Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Review Article

The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature

Author(s): Mahbobeh Montazeri, Mahdi Fakhar* and Masoud Keighobadi

Volume 17, Issue 1, 2022

Published on: 30 March, 2022

Page: [23 - 33] Pages: 11

DOI: 10.2174/1574891X16666220304232301

Price: $65

Abstract

Background: Several in vitro and in vivo biological activities of serotonin, 5- hydroxytryptamine (5-HT), as a bioactive molecule, and its transporter (5-HT-Tr) were evaluated in parasitic infections.

Objective: Herein, the roles of 5-HT and 5-HTR in helminths and protozoan infections with medical and veterinary importance are reviewed.

Methods: We searched information in 4 main databases and reviewed published literature about the serotonin transporter's role as a promising therapeutic target against pathogenic parasitic infections between 2000 and 2021.

Results: Based on recent investigations, 5-HT and 5-HT-Tr play various roles in parasite infections, including biological function, metabolic activity, organism motility, parasite survival, and immune response modulation. Moreover, some of the 5-HT-TR in Schistosoma mansoni showed an excess of favorite substrates for biogenic amine 5-HT compared to their mammalian hosts. Furthermore, the main neuronal protein related to the G protein-coupled receptor (GPCR) was identified in S. mansoni and Echinococcus granulosus, playing main roles in these parasites. In addition, 5-HT increased in toxoplasmosis, giardiasis, and Chagas disease. On the other hand, in Plasmodium spp., different forms of targeted 5-HTR stimulate Ca2+ release, intracellular inositol triphosphate (ITP), cAMP, and protein kinase A (PKA) activity.

Conclusion: This review summarized the several functional roles of the 5-HT and the importance of the 5-HT-TR as a drug target with minimal harm to the host to fight against helminths and protozoan infections. Hopefully, this review will shed light on research regarding serotonin transporter-based therapies as a potential drug target soon.

Keywords: Serotonin, parasite, helminths, protozoan infections, drug target, scoping review.

Graphical Abstract

[1]
Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med 2009; 60(1): 355-66.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[2]
Gershon MD. Review article: Serotonin receptors and transporters - roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 2004; 20(Suppl. 7): 3-14.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02180.x] [PMID: 15521849]
[3]
Gershon MD. Serotonin and its implication for the management of irritable bowel syndrome. Rev Gastroenterol Disord 2003; 3(Suppl. 2): S25-34.
[PMID: 12776000]
[4]
Hansen MB. Neurohumoral control of gastrointestinal motility. Physiol Res 2003; 52(1): 1-30.
[PMID: 12625803]
[5]
Freire-Garabal M, Núñez MJ, Balboa J, et al. Serotonin upregulates the activity of phagocytosis through 5-HT1A receptors. Br J Pharmacol 2003; 139(2): 457-63.
[http://dx.doi.org/10.1038/sj.bjp.0705188] [PMID: 12770951]
[6]
Hellstrand K, Czerkinsky C, Ricksten A, et al. Role of serotonin in the regulation of interferon-γ production by human natural killer cells. J Interferon Res 1993; 13(1): 33-8.
[http://dx.doi.org/10.1089/jir.1993.13.33] [PMID: 8454908]
[7]
Nau F Jr, Yu B, Martin D, Nichols CD. Serotonin 5-HT2A receptor activation blocks TNF-α mediated inflammation in vivo. PLoS One 2013; 8(10): e75426.
[http://dx.doi.org/10.1371/journal.pone.0075426] [PMID: 24098382]
[8]
Wang H, Steeds J, Motomura Y, et al. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut 2007; 56(7): 949-57.
[http://dx.doi.org/10.1136/gut.2006.103226] [PMID: 17303597]
[9]
Wang SJ, Sharkey KA, McKay DM. Modulation of the immune response by helminths: A role for serotonin? Biosci Rep 2018; 38(5): BSR20180027.
[http://dx.doi.org/10.1042/BSR20180027] [PMID: 30177522]
[10]
Wheatcroft J, Wakelin D, Smith A, Mahoney CR, Mawe G, Spiller R. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol Motil 2005; 17(6): 863-70.
[http://dx.doi.org/10.1111/j.1365-2982.2005.00719.x] [PMID: 16336502]
[11]
Patocka N, Sharma N, Rashid M, Ribeiro P. Serotonin signaling in Schistosoma mansoni: a serotonin-activated G protein-coupled receptor controls parasite movement. PLoS Pathog 2014; 10(1): e1003878.
[http://dx.doi.org/10.1371/journal.ppat.1003878] [PMID: 24453972]
[12]
Castello A, Bruschetta G, Giunta RP, Marino AMF, Ferlazzo AM. The effect of Toxoplasma gondii on plasma serotonin concentration in sheep. Vet World 2018; 11(10): 1500-5.
[http://dx.doi.org/10.14202/vetworld.2018.1500-1505] [PMID: 30532508]
[13]
Freitas MA, Segatto N, Tischler N, de Oliveira EC, Brehmer A, da Silveira AB. Relation between mast cells concentration and serotonin expression in chagasic megacolon development. Parasite Immunol 2017; 39(3): e12414.
[http://dx.doi.org/10.1111/pim.12414] [PMID: 28112415]
[14]
Kannen V, Sakita JY, Carneiro ZA, et al. Mast cells and serotonin synthesis modulate chagas disease in the colon: Clinical and experimental evidence. Dig Dis Sci 2018; 63(6): 1473-84.
[http://dx.doi.org/10.1007/s10620-018-5015-6] [PMID: 29569002]
[15]
Locher CP, Ruben PC, Gut J, Rosenthal PJ. 5HT1A serotonin receptor agonists inhibit Plasmodium falciparum by blocking a membrane channel. Antimicrob Agents Chemother 2003; 47(12): 3806-9.
[http://dx.doi.org/10.1128/AAC.47.12.3806-3809.2003] [PMID: 14638487]
[16]
Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 2014; 7(1): 37.
[http://dx.doi.org/10.1186/1756-3305-7-37] [PMID: 24447578]
[17]
Borst P, Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol 1995; 49(1): 427-60.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.002235] [PMID: 8561467]
[18]
Boyle JP, Zaide JV, Yoshino TP. Schistosoma mansoni: effects of serotonin and serotonin receptor antagonists on motility and length of primary sporocysts in vitro. Exp Parasitol 2000; 94(4): 217-26.
[http://dx.doi.org/10.1006/expr.2000.4500] [PMID: 10831389]
[19]
Pax RA, Day TA, Miller CL, Bennett JL. Neuromuscular physiology and pharmacology of parasitic flatworms. Parasitology 1996; 113(S1)(Suppl.): S83-96.
[http://dx.doi.org/10.1017/S003118200007791X] [PMID: 9051929]
[20]
Gustafsson MK. Immunocytochemical demonstration of neuropeptides and serotonin in the nervous systems of adult Schistosoma mansoni. Parasitol Res 1987; 74(2): 168-74.
[http://dx.doi.org/10.1007/BF00536029] [PMID: 2449687]
[21]
Ribeiro P, El-Shehabi F, Patocka N. Classical transmitters and their receptors in flatworms Parasitology 2005; 131(S1 Suppl.): S19-40.
[http://dx.doi.org/10.1017/S0031182005008565] [PMID: 16569290]
[22]
Patocka N, Ribeiro P. Characterization of a serotonin transporter in the parasitic flatworm, Schistosoma mansoni: Cloning, expression and functional analysis. Mol Biochem Parasitol 2007; 154(2): 125-33.
[http://dx.doi.org/10.1016/j.molbiopara.2007.03.010] [PMID: 17582522]
[23]
Fontana AC, Sonders MS, Pereira-Junior OS, et al. Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin. Eur J Pharmacol 2009; 616(1-3): 48-57.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.023] [PMID: 19549517]
[24]
Patocka N, Ribeiro P. The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Mol Biochem Parasitol 2013; 187(1): 32-42.
[http://dx.doi.org/10.1016/j.molbiopara.2012.11.008] [PMID: 23246818]
[25]
Chan JD, Acharya S, Day TA, Marchant JS. Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist. Int J Parasitol Drugs Drug Resist 2016; 6(3): 364-70.
[http://dx.doi.org/10.1016/j.ijpddr.2016.06.001] [PMID: 27397763]
[26]
Chan JD, McCorvy JD, Acharya S, et al. A miniaturized screen of a Schistosoma mansoni serotonergic G protein-coupled receptor identifies novel classes of parasite-selective inhibitors. PLoS Pathog 2016; 12(5): e1005651.
[http://dx.doi.org/10.1371/journal.ppat.1005651] [PMID: 27187180]
[27]
Chan JD, Cupit PM, Gunaratne GS, et al. The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nat Commun 2017; 8(1): 1910.
[http://dx.doi.org/10.1038/s41467-017-02084-0] [PMID: 29208933]
[28]
Chan JD, Day TA, Marchant JS. Coalescing beneficial host and deleterious antiparasitic actions as an antischistosomal strategy. eLife 2018; 7: e35755.
[http://dx.doi.org/10.7554/eLife.35755] [PMID: 30059006]
[29]
Marchant JS, Harding WW, Chan JD. Structure-activity profiling of alkaloid natural product pharmacophores against a Schistosoma serotonin receptor. Int J Parasitol Drugs Drug Resist 2018; 8(3): 550-8.
[http://dx.doi.org/10.1016/j.ijpddr.2018.09.001] [PMID: 30297303]
[30]
Duguet TB, Glebov A, Hussain A, et al. Identification of annotated bioactive molecules that impair motility of the blood fluke Schistosoma mansoni. Int J Parasitol Drugs Drug Resist 2020; 13: 73-88.
[http://dx.doi.org/10.1016/j.ijpddr.2020.05.002] [PMID: 32531750]
[31]
Terenina NB, Kreshchenko ND, Mochalova NB, Movsesyan SO. Serotonin and neuropeptide FMRFamide in the attachment organs of trematodes. Helminthologia 2018; 55(3): 185-94.
[http://dx.doi.org/10.2478/helm-2018-0022] [PMID: 31662646]
[32]
Terenina NB, Kreshchenko ND, Mochalova NV, et al. The new data on the serotonin and FMRFamide localization in the nervous system of Opisthorchis felineus metacercaria. Acta Parasitol 2020; 65(2): 361-74.
[http://dx.doi.org/10.2478/s11686-019-00165-2] [PMID: 32002774]
[33]
Nichols DE, Nichols CD. Serotonin receptors. Chem Rev 2008; 108(5): 1614-41.
[http://dx.doi.org/10.1021/cr078224o] [PMID: 18476671]
[34]
Kreshchenko N, Terenina N, Ermakov A. Serotonin signalling in flatworms: An immunocytochemical localisation of 5-HT7 type of serotonin receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021; 11(8): 1212.
[http://dx.doi.org/10.3390/biom11081212] [PMID: 34439878]
[35]
Camicia F, Herz M, Prada LC, et al. The nervous and prenervous roles of serotonin in Echinococcus spp. Int J Parasitol 2013; 43(8): 647-59.
[http://dx.doi.org/10.1016/j.ijpara.2013.03.006] [PMID: 23639266]
[36]
Camicia F, Celentano AM, Johns ME, et al. Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Negl Trop Dis 2018; 12(2): e0006267.
[http://dx.doi.org/10.1371/journal.pntd.0006267] [PMID: 29425245]
[37]
Herz M, Brehm K. Serotonin stimulates Echinococcus multilocularis larval development. Parasit Vectors 2021; 14(1): 14.
[http://dx.doi.org/10.1186/s13071-020-04533-0] [PMID: 33407815]
[38]
Lucińiska A, Prusek W, Galary E, Podwysocka M, Modrzycka T. Serotonin metabolism in children infected with Giardia intestinalis. Wiad Parazytol 2000; 46(1): 149-55.
[PMID: 16886365]
[39]
Al-Hadraawy SK, Al-ghurabi ME, Al-musawi MM, Alzeyadi M. Ghrelin and melatonin as biomarkers in patients with giardiasis. Biotechnol Biotechnol Equip 2016; 30(3): 553-7.
[http://dx.doi.org/10.1080/13102818.2016.1149038]
[40]
Daryani A, Montazeri M, Pagheh AS, et al. The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2018; 97: 948-57.
[http://dx.doi.org/10.1016/j.biopha.2017.11.007] [PMID: 29136773]
[41]
Kamda JD, Nash TE, Singer SM. Giardia duodenalis: Dendritic cell defects in IL-6 deficient mice contribute to susceptibility to intestinal infection. Exp Parasitol 2012; 130(3): 288-91.
[http://dx.doi.org/10.1016/j.exppara.2012.01.003] [PMID: 22248985]
[42]
Zhou P, Li E, Shea-Donohue T, Singer SM. Tumour necrosis factor α contributes to protection against Giardia lamblia infection in mice. Parasite Immunol 2007; 29(7): 367-74.
[http://dx.doi.org/10.1111/j.1365-3024.2007.00953.x] [PMID: 17576366]
[43]
Pastre MJ, Casagrande L, Gois MB, et al. Toxoplasma gondii causes increased ICAM-1 and serotonin expression in the jejunum of rats 12 h after infection. Biomed Pharmacother 2019; 114: 108797.
[http://dx.doi.org/10.1016/j.biopha.2019.108797] [PMID: 30951950]
[44]
Pastre MJ, Gois MB, Casagrande L, et al. Acute infection with Toxoplasma gondii oocysts preferentially activates non-neuronal cells expressing serotonin in the jejunum of rats. Life Sci 2021; 283: 119872.
[http://dx.doi.org/10.1016/j.lfs.2021.119872] [PMID: 34352261]
[45]
Kanta J. Collagen matrix as a tool in studying fibroblastic cell behavior. Cell Adhes Migr 2015; 9(4): 308-16.
[http://dx.doi.org/10.1080/19336918.2015.1005469] [PMID: 25734486]
[46]
Linan-Rico A, Ochoa-Cortes F, Beyder A, et al. Mechanosensory signaling in enterochromaffin cells and 5-HT release: Potential implications for gut inflammation. Front Neurosci 2016; 10: 564.
[http://dx.doi.org/10.3389/fnins.2016.00564] [PMID: 28066160]
[47]
Mawe GM, Hoffman JM. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 2013; 10(8): 473-86.
[http://dx.doi.org/10.1038/nrgastro.2013.105] [PMID: 23797870]
[48]
S Ferreira GL, Mineo JR, Oliveira JG, V Ferro EA, Souza MA, D Santos AA. Toxoplasma gondii and mast cell interactions in vivo and in vitro: Experimental infection approaches in Calomys callosus (Rodentia, Cricetidae). Microbes Infect 2004; 6(2): 172-81.
[http://dx.doi.org/10.1016/j.micinf.2003.11.007] [PMID: 14998515]
[49]
Atmaca HT. Expression of serotonin 2A, 2C, 6 and 7 receptor and IL-6 mRNA in experimental toxoplasmic encephalitis in mice. Heliyon 2019; 5(11): e02890.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02890] [PMID: 31844757]
[50]
Hotta CT, Markus RP, Garcia CR. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites. Braz J Med Biol Res 2003; 36(11): 1583-7.
[http://dx.doi.org/10.1590/S0100-879X2003001100016] [PMID: 14576913]
[51]
Iwalewa EO, Agbani EO. Effects of autacoid inhibitors and of an antagonist on malaria infection in mice. Braz J Med Biol Res 2004; 37(8): 1199-204.
[http://dx.doi.org/10.1590/S0100-879X2004000800010] [PMID: 15273821]
[52]
Derbyshire ER, Prudêncio M, Mota MM, Clardy J. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad Sci USA 2012; 109(22): 8511-6.
[http://dx.doi.org/10.1073/pnas.1118370109] [PMID: 22586124]
[53]
Gamo F-J, Sanz LM, Vidal J, et al. Thousands of chemical starting points for antimalarial lead identification. Nature 2010; 465(7296): 305-10.
[http://dx.doi.org/10.1038/nature09107] [PMID: 20485427]
[54]
Del Prete S, De Luca V, De Simone G, Supuran CT. Capasso C. Cloning, expression and purification of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 2016; 31(sup4): 54-9.
[PMID: 27615265]
[55]
Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005 - 2013). Expert Opin Ther Pat 2013; 23(6): 681-91.
[http://dx.doi.org/10.1517/13543776.2013.780598] [PMID: 23488823]
[56]
Angeli A, Del Prete S, Alasmary FAS, et al. The first activation studies of the η-carbonic anhydrase from the malaria parasite Plasmodium falciparum with amines and amino acids. Bioorg Chem 2018; 80: 94-8.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.002] [PMID: 29894892]
[57]
Beraldo FH, Garcia CR. Products of tryptophan catabolism induce Ca2+ release and modulate the cell cycle of Plasmodium falciparum malaria parasites. J Pineal Res 2005; 39(3): 224-30.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00249.x] [PMID: 16150101]
[58]
Ghia JE, Li N, Wang H, et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009; 137(5): 1649-60.
[http://dx.doi.org/10.1053/j.gastro.2009.08.041] [PMID: 19706294]
[59]
Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, et al. 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol 2006; 177(9): 6422-32.
[http://dx.doi.org/10.4049/jimmunol.177.9.6422] [PMID: 17056574]
[60]
Nagata K, Fujimiya M, Sugiura H, Uehara M. Intracellular localization of serotonin in mast cells of the colon in normal and colitis rats. Histochem J 2001; 33(9-10): 559-68.
[http://dx.doi.org/10.1023/A:1014960026247] [PMID: 12005028]
[61]
de Oliveira JA, Freitas MAR, de Oliveira EC, Jabari S, Brehmer A, da Silveira ABM. 5-HT3A serotonin receptor in the gastrointestinal tract: the link between immune system and enteric nervous system in the digestive form of Chagas disease. Parasitol Res 2019; 118(4): 1325-9.
[http://dx.doi.org/10.1007/s00436-019-06241-w] [PMID: 30747295]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy