R.K.; Anupurba, S. Immunomodulatory effect of Moringa oleifera Lam. extract on cyclophosphamide induced toxicity in mice. Indian J. Exp. Biol., 2010, 48(11), 1157-1160.
[PMID: 21117458]
[63]
Nfambi, J.; Bbosa, G.S.; Sembajwe, L.F.; Gakunga, J.; Kasolo, J.N. Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats. J. Basic Clin. Physiol. Pharmacol., 2015, 26(6), 603-611.
[http://dx.doi.org/10.1515/jbcpp-2014-0104] [PMID: 26103628]
[64]
Ghonime, M.; Eldomany, R.; Abdelaziz, A.; Soliman, H. Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacol. Immunotoxicol., 2011, 33(1), 141-145.
[http://dx.doi.org/10.3109/08923973.2010.487490] [PMID: 20507215]
[65]
Shin, J-Y.; Song, J-Y.; Yun, Y-S.; Yang, H-O.; Rhee, D-K.; Pyo, S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol., 2002, 24(3), 469-482.
[http://dx.doi.org/10.1081/IPH-120014730] [PMID: 12375741]
[66]
Riaza, M.; Rahmana, N.U.; Zia-Ul-Haqb, M.; Jaffarc, H.Z.E.; Manea, R. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci. Technol., 2019, 83, 12-30.
[http://dx.doi.org/10.1016/j.tifs.2018.11.008]
[67]
Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; Song, H.; Shi, Y.; Li, X.; Tan, W.; Qi, J.; Gao, G.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun., 2020, 11(1), 4417.
[http://dx.doi.org/10.1038/s41467-020-18233-x] [PMID: 32887884]
[68]
Kim, Y.; Maltseva, N.; Jedrzejczak, R.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of NSP15 endoribonuclease from SARS CoV-2 in the complex with uridine-5′-monophosphate. Protein Sci., 2020, 2020, 3873.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[69]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[70]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[71]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[72]
BIOVIA. Dassault Systèmes; Discovery Studio Visualizer, 2018.
[73]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[74]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[75]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[76]
Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem., 2018, 6, 362.
[http://dx.doi.org/10.3389/fchem.2018.00362] [PMID: 30271769]
[77]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(Web Server issue), W53-W58.
[http://dx.doi.org/10.1093/nar/gku401]
[78]
Breiman, L. Random Forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[79]
Kuntz, I.D.; Chen, K.; Sharp, K.A.; Kollman, P.A. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 9997-10002.
[http://dx.doi.org/10.1073/pnas.96.18.9997] [PMID: 10468550]
[80]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[81]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[82]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[83]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[84]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[85]
Brennan, F.R.; Morton, L.D.; Spindeldreher, S.; Kiessling, A.; Allenspach, R.; Hey, A.; Muller, P.Y.; Frings, W.; Sims, J. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs, 2010, 2(3), 233-255.
[http://dx.doi.org/10.4161/mabs.2.3.11782] [PMID: 20421713]
[86]
Dai, W.; Jochmans, D.; Xie, H.; Yang, H.; Li, J.; Su, H.; Chang, D.; Wang, J.; Peng, J.; Zhu, L.; Nian, Y.; Hilgenfeld, R.; Jiang, H.; Chen, K.; Zhang, L.; Xu, Y.; Neyts, J.; Liu, H. Design, synthesis, and biological evaluation of peptidomimetic aldehydes as broad-spectrum inhibitors against enterovirus and SARS-CoV-2. J. Med. Chem., 2021, 2021, 02258.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02258] [PMID: 33872498]
[87]
Vankadara, S.; Wong, Y.X.; Liu, B.; See, Y.Y.; Tan, L.H.; Tan, Q.W.; Wang, G.; Karuna, R.; Guo, X.; Tan, S.T.; Fong, J.Y.; Joy, J.; Chia, C.S.B. A head-to-head comparison of the inhibitory activities of 15 peptidomimetic SARS-CoV-2 3CLpro inhibitors. Bioorg. Med. Chem. Lett., 2021, 48, 128263.
[http://dx.doi.org/10.1016/j.bmcl.2021.128263] [PMID: 34271072]
[88]
Vandyck, K.; Deval, J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr. Opin. Virol., 2021, 49, 36-40.
[http://dx.doi.org/10.1016/j.coviro.2021.04.006] [PMID: 34029993]
[89]
Chia, C.S.B.; Xu, W.; Ng, P.S. A patent review on SARS coronavirus main protease (3CLpro) inhibitors. ChemMedChem, 2022, 17(1), e202100576.
[PMID: 34651447]

© 2024 Bentham Science Publishers | Privacy Policy