Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Abrogating Oxidative Stress as a Therapeutic Strategy Against Parkinson’s Disease: A Mini Review of the Recent Advances on Natural Therapeutic Antioxidant and Neuroprotective Agents

Author(s): Thekla Theofanous* and Malamati Kourti*

Volume 18, Issue 7, 2022

Published on: 06 April, 2022

Page: [772 - 783] Pages: 12

DOI: 10.2174/1573406418666220304222401

Price: $65

Abstract

Background: Reactive oxygen species (ROS) play a vital role in cell signaling when maintained at low concentrations. However, when ROS production exceeds the neutralizing capacity of endogenous antioxidants, oxidative stress is observed, which has been shown to contribute to neurodegenerative diseases such as Parkinson's disease (PD). PD is a progressive disorder characterized by the loss of dopaminergic neurons from the striatum, which leads to motor and nonmotor symptoms. Although the complex interplay of mechanisms responsible is yet to be fully understood, oxidative stress was found to be positively associated with PD. Despite active research, currently proposed regimens mainly focus on regulating dopamine metabolism within the brain, even though these treatments have shown limited long-term efficacy and several side effects. Due to the implication of oxidative stress in the pathophysiology of PD, natural antioxidant compounds have attracted interest as potential therapeutics over the last years, with a more favorable anticipated safety profile due to their natural origin. Therefore, natural antioxidants are currently being explored as promising anti-PD agents.

Objective: In this mini-review, emphasis was given to presently studied natural antioxidant and neuroprotective agents that have shown positive results in PD animal models.

Methods: For this purpose, recent scientific articles were reviewed and discussed, with the aim to highlight the most up-to-date advances on PD treatment strategies related to oxidative stress.

Results: A plethora of natural compounds are actively being explored against PD, including kaemferol, icaritin, artemisinin, and α-bisabolol, with promising results. Most of these compounds have shown adequate neuroprotective ability along with redox balance restoration, normalized mitochondrial function, and limitation of oxidative damage.

Conclusion: In conclusion, natural antioxidants may be the way forward to novel treatments against PD when the limitations of correct dosing and appropriate combinations are resolved.

Keywords: Parkinson’s disease, oxidative stress, neurodegenerative diseases, antioxidants, neuroprotection, natural antioxidants.

Graphical Abstract

[1]
Hirst, J.; King, M.S.; Pryde, K.R. The production of reactive oxygen species by complex I. Biochem. Soc. Trans., 2008, 36(Pt 5), 976-980.
[http://dx.doi.org/10.1042/BST0360976] [PMID: 18793173]
[2]
Stańczyk, M.; Gromadzińska, J.; Wa̧sowicz, W. Roles of reac-tive oxygen species and selected antioxidants in regulation of cellular metabolism. Int. J. Occup. Med. Environ. Health, 2005, 18(1), 15-26.
[PMID: 16052887]
[3]
Weidinger, A.; Kozlov, A.V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules, 2015, 5(2), 472-484.
[http://dx.doi.org/10.3390/biom5020472] [PMID: 25884116]
[4]
Fridovich, I. Oxygen toxicity: A radical explanation. J. Exp. Biol., 1998, 201(Pt 8), 1203-1209.
[http://dx.doi.org/10.1242/jeb.201.8.1203] [PMID: 9510531]
[5]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[6]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[7]
Ramani, S.; Pathak, A.; Dalal, V.; Paul, A.; Biswas, S. Oxida-tive stress in autoimmune diseases: An under dealt malice. Curr. Protein Pept. Sci., 2020, 21(6), 611-621.
[http://dx.doi.org/10.2174/1389203721666200214111816] [PMID: 32056521]
[8]
Masi, S.; Orlandi, M.; Parkar, M.; Bhowruth, D.; Kingston, I.; O’Rourke, C.; Virdis, A.; Hingorani, A.; Hurel, S.J.; Donos, N.; D’Aiuto, F.; Deanfield, J. Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type II diabetes and periodontitis: A randomised controlled clinical trial. Int. J. Cardiol., 2018, 271, 263-268.
[http://dx.doi.org/10.1016/j.ijcard.2018.05.019] [PMID: 30077530]
[9]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reac-tive Oxygen Species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[10]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial elec-tron transport chain, ROS generation and uncoupling (Re-view). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[11]
Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res., 2004, 567(1), 1-61.
[http://dx.doi.org/10.1016/j.mrrev.2003.11.001] [PMID: 15341901]
[12]
Puspita, L.; Chung, S.Y.; Shim, J.W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017, 10(1), 53.
[http://dx.doi.org/10.1186/s13041-017-0340-9] [PMID: 29183391]
[13]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763.
[14]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[15]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive Oxygen Species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[16]
Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of reac-tive oxygen species generation in cell signaling. Mol. Cells, 2011, 32(6), 491-509.
[http://dx.doi.org/10.1007/s10059-011-0276-3] [PMID: 22207195]
[17]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[18]
Al Shahrani, M.; Heales, S.; Hargreaves, I.; Orford, M. Oxidative stress: Mechanistic insights into inherited mitochondrial disorders and Parkinson’s disease. J. Clin. Med., 2017, 6(11), E100.
[http://dx.doi.org/10.3390/jcm6110100] [PMID: 29077060]
[19]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[20]
Franzoni, F.; Scarfò, G.; Guidotti, S.; Fusi, J.; Asomov, M.; Pruneti, C. Oxidative stress and cognitive decline: The neuro-protective role of natural antioxidants. Front. Neurosci., 2021, 15, 729757.
[http://dx.doi.org/10.3389/fnins.2021.729757] [PMID: 34720860]
[21]
Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective effect of anti-oxidants in the brain. Int. J. Mol. Sci., 2020, 21(19), 1-29.
[http://dx.doi.org/10.3390/ijms21197152] [PMID: 32998277]
[22]
Pal, S.; He, K.; Aizenman, E. Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link? Pflugers Arch., 2004, 448(3), 296-303.
[http://dx.doi.org/10.1007/s00424-004-1256-7] [PMID: 15024658]
[23]
Cai, Z.; Yan, L-J. Protein oxidative modifications: Beneficial roles in disease and health. J. Biochem. Pharmacol. Res., 2013, 1(1), 15-26.
[PMID: 23662248]
[24]
Lu, Y.F.; Kandel, E.R.; Hawkins, R.D. Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci., 1999, 19(23), 10250-10261.
[http://dx.doi.org/10.1523/JNEUROSCI.19-23-10250.1999] [PMID: 10575022]
[25]
Heinrich, T.A.; da Silva, R.S.; Miranda, K.M.; Switzer, C.H.; Wink, D.A.; Fukuto, J.M. Biological nitric oxide signalling: Chemistry and terminology. Br. J. Pharmacol., 2013, 169(7), 1417-1429.
[http://dx.doi.org/10.1111/bph.12217] [PMID: 23617570]
[26]
Cao, J.; Viholainen, J.I.; Dart, C.; Warwick, H.K.; Leyland, M.L.; Courtney, M.J. The PSD95-nNOS interface: A target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J. Cell Biol., 2005, 168(1), 117-126.
[http://dx.doi.org/10.1083/jcb.200407024] [PMID: 15631993]
[27]
Maccallini, C.; Amoroso, R. Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders. Neural Regen. Res., 2016, 11(11), 1731-1734.
[http://dx.doi.org/10.4103/1673-5374.194707] [PMID: 28123402]
[28]
Opara, J.; Małecki, A.; Małecka, E.; Socha, T. Motor assess-ment in Parkinson’s disease. Ann. Agric. Environ. Med., 2017, 24(3), 411-415.
[http://dx.doi.org/10.5604/12321966.123277] [PMID: 28954481]
[29]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease: A review. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[30]
Hauser, D.N.; Hastings, T.G. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic Par-kinsonism. Neurobiol. Dis., 2013, 51, 35-42.
[http://dx.doi.org/10.1016/j.nbd.2012.10.011] [PMID: 23064436]
[31]
Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol., 2020, 27(1), 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[32]
Cacabelos, R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int. J. Mol. Sci., 2017, 18(3), E551.
[http://dx.doi.org/10.3390/ijms18030551] [PMID: 28273839]
[33]
Khan, Z.; Ali, S.A. Oxidative stress-related biomarkers in Parkinson’s disease: A systematic review and meta-analysis. Iran. J. Neurol., 2018, 17(3), 137-144.
[PMID: 30886681]
[34]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[35]
Dumitrescu, L.; Popescu-Olaru, I.; Cozma, L. Tulbǎ, D.; Hinescu, M.E.; Ceafalan, L.C. Oxidative stress and the micro-biota-Gut-brain axis. Oxid. Med. Cell. Longev., 2018, 2018, 2406594.
[http://dx.doi.org/10.1155/2018/2406594]
[36]
Jellinger, K.A.; Kienzl, E.; Rumpelmaier, G.; Paulus, W.; Rie-derer, P.; Stachelberger, H.; Youdim, M.B.; Ben-Shachar, D. Iron and ferritin in substantia nigra in Parkinson’s disease. Adv. Neurol., 1993, 60, 267-272.
[PMID: 8420142]
[37]
Kosta, P.; Argyropoulou, M.I.; Markoula, S.; Konitsiotis, S. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J. Neurol., 2006, 253(1), 26-32.
[http://dx.doi.org/10.1007/s00415-005-0914-9] [PMID: 15981079]
[38]
Musgrove, R.E.; Helwig, M.; Bae, E.J.; Aboutalebi, H.; Lee, S.J.; Ulusoy, A.; Di Monte, D.A. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J. Clin. Invest., 2019, 129(9), 3738-3753.
[http://dx.doi.org/10.1172/JCI127330] [PMID: 31194700]
[39]
Deas, E.; Cremades, N.; Angelova, P.R.; Ludtmann, M.H.R.; Yao, Z.; Chen, S.; Horrocks, M.H.; Banushi, B.; Little, D.; Devine, M.J.; Gissen, P.; Klenerman, D.; Dobson, C.M.; Wood, N.W.; Gandhi, S.; Abramov, A.Y. Alpha-synuclein ol-igomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid. Redox Signal., 2016, 24(7), 376-391.
[http://dx.doi.org/10.1089/ars.2015.6343] [PMID: 26564470]
[40]
Ostrerova-Golts, N.; Petrucelli, L.; Hardy, J.; Lee, J.M.; Farer, M.; Wolozin, B. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 2000, 20(16), 6048-6054.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06048.2000] [PMID: 10934254]
[41]
Chang, T.C.; Chen, Y.C.; Huang, Y.C.; Lin, W.C.; Lu, C.H. Systemic oxidative stress and cognitive function in Parkin-son’s disease with different PWMH or DWMH lesions. BMC Neurol., 2021, 21(1), 16.
[http://dx.doi.org/10.1186/s12883-020-02037-z] [PMID: 33430806]
[42]
Schneider, A.; Sari, A.T.; Alhaddad, H.; Sari, Y. Overview of therapeutic drugs and methods for the treatment of Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2020, 19(3), 195-206.
[http://dx.doi.org/10.2174/1871527319666200525011110] [PMID: 32448109]
[43]
Gunay, M.S.; Ozer, A.Y.; Chalon, S. Drug delivery systems for imaging and therapy of Parkinson’s disease. Curr. Neuropharmacol., 2016, 14(4), 376-391.
[http://dx.doi.org/10.2174/1570159X14666151230124904] [PMID: 26714584]
[44]
Hoy, S.M. Levodopa/carbidopa enteral suspension: A review in advanced Parkinson’s disease. Drugs, 2019, 79(15), 1709-1718.
[http://dx.doi.org/10.1007/s40265-019-01201-1] [PMID: 31549300]
[45]
Han, X.; Zhao, S.; Song, H.; Xu, T.; Fang, Q.; Hu, G.; Sun, L. Kaempferol alleviates LD-mitochondrial damage by promot-ing autophagy: Implications in Parkinson’s disease. Redox Biol., 2021, 41, 101911.
[http://dx.doi.org/10.1016/j.redox.2021.101911] [PMID: 33713908]
[46]
Farmer, B.C.; Walsh, A.E.; Kluemper, J.C.; Johnson, L.A. Lipid droplets in neurodegenerative disorders. Front. Neurosci., 2020, 14, 742.
[http://dx.doi.org/10.3389/fnins.2020.00742] [PMID: 32848541]
[47]
Xie, Y.; Li, J.; Kang, R.; Tang, D. Interplay between lipid metabolism and autophagy. Front. Cell Dev. Biol., 2020, 8, 431.
[http://dx.doi.org/10.3389/fcell.2020.00431] [PMID: 32582708]
[48]
Wu, H.; Liu, X.; Gao, Z.Y.; Lin, M.; Zhao, X.; Sun, Y.; Pu, X.P. Icaritin provides neuroprotection in Parkinson’s disease by attenuating neuroinflammation, oxidative stress, and ener-gy deficiency. Antioxidants, 2021, 10(4), 529.
[http://dx.doi.org/10.3390/antiox10040529] [PMID: 33805302]
[49]
Boukhzar, L.; Hamieh, A.; Cartier, D.; Tanguy, Y.; Alsharif, I.; Castex, M.; Arabo, A.; El Hajji, S.; Bonnet, J.J.; Errami, M.; Falluel-Morel, A.; Chagraoui, A.; Lihrmann, I.; Anouar, Y.; Selenoprotein, T. Exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of Parkinson’s disease. Antioxid. Redox Signal., 2016, 24(11), 557-574.
[http://dx.doi.org/10.1089/ars.2015.6478] [PMID: 26866473]
[50]
Anouar, Y.; Lihrmann, I.; Falluel-Morel, A.; Boukhzar, L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic. Biol. Med., 2018, 127, 145-152.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.076] [PMID: 29800653]
[51]
Castex, M.T.; Arabo, A.; Bénard, M.; Roy, V.; Le Joncour, V.; Prévost, G.; Bonnet, J.J.; Anouar, Y.; Falluel-Morel, A. Sele-noprotein T deficiency leads to neurodevelopmental abnor-malities and hyperactive behavior in mice. Mol. Neurobiol., 2016, 53(9), 5818-5832.
[http://dx.doi.org/10.1007/s12035-015-9505-7] [PMID: 26497036]
[52]
Alsharif, I.; Boukhzar, L.; Lefranc, B.; Godefroy, D.; Aury-Landas, J.; Rego, J.D.; Rego, J.D.; Naudet, F.; Arabo, A.; Cha-graoui, A.; Maltête, D.; Benazzouz, A.; Baugé, C.; Leprince, J.; Elkahloun, A.G.; Eiden, L.E.; Anouar, Y. Cell-penetrating, an-tioxidant SELENOT mimetic protects dopaminergic neurons and ameliorates motor dysfunction in Parkinson’s disease animal models. Redox Biol., 2021, 40, 101839.
[http://dx.doi.org/10.1016/j.redox.2020.101839] [PMID: 33486153]
[53]
Yan, J.; Ma, H.; Lai, X.; Wu, J.; Liu, A.; Huang, J.; Sun, W.; Shen, M.; Zhang, Y. Artemisinin attenuated oxidative stress and apoptosis by inhibiting autophagy in MPP+-treated SH-SY5Y cells. J. Biol. Res. (Thessalon.), 2021, 28(1), 6.
[http://dx.doi.org/10.1186/s40709-021-00137-6] [PMID: 33632304]
[54]
Esatbeyoglu, T.; Ewald, P.; Yasui, Y.; Yokokawa, H.; Wagner, A.E.; Matsugo, S.; Winterhalter, P.; Rimbach, G. Chemical char-acterization, free radical scavenging, and cellular antioxidant and anti-inflammatory properties of a stilbenoid-rich root ex-tract of vitis vinifera. Oxid. Med. Cell. Longev., 2016, 2016, 8591286.
[55]
Sergi, D.; Gélinas, A.; Beaulieu, J.; Renaud, J.; Tardif-Pellerin, E.; Guillard, J.; Martinoli, M.G. Anti-apoptotic and anti-inflammatory role of trans ε-viniferin in a neuron-glia co-culture cellular model of Parkinson’s disease. Foods, 2021, 10(3), 586.
[http://dx.doi.org/10.3390/foods10030586] [PMID: 33799534]
[56]
Vegh, C.; Wear, D.; Okaj, I.; Huggard, R.; Culmone, L.; Eren, S.; Cohen, J.; Rishi, A.K.; Pandey, S. Combined ubisol-q10 and ashwagandha root extract target multiple biochemical mechanisms and reduces neurodegeneration in a paraquat-induced rat model of Parkinson’s disease. Antioxidants, 2021, 10(4), 563.
[http://dx.doi.org/10.3390/antiox10040563] [PMID: 33917328]
[57]
Pradhan, P.; Majhi, O.; Biswas, A.; Joshi, V.K.; Sinha, D. Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson’s model. Cell Death Dis., 2020, 11(9), 739.
[http://dx.doi.org/10.1038/s41419-020-02942-8] [PMID: 32913179]
[58]
Sethiya, N.K.; Nahata, A.; Singh, P.K.; Mishra, S.H. Neuro-pharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J. Ayurveda Integr. Med., 2019, 10(1), 25-31.
[http://dx.doi.org/10.1016/j.jaim.2017.08.012] [PMID: 29530454]
[59]
Cervenka, F.; Koleckar, V.; Rehakova, Z.; Jahodar, L.; Kunes, J.; Opletal, L.; Hyspler, R.; Jun, D.; Kuca, K. Evaluation of natural substances from Evolvulus alsinoides L. with the purpose of determining their antioxidant potency. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 574-578.
[http://dx.doi.org/10.1080/14756360701674421] [PMID: 18666003]
[60]
Kubota, M.; Kobayashi, N.; Sugizaki, T.; Shimoda, M.; Kawaha-ra, M.; Tanaka, K-I. Carnosine suppresses neuronal cell death and inflammation induced by 6-hydroxydopamine in an in vitro model of Parkinson’s disease. PLoS One, 2020, 15, e0240448.
[61]
Kohen, R.; Yamamoto, Y.; Cundy, K.C.; Ames, B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA, 1988, 85(9), 3175-3179.
[http://dx.doi.org/10.1073/pnas.85.9.3175] [PMID: 3362866]
[62]
Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev., 2013, 93(4), 1803-1845.
[http://dx.doi.org/10.1152/physrev.00039.2012] [PMID: 24137022]
[63]
Harper, S.J.; LoGrasso, P. Signalling for survival and death in neurones: The role of stress-activated kinases, JNK and p38. Cell. Signal., 2001, 13(5), 299-310.
[http://dx.doi.org/10.1016/S0898-6568(01)00148-6] [PMID: 11369511]
[64]
Sasajima, H.; Miyazono, S.; Noguchi, T.; Kashiwayanagi, M. Intranasal administration of rotenone to mice induces dopaminergic neurite degeneration of dopaminergic neurons in the substantia nigra. Biol. Pharm. Bull., 2017, 40(1), 108-112.
[http://dx.doi.org/10.1248/bpb.b16-00654] [PMID: 28049942]
[65]
Ling, Z.; Chang, Q.A.; Tong, C.W.; Leurgans, S.E.; Lipton, J.W.; Carvey, P.M. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp. Neurol., 2004, 190(2), 373-383.
[http://dx.doi.org/10.1016/j.expneurol.2004.08.006] [PMID: 15530876]
[66]
Nisticò, R.; Mehdawy, B.; Piccirilli, S.; Mercuri, N. Paraquat- and rotenone-induced models of Parkinson’s disease. Int. J. Immunopathol. Pharmacol., 2011, 24(2), 313-322.
[http://dx.doi.org/10.1177/039463201102400205] [PMID: 21658306]
[67]
Duvigneau, J.C.; Trovato, A.; Müllebner, A.; Miller, I.; Krewenka, C.; Krenn, K.; Zich, W.; Moldzio, R. Cannabidiol protects dopaminergic neurons in mesencephalic cultures against the complex I inhibitor rotenone via modulation of heme oxygenase activity and bilirubin. Antioxidants, 2020, 9(2), E135.
[http://dx.doi.org/10.3390/antiox9020135] [PMID: 32033040]
[68]
Javed, H. Meeran, M.F.N.; Azimullah, S.; Bader Eddin, L.; Dwivedi, V.D.; Jha, N.K.; Ojha, S. α-Bisabolol, a dietary bio-active phytochemical attenuates dopaminergic neurodegenera-tion through modulation of oxidative stress, neuroinflamma-tion and apoptosis in rotenone-induced rat model of Parkin-son’s disease. Biomolecules, 2020, 10(10), 1-22.
[http://dx.doi.org/10.3390/biom10101421] [PMID: 33049992]
[69]
Silveira, P.C.L.; Venâncio, M.; Souza, P.S.; Victor, E.G.; de Souza Notoya, F.; Paganini, C.S.; Streck, E.L.; da Silva, L.; Pinho, R.A.; Paula, M.M. Iontophoresis with gold nanoparticles improves mitochondrial activity and oxidative stress markers of burn wounds. Mater. Sci. Eng. C, 2014, 44, 380-385.
[http://dx.doi.org/10.1016/j.msec.2014.08.04] [PMID: 25280718]
[70]
Hendi, A.A.; Awad, M.A.; Virk, P.; Ortashi, K.; Hakami, F. Potential of gold nanoparticles as antioxidants in diabetic mice. J. Comput. Theor. Nanosci., 2018, 15(4), 1307-1311.
[http://dx.doi.org/10.1166/jctn.2018.7307]
[71]
Sivanesan, S.; Rajeshkumar, S. Gold nanoparticles in diagnosis and treatment of Alzheimer’s disease. Nanobiotechnol. Neurodegener.Dis., 2019, 289-306.
[72]
Aghaie, T.; Jazayeri, M.H.; Manian, M.; Khani, L.; Erfani, M.; Rezayi, M.; Ferns, G.A.; Avan, A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J. Cell. Biochem., 2019, 120(3), 2749-2755.
[http://dx.doi.org/10.1002/jcb.27415] [PMID: 30485477]
[73]
Hu, K.; Chen, X.; Chen, W.; Zhang, L.; Li, J.; Ye, J.; Zhang, Y.; Zhang, L.; Li, C.H.; Yin, L.; Guan, Y.Q. Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine , 2018, 14(4), 1123-1136.
[http://dx.doi.org/10.1016/j.nano.2018.01.02] [PMID: 29474924]
[74]
da Silva Córneo, E.; de Bem Silveira, G.; Scussel, R.; Correa, M.E.A.B.; da Silva Abel, J.; Luiz, G.P.; Feuser, P.E.; Silveira, P.C.L.; Machado-de-Ávila, R.A. Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease. Colloids Surf. B Biointerfaces, 2020, 196, 111302.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111302] [PMID: 32777662]
[75]
Semidalas, C.; Semidalas, E.; Matsoukas, M.T.; Nixarlidis, C.; Zoumpoulakis, P. In silico studies reveal the mechanisms behind the antioxidant and anti-inflammatory activities of hydroxytyrosol. Med. Chem. Res., 2016, 25(11), 2498-2511.
[http://dx.doi.org/10.1007/s00044-016-1689-5]
[76]
Tutino, V.; Caruso, M.G.; Messa, C.; Perri, E.; Notarnicola, M. Antiproliferative, antioxidant and anti-inflammatory effects of hydroxytyrosol on human hepatoma HepG2 and Hep3B cell lines. Anticancer Res., 2012, 32(12), 5371-5377.
[PMID: 23225439]
[77]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of hidrox® in rote-none-induced Parkinson’s disease in mice. Antioxidants, 2020, 9(9), 1-19.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]
[78]
Chan, P.M.; Tan, Y.S.; Chua, K.H.; Sabaratnam, V.; Kup-pusamy, U.R. Attenuation of inflammatory mediators (TNF-α and Nitric Oxide) and up-regulation of IL-10 by Wild and domesticated basidiocarps of Amauroderma rugosum (Blume & T. Nees) torrend in LPS-stimulated RAW264.7 cells. PLoS One, 2015, 10(10), e0139593.
[http://dx.doi.org/10.1371/journal.pone.0139593] [PMID: 26427053]
[79]
Seng, C.K.; Abdullah, N.; Aminudin, N. Antioxidative and inhibitory effects of the fruiting body of black lingzhi mushroom, Amauroderma rugosum (Agaricomycetes), on LDL oxidation and HMG-CoA reductase activity. Int. J. Med. Mushrooms, 2017, 19(9), 797-807.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2017024374] [PMID: 29199554]
[80]
Li, J.; Li, R.; Wu, X.; Hoo, R.L.C.; Lee, S.M.Y.; Cheung, T.M.Y. Am-auroderma rugosum protects PC12 cells against 6-OHDA-induced neurotoxicity through antioxidant and antiapoptotic effects. Oxid. Med. Cell. Longev., 2021, 202, 6683270.
[81]
Ardah, M.T.; Bharathan, G.; Kitada, T.; Haque, M.E. Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP model of Parkinson’s disease. Biomolecules, 2020, 10(11), 1-17.
[http://dx.doi.org/10.3390/biom10111519] [PMID: 33172035]
[82]
Buendia, I.; Michalska, P.; Navarro, E.; Gameiro, I.; Egea, J.; León, R. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther., 2016, 157, 84-104.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.003] [PMID: 26617217]
[83]
Sandhya, A.; Kannayiram, G. Pharmacological, bioactive screening of medicinal plant Nigella sativa and the derived compound thymoquinone: An in vitro study. Int. J. Res. Pharm. Sci., 2020, 11(2), 2458-2465.
[http://dx.doi.org/10.26452/ijrps.v11i2.2239]
[84]
Dong, J.; Zhang, X.; Wang, S.; Xu, C.; Gao, M.; Liu, S.; Li, X.; Cheng, N.; Han, Y.; Wang, X.; Han, Y. Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxida-tive stress via the Nrf2/ARE pathway. Front. Pharmacol., 2021, 11, 615598.
[http://dx.doi.org/10.3389/fphar.2020.615598] [PMID: 33519481]
[85]
Ojha, S. Javed, H.; Azimullah, S.; Haque, M.E. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages do-paminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem., 2016, 418(1-2), 59-70.
[http://dx.doi.org/10.1007/s11010-016-2733-y] [PMID: 27316720]
[86]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigal-locatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[87]
Cirmi, S.; Maugeri, A.; Lombardo, G.E.; Russo, C.; Musu-meci, L.; Gangemi, S.; Calapai, G.; Barreca, D.; Navarra, M. A flavonoid-rich extract of mandarin juice counteracts 6-ohda-induced oxidative stress in sh-sy5y cells and modulates Par-kinson-related genes. Antioxidants, 2021, 10(4), 539.
[http://dx.doi.org/10.3390/antiox10040539] [PMID: 33808343]
[88]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[89]
Yue, D.; Zeng, C.; Okyere, S.K.; Chen, Z.; Hu, Y. Glycine nano-selenium prevents brain oxidative stress and neurobe-havioral abnormalities caused by MPTP in rats. J. Trace Elem. Med. Biol., 2021, 64, 126680.
[http://dx.doi.org/10.1016/j.jtemb.2020.126680] [PMID: 33242795]
[90]
Labib, A.Y.; Ammar, R.M.; El-Naga, R.N.; El-Bahy, A.A.Z.; Tadros, M.G.; Michel, H.E. Mechanistic insights into the protective effect of paracetamol against rotenone-induced Parkin-son’s disease in rats: Possible role of endocannabinoid sys-tem modulation. Int. Immunopharmacol., 2021, 94, 107431.
[http://dx.doi.org/10.1016/j.intimp.2021.107431] [PMID: 33578261]
[91]
Hirsch, E.C.; Faucheux, B.; Damier, P.; Mouatt-Prigent, A.; Agid, Y. Neuronal vulnerability in Parkinson’s disease. J. Neural Transm. Suppl., 1997, 50, 79-88.
[http://dx.doi.org/10.1007/978-3-7091-6842-4_9] [PMID: 9120427]
[92]
Jackson-Lewis, V.; Smeyne, R.J. MPTP and SNpc DA neu-ronal vulnerability: Role of dopamine, superoxide and nitric oxide in neurotoxicity. Mini review. Neurotox. Res., 2005, 7(3), 193-202.
[http://dx.doi.org/10.1007/BF03036449] [PMID: 15897154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy