Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

New Advances of CRISPR/Cas9 Technique and its Application in Disease Treatment and Medicinal Plants Research

Author(s): He-Fang Wan, Wen-Jing Han, Lei Zhou, Shuo Wang and Chun Sui*

Volume 23, Issue 14, 2022

Published on: 29 April, 2022

Page: [1678 - 1690] Pages: 13

DOI: 10.2174/1389201023666220307104501

Price: $65

conference banner
Abstract

Background: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology is widely used in disease treatment and medicinal plant improvements due to its advantages, such as easy operation, low time consumption, and high efficiency. However, potential off-target risks still exist in practical applications and need to be solved urgently.

Objectives: This study aimed to review the application progress of CRISPR/Cas9 technology in the field of disease treatment and medicinal agriculture in recent years. Furthermore, the study discusses the ways to reduce the off-target effect of CRISPR/Cas9 technology, providing a reference for the further application of this technology.

Methods: CiteSpace software was used to analyze relevant literature data from 2013 to August 2021, and search results were retrieved from Web of Science, PubMed, and CNKI databases.

Results: In the field of disease treatment, CRISPR/Cas9 technology has great potential to cure challenging human diseases and has been widely used in drug target development, drug design, and screening. In crop breeding, CRISPR/Cas9 accelerates the improvement of crop varieties and shortens the number of years of crop breeding. By adjusting the length and GC content of sgRNA and changing the concentration of Cas9/sgRNA complex to reduce the off-target effect of CRISPR/Cas9 technology, the target genes can be manipulated more accurately.

Conclusion: CRISPR/Cas9 technology is an indispensable and key technology in the field of disease treatment and medicinal plants. With the in-depth study of the off-target effect, CRISPR/Cas9 technology can have broader application prospects in the fields of medicine and medicinal agriculture.

Keywords: CRISPR/Cas9, disease treatment, medicinal plants, gene editing, off-target effect, sgRNA.

Graphical Abstract

[1]
Duan, J.; Lu, G.; Xie, Z.; Lou, M.; Luo, J.; Guo, L.; Zhang, Y. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res., 2014, 24(8), 1009-1012.
[http://dx.doi.org/10.1038/cr.2014.87] [PMID: 24980957]
[2]
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340), 602-607.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[3]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[4]
Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79(1), 181-211.
[http://dx.doi.org/10.1146/annurev.biochem.052308.093131] [PMID: 20192759]
[5]
Rudin, N.; Sugarman, E.; Haber, J.E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 1989, 122(3), 519-534.
[http://dx.doi.org/10.1093/genetics/122.3.519] [PMID: 2668114]
[6]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phospha-tase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/jb.169.12.5429-5433.1987] [PMID: 3316184]
[7]
Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[8]
Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol., 2005, 1(6), e60.
[http://dx.doi.org/10.1371/journal.pcbi.0010060] [PMID: 16292354]
[9]
Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokary-otes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mecha-nisms of action. Biol. Direct, 2006, 1(1), 7.
[http://dx.doi.org/10.1186/1745-6150-1-7] [PMID: 16545108]
[10]
Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 2013, 31(3), 233-239.
[http://dx.doi.org/10.1038/nbt.2508] [PMID: 23360965]
[11]
Li, J.F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol., 2013, 31(8), 688-691.
[http://dx.doi.org/10.1038/nbt.2654] [PMID: 23929339]
[12]
Nekrasov, V.; Staskawicz, B.; Weigel, D.; Jones, J.D.; Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol., 2013, 31(8), 691-693.
[http://dx.doi.org/10.1038/nbt.2655] [PMID: 23929340]
[13]
Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; Gao, C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(8), 686-688.
[http://dx.doi.org/10.1038/nbt.2650] [PMID: 23929338]
[14]
Su, S.; Hu, B.; Shao, J.; Shen, B.; Du, J.; Du, Y.; Zhou, J.; Yu, L.; Zhang, L.; Chen, F.; Sha, H.; Cheng, L.; Meng, F.; Zou, Z.; Huang, X.; Liu, B. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci. Rep., 2016, 6(1), 20070.
[http://dx.doi.org/10.1038/srep20070] [PMID: 26818188]
[15]
Moore, J.K.; Haber, J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol., 1996, 16(5), 2164-2173.
[http://dx.doi.org/10.1128/MCB.16.5.2164] [PMID: 8628283]
[16]
Mojica, F.J.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 2005, 60(2), 174-182.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[17]
Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(Pt 3), 653-663.
[http://dx.doi.org/10.1099/mic.0.27437-0] [PMID: 15758212]
[18]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819), 1709-1712.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[19]
Boch, J.; Bonas, U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu. Rev. Phytopathol., 2010, 48(1), 419-436.
[http://dx.doi.org/10.1146/annurev-phyto-080508-081936] [PMID: 19400638]
[20]
Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res., 2011, 39(21), 9275-9282.
[http://dx.doi.org/10.1093/nar/gkr606] [PMID: 21813460]
[21]
Zhang, Z.; Mao, Y.; Ha, S.; Liu, W.; Botella, J.R.; Zhu, J.K. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep., 2016, 35(7), 1519-1533.
[http://dx.doi.org/10.1007/s00299-015-1900-z] [PMID: 26661595]
[22]
Li, J.; Zhang, H.; Si, X.; Tian, Y.; Chen, K.; Liu, J.; Chen, H.; Gao, C. Generation of thermosensitive male-sterile maize by targeted knock-out of the ZmTMS5 gene. J. Genet. Genomics, 2017, 44(9), 465-468.
[http://dx.doi.org/10.1016/j.jgg.2017.02.002] [PMID: 28412227]
[23]
Panfil, A.R.; London, J.A.; Green, P.L.; Yoder, K.E. CRISPR/Cas9 genome editing to disable the latent HIV-1 provirus. Front. Microbiol., 2018, 9, 3107.
[http://dx.doi.org/10.3389/fmicb.2018.03107] [PMID: 30619186]
[24]
Permyakova, N.V.; Sidorchuk, Y.V.; Marenkova, T.V.; Khozeeva, S.A.; Kuznetsov, V.V.; Zagorskaya, A.A.; Rozov, S.M.; Deineko, E.V. CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells. Mol. Biol. Rep., 2019, 46(6), 5735-5743.
[http://dx.doi.org/10.1007/s11033-019-05007-y] [PMID: 31392536]
[25]
Zhao, L.; Luo, Y.; Huang, Q.; Cao, Z.; Yang, X. Photo-enhanced CRISPR/Cas9 system enables robust PD-L1 gene disruption in cancer cells and cancer ctem-like cells for efficient cancer immunotherapy. Small,, 2020, e2004879(52), e2004879.
[http://dx.doi.org/10.1002/smll.202004879] [PMID: 33289336]
[26]
Park, C.Y.; Kim, J.; Kweon, J.; Son, J.S.; Lee, J.S.; Yoo, J.E.; Cho, S.R.; Kim, J.H.; Kim, J.S.; Kim, D.W. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA, 2014, 111(25), 9253-9258.
[http://dx.doi.org/10.1073/pnas.1323941111] [PMID: 24927536]
[27]
Wu, Y.; Liang, D.; Wang, Y.; Bai, M.; Tang, W.; Bao, S.; Yan, Z.; Li, D.; Li, J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13(6), 659-662.
[http://dx.doi.org/10.1016/j.stem.2013.10.016] [PMID: 24315440]
[28]
Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep., 2013, 3(1), 2510.
[http://dx.doi.org/10.1038/srep02510] [PMID: 23974631]
[29]
Chen, J.; Zhang, W.; Lin, J.; Wang, F.; Wu, M.; Chen, C.; Zheng, Y.; Peng, X.; Li, J.; Yuan, Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol. Ther., 2014, 22(2), 303-311.
[http://dx.doi.org/10.1038/mt.2013.212] [PMID: 24025750]
[30]
Heckl, D.; Kowalczyk, M.S.; Yudovich, D.; Belizaire, R.; Puram, R.V.; McConkey, M.E.; Thielke, A.; Aster, J.C.; Regev, A.; Ebert, B.L. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol., 2014, 32(9), 941-946.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[31]
Cyranoski, D. Chinese scientists to pioneer first human CRISPR trial. Nature, 2016, 535(7613), 476-477.
[http://dx.doi.org/10.1038/nature.2016.20302] [PMID: 27466105]
[32]
Pankowicz, F.P.; Barzi, M.; Legras, X.; Hubert, L.; Mi, T.; Tomolonis, J.A.; Ravishankar, M.; Sun, Q.; Yang, D.; Borowiak, M.; Sumazin, P.; Elsea, S.H.; Bissig-Choisat, B.; Bissig, K.D. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat he-reditary tyrosinaemia. Nat. Commun., 2016, 7(1), 12642.
[http://dx.doi.org/10.1038/ncomms12642] [PMID: 27572891]
[33]
Forget, B.G. Molecular basis of hereditary persistence of fetal hemoglobin. Ann. N. Y. Acad. Sci.,, 1998, 850(1 COOLEY'SANEM), 38-44.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb10460.x] [PMID: 9668525]
[34]
Bauer, D.E.; Kamran, S.C.; Lessard, S.; Xu, J.; Fujiwara, Y.; Lin, C.; Shao, Z.; Canver, M.C.; Smith, E.C.; Pinello, L.; Sabo, P.J.; Vierstra, J.; Voit, R.A.; Yuan, G.C.; Porteus, M.H.; Stamatoyannopoulos, J.A.; Lettre, G.; Orkin, S.H. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science, 2013, 342(6155), 253-257.
[http://dx.doi.org/10.1126/science.1242088] [PMID: 24115442]
[35]
Canver, M.C.; Smith, E.C.; Sher, F.; Pinello, L.; Sanjana, N.E.; Shalem, O.; Chen, D.D.; Schupp, P.G.; Vinjamur, D.S.; Garcia, S.P.; Luc, S.; Kurita, R.; Nakamura, Y.; Fujiwara, Y.; Maeda, T.; Yuan, G.C.; Zhang, F.; Orkin, S.H.; Bauer, D.E. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527(7577), 192-197.
[http://dx.doi.org/10.1038/nature15521] [PMID: 26375006]
[36]
Vierstra, J.; Reik, A.; Chang, K.H.; Stehling-Sun, S.; Zhou, Y.; Hinkley, S.J.; Paschon, D.E.; Zhang, L.; Psatha, N.; Bendana, Y.R.; O’Neil, C.M.; Song, A.H.; Mich, A.K.; Liu, P.Q.; Lee, G.; Bauer, D.E.; Holmes, M.C.; Orkin, S.H.; Papayannopoulou, T.; Stamatoyannopoulos, G.; Rebar, E.J.; Gregory, P.D.; Urnov, F.D.; Stamatoyannopoulos, J.A. Functional footprinting of regulatory DNA. Nat. Methods, 2015, 12(10), 927-930.
[http://dx.doi.org/10.1038/nmeth.3554] [PMID: 26322838]
[37]
Shin, J.W.; Kim, K.H.; Chao, M.J.; Atwal, R.S.; Gillis, T.; MacDonald, M.E.; Gusella, J.F.; Lee, J.M. Permanent inactivation of Hunting-ton’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet., 2016, 25(20), 4566-4576.
[http://dx.doi.org/10.1093/hmg/ddw286] [PMID: 28172889]
[38]
DeWitt, M.A.; Magis, W.; Bray, N.L.; Wang, T.; Berman, J.R.; Urbinati, F.; Heo, S.J.; Mitros, T.; Muñoz, D.P.; Boffelli, D.; Kohn, D.B.; Walters, M.C.; Carroll, D.; Martin, D.I.; Corn, J.E. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med., 2016, 8(360), 360ra134.
[http://dx.doi.org/10.1126/scitranslmed.aaf9336] [PMID: 27733558]
[39]
Liu, B.; Chen, S.; Rose, A.; Chen, D.; Cao, F.; Zwinderman, M.; Kiemel, D.; Aïssi, M.; Dekker, F.J.; Haisma, H.J. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucleic Acids Res., 2020, 48(2), 517-532.
[http://dx.doi.org/10.1093/nar/gkz1136] [PMID: 31799598]
[40]
Auer, T.O.; Duroure, K.; De Cian, A.; Concordet, J.P.; Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by ho-mology-independent DNA repair. Genome Res., 2014, 24(1), 142-153.
[http://dx.doi.org/10.1101/gr.161638.113] [PMID: 24179142]
[41]
Yao, X.; Wang, X.; Liu, J.; Hu, X.; Shi, L.; Shen, X.; Ying, W.; Sun, X.; Wang, X.; Huang, P.; Yang, H. CRISPR/Cas9-mediated precise targeted integration in vivo using a double cut donor with short homology arms. EBioMedicine, 2017, 20, 19-26.
[http://dx.doi.org/10.1016/j.ebiom.2017.05.015] [PMID: 28527830]
[42]
Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603), 420.
[http://dx.doi.org/10.1038/nature17946]
[43]
Chadwick, A.C.; Wang, X.; Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol., 2017, 37(9), 1741-1747.
[http://dx.doi.org/10.1161/ATVBAHA.117.309881] [PMID: 28751571]
[44]
Liao, H.K.; Hatanaka, F.; Araoka, T.; Reddy, P.; Wu, M.Z.; Sui, Y.H.; Yamauchi, T.; Sakurai, M.; O’Keefe, D.D.; Nunez-Delicado, E.; Guillen, P.; Campistol, J.M.; Wu, C.J.; Lu, L.F.; Esteban, C.R.; Belmonte, J.C.I. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 2017, 171(7), 1495.
[http://dx.doi.org/10.1016/j.cell.2017.10.025]
[45]
Matharu, N.; Rattanasopha, S.; Tamura, S.; Maliskova, L.; Wang, Y.; Bernard, A.; Hardin, A.; Eckalbar, W.L.; Vaisse, C.; Ahituv, N. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, 2019, 363(6424), eaau0629.
[http://dx.doi.org/10.1126/science.aau0629] [PMID: 30545847]
[46]
Wang, T.; Yu, H.; Hughes, N.W.; Liu, B.; Kendirli, A.; Klein, K.; Chen, W.W.; Lander, E.S.; Sabatini, D.M. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell, 2017, 168(5), 890-903.e15.
[http://dx.doi.org/10.1016/j.cell.2017.01.013] [PMID: 28162770]
[47]
Zhou, X.; Li, R.; Jing, R.; Zuo, B.; Zheng, Q. Genome-wide CRISPR knockout screens identify ADAMTSL3 and PTEN genes as suppres-sors of HCC proliferation and metastasis, respectively. J. Cancer Res. Clin. Oncol., 2020, 146(6), 1509-1521.
[http://dx.doi.org/10.1007/s00432-020-03207-9] [PMID: 32266537]
[48]
Wang, Y.; Gao, B.; Tan, P.Y.; Handoko, Y.A.; Sekar, K.; Deivasigamani, A.; Seshachalam, V.P.; OuYang, H.Y.; Shi, M.; Xie, C.; Goh, B.K.P.; Ooi, L.L.; Man Hui, K. Genome-wide CRISPR knockout screens identify NCAPG as an essential oncogene for hepatocellular car-cinoma tumor growth. FASEB J., 2019, 33(8), 8759-8770.
[http://dx.doi.org/10.1096/fj.201802213RR] [PMID: 31022357]
[49]
Zhang, S.; Zhang, F.; Chen, Q.; Wan, C.; Xiong, J.; Xu, J. CRISPR/Cas9-mediated knockout of NSD1 suppresses the hepatocellular carci-noma development via the NSD1/H3/Wnt10b signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 467.
[http://dx.doi.org/10.1186/s13046-019-1462-y] [PMID: 31727171]
[50]
Wei, L.; Lee, D.; Law, C.T.; Zhang, M.S.; Shen, J.; Chin, D.W.C.; Zhang, A.; Tsang, F.H.C.; Wong, C.L.S.; Ng, I.O.L.; Wong, C.C.L.; Wong, C.M. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun., 2019, 10(1), 4681.
[http://dx.doi.org/10.1038/s41467-019-12606-7] [PMID: 31615983]
[51]
Burch-Smith, T.M.; Anderson, J.C.; Martin, G.B.; Dinesh-Kumar, S.P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J., 2004, 39(5), 734-746.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02158.x] [PMID: 15315635]
[52]
Cheng, Q.; Su, P.; Hu, Y.; He, Y.; Gao, W.; Huang, L. RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol. Lett., 2014, 36(2), 363-369.
[http://dx.doi.org/10.1007/s10529-013-1358-4] [PMID: 24078134]
[53]
Dai, Z.; Cui, G.; Zhou, S.F.; Zhang, X.; Huang, L. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reduc-tase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. J. Plant Physiol., 2011, 168(2), 148-157.
[http://dx.doi.org/10.1016/j.jplph.2010.06.008] [PMID: 20637524]
[54]
Li, B.; Cui, G.; Shen, G.; Zhan, Z.; Huang, L.; Chen, J.; Qi, X. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci. Rep., 2017, 7(1), 43320.
[http://dx.doi.org/10.1038/srep43320] [PMID: 28256553]
[55]
Zhou, Z.; Tan, H.; Li, Q.; Chen, J.; Gao, S.; Wang, Y.; Chen, W.; Zhang, L. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry, 2018, 148, 63-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.015] [PMID: 29421512]
[56]
Kui, L.; Chen, H.; Zhang, W.; He, S.; Xiong, Z.; Zhang, Y.; Yan, L.; Zhong, C.; He, F.; Chen, J.; Zeng, P.; Zhang, G.; Yang, S.; Dong, Y.; Wang, W.; Cai, J. Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front. Plant Sci., 2017, 7, 2036.
[http://dx.doi.org/10.3389/fpls.2016.02036] [PMID: 28127299]
[57]
Liu, X. Genetic transformation of gene BcUGT3, and application of CRISPR/Cas9 technique in Bupleurum chinense; Peking Union Medi-cal College, 2018.
[58]
Qiu, J.R.; Su, Y.K.; Song, Z.Q.; Fang, X.S.; Li, J.Y.; Zhang, J.; Wang, J.H. Directing construction of CRISPR/Cas9 vector of SmPAL1 in Salvia miltiorrhiza by target efficiency detection in vitro. Zhongguo Zhongyao Zazhi, 2018, 43(21), 4226-4230.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20180726.007] [PMID: 30583622]
[59]
Shi, J.; Gao, H.; Wang, H.; Lafitte, H.R.; Archibald, R.L.; Yang, M.; Hakimi, S.M.; Mo, H.; Habben, J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J., 2017, 15(2), 207-216.
[http://dx.doi.org/10.1111/pbi.12603] [PMID: 27442592]
[60]
Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009, 459(7245), 442-445.
[http://dx.doi.org/10.1038/nature07845] [PMID: 19404258]
[61]
Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J., 2017, 15(12), 1509-1519.
[http://dx.doi.org/10.1111/pbi.12733] [PMID: 28371200]
[62]
Hu, S.; Tian, Y.N.; Feng, L.; Lan, X.T.; Huang, X.; Shi, K.H.; Han, X.S.; Zhu, Y.P.; He, F.M. Study on the function of Csl4 gene using CRISPR/Cas9 technology in Dendrobium officinale. Mol. Plant Breed., 2021, 19(08), 2596-2602.
[63]
Zhang, J.; Zhang, H.; Botella, J.R.; Zhu, J.K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol., 2018, 60(5), 369-375.
[http://dx.doi.org/10.1111/jipb.12620] [PMID: 29210506]
[64]
Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.S.; Samuelsson, M.; Hofvander, P. Efficient targeted multiallelic mutagenesis in tetra-ploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep., 2017, 36(1), 117-128.
[http://dx.doi.org/10.1007/s00299-016-2062-3] [PMID: 27699473]
[65]
Nakayasu, M.; Akiyama, R.; Lee, H.J.; Osakabe, K.; Osakabe, Y.; Watanabe, B.; Sugimoto, Y.; Umemoto, N.; Saito, K.; Muranaka, T.; Mizutani, M. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem., 2018, 131, 70-77.
[http://dx.doi.org/10.1016/j.plaphy.2018.04.026] [PMID: 29735370]
[66]
Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Shao, Y.; Pan, Y.; Hu, Y.; Peng, Y.; Fu, X.; Li, H.; Xia, S.; Zhao, B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep., 2017, 7(1), 14438.
[http://dx.doi.org/10.1038/s41598-017-14832-9] [PMID: 29089547]
[67]
Waltz, E. Gene-edited CRISPR mushroom escapes US regulation. Nature, 2016, 532(7599), 293.
[http://dx.doi.org/10.1038/nature.2016.19754] [PMID: 27111611]
[68]
Chen, X.; Yang, S.; Zhang, Y.; Zhu, X.; Yang, X.; Zhang, C.; Li, H.; Feng, X. Generation of male-sterile soybean lines with the CRISPR/Cas9 system. Crop J., 2021, 9(6), 1270-1277.
[http://dx.doi.org/10.1016/j.cj.2021.05.003]
[69]
Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol., 2016, 17(8), 1276-1288.
[http://dx.doi.org/10.1111/mpp.12417] [PMID: 27103354]
[70]
Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 2014, 32(9), 947-951.
[http://dx.doi.org/10.1038/nbt.2969] [PMID: 25038773]
[71]
Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.G.; Zhao, K. Enhanced rice blast resistance by CRISPR/Cas9-targeted muta-genesis of the ERF transcription factor gene OsERF922. PLoS One, 2016, 11(4), e0154027.
[http://dx.doi.org/10.1371/journal.pone.0154027] [PMID: 27116122]
[72]
Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol., 2010, 61(1), 317-347.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112119] [PMID: 20192743]
[73]
Kuang, Y.; Li, S.; Ren, B.; Yan, F.; Spetz, C.; Li, X.; Zhou, X.; Zhou, H. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol. Plant, 2020, 13(4), 565-572.
[http://dx.doi.org/10.1016/j.molp.2020.01.010] [PMID: 32001363]
[74]
Tavakoli, K.; Pour-Aboughadareh, A.; Kianersi, F.; Poczai, P.; Etminan, A.; Shooshtari, L. Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech., 2021, 10(3), 14.
[http://dx.doi.org/10.3390/biotech10030014]
[75]
Subudhi, P.K.; De Leon, T.B.; Tapia, R.; Chai, C.; Karan, R.; Ontoy, J.; Singh, P.K. Genetic interaction involving photoperiod-responsive Hd1 promotes early flowering under long-day conditions in rice. Sci. Rep., 2018, 8(1), 2081.
[http://dx.doi.org/10.1038/s41598-018-20324-1] [PMID: 29391460]
[76]
Cai, Y.; Chen, L.; Liu, X.; Guo, C.; Sun, S.; Wu, C.; Jiang, B.; Han, T.; Hou, W. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol. J., 2018, 16(1), 176-185.
[http://dx.doi.org/10.1111/pbi.12758] [PMID: 28509421]
[77]
Soyk, S.; Müller, N.A.; Park, S.J.; Schmalenbach, I.; Jiang, K.; Hayama, R.; Zhang, L.; Van Eck, J.; Jiménez-Gómez, J.M.; Lippman, Z.B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet., 2017, 49(1), 162-168.
[http://dx.doi.org/10.1038/ng.3733] [PMID: 27918538]
[78]
Zhou, H.; He, M.; Li, J.; Chen, L.; Huang, Z.; Zheng, S.; Zhu, L.; Ni, E.; Jiang, D.; Zhao, B.; Zhuang, C. Development of commercial ther-mo-sensitive genic malesterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci. Rep., 2016, 6(1), 37395.
[http://dx.doi.org/10.1038/srep37395] [PMID: 27874087]
[79]
Li, M.; Li, X.; Zhou, Z.; Wu, P.; Fang, M.; Pan, X.; Lin, Q.; Luo, W.; Wu, G.; Li, H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci., 2016, 7, 377.
[http://dx.doi.org/10.3389/fpls.2016.00377] [PMID: 27066031]
[80]
Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.L.; Gao, C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun., 2016, 7(1), 12617.
[http://dx.doi.org/10.1038/ncomms12617] [PMID: 27558837]
[81]
Zhang, J.; Zhang, H.; Li, S.; Li, J.; Yan, L.; Xia, L. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J. Integr. Plant Biol., 2021, 63(9), 1649-1663.
[http://dx.doi.org/10.1111/jipb.13151] [PMID: 34270164]
[82]
Hajiahmadi, Z.; Movahedi, A.; Wei, H.; Li, D.; Orooji, Y.; Ruan, H.; Zhuge, Q. Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants. Int. J. Mol. Sci., 2019, 20(15), E3719.
[http://dx.doi.org/10.3390/ijms20153719] [PMID: 31366028]
[83]
Peterson, B.A.; Haak, D.C.; Nishimura, M.T.; Teixeira, P.J.P.L.; James, S.R.; Dangl, J.L.; Nimchuk, Z.L. Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One, 2016, 11(9), e0162169.
[http://dx.doi.org/10.1371/journal.pone.0162169] [PMID: 27622539]
[84]
Baysal, C.; Bortesi, L.; Zhu, C.F.; Farre, G.; Schillberg, S.; Christou, P. CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol. Breed., 2016, 36(8), 108.
[http://dx.doi.org/10.1007/s11032-016-0533-4]
[85]
Cho, S.W.; Kim, S.; Kim, Y.; Kweon, J.; Kim, H.S.; Bae, S.; Kim, J.S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 2014, 24(1), 132-141.
[http://dx.doi.org/10.1101/gr.162339.113] [PMID: 24253446]
[86]
Kocak, D.D.; Josephs, E.A.; Bhandarkar, V.; Adkar, S.S.; Kwon, J.B.; Gersbach, C.A. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol., 2019, 37(6), 657-666.
[http://dx.doi.org/10.1038/s41587-019-0095-1] [PMID: 30988504]
[87]
Fu, Y.; Sander, J.D.; Reyon, D.; Cascio, V.M.; Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 2014, 32(3), 279-284.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[88]
Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P.; Aryee, M.J.; Joung, J.K. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol., 2015, 33(2), 187-197.
[http://dx.doi.org/10.1038/nbt.3117] [PMID: 25513782]
[89]
Ren, X.; Yang, Z.; Xu, J.; Sun, J.; Mao, D.; Hu, Y.; Yang, S.J.; Qiao, H.H.; Wang, X.; Hu, Q.; Deng, P.; Liu, L.P.; Ji, J.Y.; Li, J.B.; Ni, J.Q. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep., 2014, 9(3), 1151-1162.
[http://dx.doi.org/10.1016/j.celrep.2014.09.044] [PMID: 25437567]
[90]
Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; Qi, L.S.; Kampmann, M.; Weissman, J.S. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3), 647-661.
[http://dx.doi.org/10.1016/j.cell.2014.09.029] [PMID: 25307932]
[91]
Wang, J.Z.; Wu, P.; Shi, Z.M.; Xu, Y.L.; Liu, Z.J. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev., 2017, 39(7), 547-556.
[http://dx.doi.org/10.1016/j.braindev.2017.03.024] [PMID: 28390761]
[92]
Timin, A.S.; Muslimov, A.R.; Lepik, K.V.; Epifanovskaya, O.S.; Shakirova, A.I.; Mock, U.; Riecken, K.; Okilova, M.V.; Sergeev, V.S.; Afanasyev, B.V.; Fehse, B.; Sukhorukov, G.B. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine (Lond.), 2018, 14(1), 97-108.
[http://dx.doi.org/10.1016/j.nano.2017.09.001] [PMID: 28917642]
[93]
Brunetti, L.; Gundry, M.C.; Kitano, A.; Nakada, D.; Goodell, M.A. Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9. J. Vis. Exp, (134)2018,
[http://dx.doi.org/10.3791/57278] [PMID: 29708546]
[94]
Lee, K.; Conboy, M.; Park, H.M.; Jiang, F.; Kim, H.J.; Dewitt, M.A.; Mackley, V.A.; Chang, K.; Rao, A.; Skinner, C.; Shobha, T.; Me-hdipour, M.; Liu, H.; Huang, W.C.; Lan, F.; Bray, N.L.; Li, S.; Corn, J.E.; Kataoka, K.; Doudna, J.A.; Conboy, I.; Murthy, N. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng., 2017, 1(11), 889-901.
[http://dx.doi.org/10.1038/s41551-017-0137-2] [PMID: 29805845]
[95]
Pan, C.; Ye, L.; Qin, L.; Liu, X.; He, Y.; Wang, J.; Chen, L.; Lu, G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep., 2016, 6(1), 24765.
[http://dx.doi.org/10.1038/srep24765] [PMID: 27097775]
[96]
Malnoy, M.; Viola, R.; Jung, M.H.; Koo, O.J.; Kim, S.; Kim, J.S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci., 2016, 7, 1904.
[http://dx.doi.org/10.3389/fpls.2016.01904] [PMID: 28066464]
[97]
LeBlanc, C.; Zhang, F.; Mendez, J.; Lozano, Y.; Chatpar, K.; Irish, V.F.; Jacob, Y. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J., 2018, 93(2), 377-386.
[http://dx.doi.org/10.1111/tpj.13782] [PMID: 29161464]
[98]
Lee, K.; Zhang, Y.; Kleinstiver, B.P.; Guo, J.A.; Aryee, M.J.; Miller, J.; Malzahn, A.; Zarecor, S.; Lawrence-Dill, C.J.; Joung, J.K.; Qi, Y.; Wang, K. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol. J., 2019, 17(2), 362-372.
[http://dx.doi.org/10.1111/pbi.12982] [PMID: 29972722]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy