Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Stem Cell Application for Stress Urinary Incontinence: From Bench to Bedside

Author(s): Meng Liu, Ying Wang, Guo Gao, Wei-Xin Zhao and Qiang Fu*

Volume 18, Issue 1, 2023

Published on: 11 April, 2022

Page: [17 - 26] Pages: 10

DOI: 10.2174/1574888X17666220304213057

Price: $65

conference banner
Abstract

Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.

Keywords: Stress urinary incontinence, stem cell therapy, muscle-derived stem cells, adipose-derived stem cells, bone marrowderived stem cells, urine-derived stem cells.

Graphical Abstract

[1]
Bauer RM, Bastian PJ, Gozzi C, Stief CG. Postprostatectomy incontinence: All about diagnosis and management. Eur Urol 2009; 55(2): 322-33.
[http://dx.doi.org/10.1016/j.eururo.2008.10.029] [PMID: 18963418]
[2]
Norton P, Brubaker L. Urinary incontinence in women. Lancet 2006; 367(9504): 57-67.
[http://dx.doi.org/10.1016/S0140-6736(06)67925-7] [PMID: 16399154]
[3]
Farage MA, Miller KW, Berardesca E, Maibach HI. Psychosocial and societal burden of incontinence in the aged population: A review. Arch Gynecol Obstet 2008; 277(4): 285-90.
[http://dx.doi.org/10.1007/s00404-007-0505-3] [PMID: 18026973]
[4]
Walker GJ, Gunasekera P. Pelvic organ prolapse and incontinence in developing countries: Review of prevalence and risk factors. Int Urogynecol J Pelvic Floor Dysfunct 2011; 22(2): 127-35.
[http://dx.doi.org/10.1007/s00192-010-1215-0] [PMID: 20617303]
[5]
McGuire EJ. Pathophysiology of stress urinary incontinence. Rev Urol 2004; 6 (Suppl. 5): S11-7.
[6]
Kretschmer A, Hübner W, Sandhu JS, Bauer RM. Evaluation and management of postprostatectomy incontinence: A systematic review of current literature. Eur Urol Focus 2016; 2(3): 245-59.
[http://dx.doi.org/10.1016/j.euf.2016.01.002] [PMID: 28723370]
[7]
Chong JT, Simma-Chiang V. A historical perspective and evolution of the treatment of male urinary incontinence. Neurourol Urodyn 2018; 37(3): 1169-75.
[http://dx.doi.org/10.1002/nau.23429] [PMID: 29053886]
[8]
Sweeney DD, Chancellor MB. Treatment of stress urinary incontinence with duloxetine hydrochloride. Rev Urol 2005; 7(2): 81-6.
[PMID: 16985814]
[9]
Siddiqui ZA, Abboudi H, Crawford R, Shah S. Intraurethral bulking agents for the management of female stress urinary incontinence: A systematic review. Int Urogynecol J Pelvic Floor Dysfunct 2017; 28(9): 1275-84.
[http://dx.doi.org/10.1007/s00192-017-3278-7] [PMID: 28220200]
[10]
Matsuoka PK, Locali RF, Pacetta AM, Baracat EC, Haddad JM. The efficacy and safety of urethral injection therapy for urinary incontinence in women: A systematic review. Clinics (São Paulo) 2016; 71(2): 94-100.
[http://dx.doi.org/10.6061/clinics/2016(02)08] [PMID: 26934239]
[11]
Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev 2008; 4(1): 3-11.
[http://dx.doi.org/10.1007/s12015-008-9010-8] [PMID: 18286392]
[12]
Kim JH, Lee HJ, Song YS. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J Urol 2014; 55(4): 228-38.
[http://dx.doi.org/10.4111/kju.2014.55.4.228] [PMID: 24741410]
[13]
Tran C, Damaser MS. The potential role of stem cells in the treatment of urinary incontinence. Ther Adv Urol 2015; 7(1): 22-40.
[http://dx.doi.org/10.1177/1756287214553968] [PMID: 25642292]
[14]
Badra S, Andersson KE, Dean A, Mourad S, Williams JK. Long-term structural and functional effects of autologous muscle precursor cell therapy in a nonhuman primate model of urinary sphincter deficiency. J Urol 2013; 190(5): 1938-45.
[http://dx.doi.org/10.1016/j.juro.2013.04.052] [PMID: 23618586]
[15]
Nakajima N, Tamaki T, Hirata M, et al. Purified human skeletal muscle-derived stem cells enhance the repair and regeneration in the damaged urethra. Transplantation 2017; 101(10): 2312-20.
[http://dx.doi.org/10.1097/TP.0000000000001613] [PMID: 28027190]
[16]
Wang Y, Xu H, Liu X, Liu L, Liang Z. Inhibition of fibroblast differentiation of muscle-derived stem cells in cell implantation treatment of stress urinary incontinence. Cell Reprogram 2011; 13(5): 459-64.
[http://dx.doi.org/10.1089/cell.2010.0105] [PMID: 21718095]
[17]
Wang B, Zhou J, Banie L, et al. Low-intensity extracorporeal shock wave therapy promotes myogenesis through PERK/ATF4 pathway. Neurourol Urodyn 2018; 37(2): 699-707.
[http://dx.doi.org/10.1002/nau.23380] [PMID: 28763567]
[18]
Lee JY, Paik SY, Yuk SH, Lee JH, Ghil SH, Lee SS. Long term effects of muscle-derived stem cells on leak point pressure and closing pressure in rats with transected pudendal nerves. Mol Cells 2004; 18(3): 309-13.
[http://dx.doi.org/10.1007/s10059-012-2280-7] [PMID: 15650326]
[19]
Xu Y, Song YF, Lin ZX. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res 2010; 43(11): 1076-83.
[http://dx.doi.org/10.1590/S0100-879X2010007500112] [PMID: 21088804]
[20]
Jalali Tehrani H, Daryabari SS, Fendereski K, Alijani Zirdehi M, Kajbafzadeh AM. Application of adipose-derived, muscle-derived, and co-cultured stem cells for the treatment of stress urinary incontinence in rat models. Low Urin Tract Symptoms 2021; 13(2): 308-18.
[http://dx.doi.org/10.1111/luts.12360] [PMID: 33098273]
[21]
Li GY, Zhou F, Gong YQ, et al. Activation of VEGF and ERK1/2 and improvement of urethral function by adipose-derived stem cells in a rat stress urinary incontinence model. Urology 2012; 80(4): 953.e1-8.
[http://dx.doi.org/10.1016/j.urology.2012.05.030] [PMID: 22950999]
[22]
Fu Q, Song XF, Liao GL, Deng CL, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 2010; 75(3): 718-23.
[http://dx.doi.org/10.1016/j.urology.2009.10.003] [PMID: 19969332]
[23]
Wang Y, Zhou S, Yang R, et al. Magnetic targeting of super-paramagnetic iron oxide nanoparticle labeled myogenic-induced adipose-derived stem cells in a rat model of stress urinary incontinence. Nanomedicine 2020; 30: 102281.
[http://dx.doi.org/10.1016/j.nano.2020.102281] [PMID: 32763385]
[24]
Zhao W, Zhang C, Jin C, et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol 2011; 59(1): 155-63.
[http://dx.doi.org/10.1016/j.eururo.2010.10.038] [PMID: 21050657]
[25]
Wang Y, Shi GW, Wang JH, Cao NL, Fu Q. Adipose-derived stem cells seeded on polyglycolic acid for the treatment of stress urinary incontinence. World J Urol 2016; 34(10): 1447-55.
[http://dx.doi.org/10.1007/s00345-015-1757-3] [PMID: 26743672]
[26]
Ni J, Li H, Zhou Y, et al. Therapeutic potential of human adipose-derived stem cell exosomes in stress urinary incontinence - An in vitro and in vivo study. Cell Physiol Biochem 2018; 48(4): 1710-22.
[http://dx.doi.org/10.1159/000492298] [PMID: 30077997]
[27]
Wang L, Wang Y, Xiang Y, et al. An in vitro study on extracellular vesicles from adipose-derived mesenchymal stem cells in protecting stress urinary incontinence through MicroRNA-93/F3 axis. Front Endocrinol (Lausanne) 2021; 12: 693977.
[http://dx.doi.org/10.3389/fendo.2021.693977] [PMID: 34484115]
[28]
Liu X, Wang S, Wu S, et al. Exosomes secreted by adipose-derived mesenchymal stem cells regulate type I collagen metabolism in fibroblasts from women with stress urinary incontinence. Stem Cell Res Ther 2018; 9(1): 159.
[http://dx.doi.org/10.1186/s13287-018-0899-9] [PMID: 29895333]
[29]
Liu G, Pareta RA, Wu R, et al. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials 2013; 34(4): 1311-26.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.038] [PMID: 23137393]
[30]
Wu R, Huang C, Wu Q, et al. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res Ther 2019; 10(1): 80.
[http://dx.doi.org/10.1186/s13287-019-1182-4] [PMID: 30849996]
[31]
Yeung J, Crisp CC, Mazloomdoost D, Kleeman SD, Pauls RN. Liposomal bupivacaine during robotic colpopexy and posterior repair: A randomized controlled trial. Obstet Gynecol 2018; 131(1): 39-46.
[http://dx.doi.org/10.1097/AOG.0000000000002375] [PMID: 29215511]
[32]
Jin M, Chen Y, Zhou Y, et al. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction. Stem Cell Res Ther 2016; 7(1): 51.
[http://dx.doi.org/10.1186/s13287-016-0308-1] [PMID: 27048404]
[33]
Jin M, Wu Y, Wang J, et al. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin. Stem Cell Res Ther 2016; 7(1): 167.
[http://dx.doi.org/10.1186/s13287-016-0428-7] [PMID: 27855713]
[34]
Zhang H, Huang J, Liu J, Li Y, Gao Y. BMMSC-sEV-derived miR-328a-3p promotes ECM remodeling of damaged urethral sphincters via the Sirt7/TGFβ signaling pathway. Stem Cell Res Ther 2020; 11(1): 286.
[http://dx.doi.org/10.1186/s13287-020-01808-2] [PMID: 32678010]
[35]
Li Q, Song J, Liu T, et al. Exosomes derived by SIRT1-overexpressing bone marrow mesenchymal stem cells improve pubococcygeus muscle injury in rats. Int J Stem Cells 2021.
[http://dx.doi.org/10.15283/ijsc21065] [PMID: 34711699]
[36]
Jiang M, Liu J, Liu W, et al. Bone marrow stem cells secretome accelerates simulated birth trauma-induced stress urinary incontinence recovery in rats. Aging (Albany NY) 2021; 13(7): 10517-34.
[http://dx.doi.org/10.18632/aging.202812] [PMID: 33793419]
[37]
Deng K, Lin DL, Hanzlicek B, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol 2015; 308(2): F92-F100.
[http://dx.doi.org/10.1152/ajprenal.00510.2014] [PMID: 25377914]
[38]
Pisciotta A, Riccio M, Carnevale G, et al. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 2015; 6(1): 156.
[http://dx.doi.org/10.1186/s13287-015-0141-y] [PMID: 26316011]
[39]
Carnevale G, Pisciotta A, Riccio M, et al. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med 2018; 12(2): e774-85.
[http://dx.doi.org/10.1002/term.2378] [PMID: 27943583]
[40]
Zordani A, Pisciotta A, Bertoni L, et al. Regenerative potential of human dental pulp stem cells in the treatment of stress urinary incontinence: In vitro and in vivo study. Cell Prolif 2019; 52(6): e12675.
[http://dx.doi.org/10.1111/cpr.12675] [PMID: 31553127]
[41]
Sharifiaghdas F, Tajalli F, Taheri M, et al. Effect of autologous muscle-derived cells in the treatment of urinary incontinence in female patients with intrinsic sphincter deficiency and epispadias: A prospective study. Int J Urol 2016; 23(7): 581-6.
[http://dx.doi.org/10.1111/iju.13097] [PMID: 27062371]
[42]
Sharifiaghdas F, Zohrabi F, Moghadasali R, et al. Autologous muscle-derived cell injection for treatment of female stress urinary incontinence: A single- arm clinical trial with 24-months Follow-Up. Urol J 2019; 16(5): 482-7.
[http://dx.doi.org/10.22037/uj.v0i0.4736] [PMID: 31004339]
[43]
Stangel-Wojcikiewicz K, Jarocha D, Piwowar M, et al. Autologous muscle-derived cells for the treatment of female stress urinary incontinence: A 2-year follow-up of a Polish investigation. Neurourol Urodyn 2014; 33(3): 324-30.
[http://dx.doi.org/10.1002/nau.22404] [PMID: 23606303]
[44]
Stangel-Wojcikiewicz K, Piwowar M, Jach R, Majka M, Basta A. Quality of life assessment in female patients 2 and 4 years after muscle-derived cell transplants for stress urinary incontinence treatment. Ginekol Pol 2016; 87(3): 183-9.
[http://dx.doi.org/10.17772/gp/61330] [PMID: 27306126]
[45]
Gotoh M, Yamamoto T, Shimizu S, et al. Treatment of male stress urinary incontinence using autologous adipose-derived regenerative cells: Long-term efficacy and safety. Int J Urol 2019; 26(3): 400-5.
[http://dx.doi.org/10.1111/iju.13886] [PMID: 30557919]
[46]
Gotoh M, Shimizu S, Yamamoto T, et al. Regenerative treatment for male stress urinary incontinence by periurethral injection of adipose-derived regenerative cells: Outcome of the ADRESU study. Int J Urol 2020; 27(10): 859-65.
[http://dx.doi.org/10.1111/iju.14311] [PMID: 32729155]
[47]
Garcia-Arranz M, Alonso-Gregorio S, Fontana-Portella P, et al. Two phase I/II clinical trials for the treatment of urinary incontinence with autologous mesenchymal stem cells. Stem Cells Transl Med 2020; 9(12): 1500-8.
[http://dx.doi.org/10.1002/sctm.19-0431] [PMID: 32864818]
[48]
Yamamoto T, Gotoh M, Kato M, et al. Periurethral injection of autologous adipose-derived regenerative cells for the treatment of male stress urinary incontinence: Report of three initial cases. Int J Urol 2012; 19(7): 652-9.
[http://dx.doi.org/10.1111/j.1442-2042.2012.02999.x] [PMID: 22435469]
[49]
Choi JY, Kim TH, Yang JD, Suh JS, Kwon TG. Adipose-Derived Regenerative Cell Injection Therapy for Postprostatectomy Incontinence: A Phase I Clinical Study. Yonsei Med J 2016; 57(5): 1152-8.
[http://dx.doi.org/10.3349/ymj.2016.57.5.1152] [PMID: 27401646]
[50]
Kuismanen K, Sartoneva R, Haimi S, et al. Autologous adipose stem cells in treatment of female stress urinary incontinence: Results of a pilot study. Stem Cells Transl Med 2014; 3(8): 936-41.
[http://dx.doi.org/10.5966/sctm.2013-0197] [PMID: 24985079]
[51]
Cui L, Meng Q, Wen J, et al. A functional comparison of treatment of intrinsic sphincter deficiency with muscle-derived and adipose tissue-derived stem cells. IUBMB Life 2018; 70(10): 976-84.
[http://dx.doi.org/10.1002/iub.1896] [PMID: 30212601]
[52]
Burdzinska A, Dybowski B, Zarychta-Wiśniewska W, et al. Intraurethral co-transplantation of bone marrow mesenchymal stem cells and muscle-derived cells improves the urethral closure. Stem Cell Res Ther 2018; 9(1): 239.
[http://dx.doi.org/10.1186/s13287-018-0990-2] [PMID: 30241573]
[53]
Williams JK, Dean A, Badra S, et al. Cell versus chemokine therapy in a nonhuman primate model of chronic intrinsic urinary sphincter deficiency. J Urol 2016; 196(6): 1809-15.
[http://dx.doi.org/10.1016/j.juro.2016.05.106] [PMID: 27267321]
[54]
Gill BC, Sun DZ, Damaser MS. Stem cells for urinary incontinence: Functional differentiation or cytokine effects? Urology 2018; 117: 9-17.
[http://dx.doi.org/10.1016/j.urology.2018.01.002] [PMID: 29339111]
[55]
Roman S, Mangera A, Osman NI, Bullock AJ, Chapple CR, MacNeil S. Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source? Neurourol Urodyn 2014; 33(5): 531-7.
[http://dx.doi.org/10.1002/nau.22443] [PMID: 23868812]
[56]
Dissaranan C, Cruz MA, Kiedrowski MJ, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant 2014; 23(11): 1395-406.
[http://dx.doi.org/10.3727/096368913X670921] [PMID: 23866688]
[57]
Choumerianou DM, Dimitriou H, Kalmanti M. Stem cells: Promises versus limitations. Tissue Eng Part B Rev 2008; 14(1): 53-60.
[http://dx.doi.org/10.1089/teb.2007.0216] [PMID: 18454634]
[58]
Preti RA. Bringing safe and effective cell therapies to the bedside. Nat Biotechnol 2005; 23(7): 801-4.
[http://dx.doi.org/10.1038/nbt0705-801] [PMID: 16003360]
[59]
Lo B, Kriegstein A, Grady D. Clinical trials in stem cell transplantation: Guidelines for scientific and ethical review. Clin Trials 2008; 5(5): 517-22.
[http://dx.doi.org/10.1177/1740774508096705] [PMID: 18827044]
[60]
Fischbach GD, Fischbach RL. Stem cells: Science, policy, and ethics. J Clin Invest 2004; 114(10): 1364-70.
[http://dx.doi.org/10.1172/JCI200423549] [PMID: 15545983]
[61]
Bongso A, Fong CY, Gauthaman K. Taking stem cells to the clinic: Major challenges. J Cell Biochem 2008; 105(6): 1352-60.
[http://dx.doi.org/10.1002/jcb.21957] [PMID: 18980213]
[62]
Aragón IM, Imbroda BH, Lara MF. Cell therapy clinical trials for stress urinary incontinence: Current status and perspectives. Int J Med Sci 2018; 15(3): 195-204.
[http://dx.doi.org/10.7150/ijms.22130] [PMID: 29483809]
[63]
Halme DG, Kessler DA. FDA regulation of stem-cell-based therapies. N Engl J Med 2006; 355(16): 1730-5.
[http://dx.doi.org/10.1056/NEJMhpr063086] [PMID: 17050899]
[64]
Cruz M, Dissaranan C, Cotleur A, Kiedrowski M, Penn M, Damaser M. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int 2012; 2012: 612946.
[http://dx.doi.org/10.1155/2012/612946] [PMID: 21941558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy