Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Nicotinamide Adenine Dinucleotide in the Development and Treatment of Cardiac Remodeling and Aging

Author(s): Zuowei Pei, Fang Wang*, Kanglin Wang and Lei Wang

Volume 22, Issue 18, 2022

Published on: 06 June, 2022

Page: [2310 - 2317] Pages: 8

DOI: 10.2174/1389557522666220304121917

Price: $65

Abstract

Background: Recently, the beneficial effects of nicotinamide adenine dinucleotide (NAD+) as an antiaging and antioxidant molecule have become a focus of research. However, the mechanisms by which NAD+ supplementation affects the associated metabolites under physiological conditions remain unclear. Specifically, although NAD+ is involved in several processes that are dysregulated in cardiovascular diseases, some effects of NAD+ precursors and NAD+ on cardiac diseases have started to gain recognition only recently.

Objective: To discuss the influence of NAD+ supplementation on adverse cardiac remodeling and aging.

Results: Supplementation with NAD+ precursors or nicotinamide riboside, which enhances or supplements the NAD+metabolome, might have a protective effect on the heart. NAD+ can alleviate chronic heart failure via mitochondrial oxidation-reduction (redox) state mechanism. Furthermore, NAD+ replenishment can improve the life span of mice.

Conclusion: NAD+ exerts considerable antiaging and antioxidant effects with promising therapeutic effects. However, its effect on humans and its use as a dietary supplement need to be studied further.

Keywords: Cardiac remodeling, aging, nicotinamide adenine dinucleotide, oxidation–reduction, redox, dietary supplement, metabolome, antioxidant.

Graphical Abstract

[1]
Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci., 2007, 32(1), 12-19.
[http://dx.doi.org/10.1016/j.tibs.2006.11.006] [PMID: 17161604]
[2]
Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; van der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P.; Giacchè, N.; Stokar-Regenscheit, N.; Legouis, D.; de Seigneux, S.; Ivanisevic, J.; Raffaelli, N.; Schoonjans, K.; Pellicciari, R.; Auwerx, J. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature, 2018, 563(7731), 354-359.
[http://dx.doi.org/10.1038/s41586-018-0645-6] [PMID: 30356218]
[3]
Marazzi, G.; Rosanio, S.; Caminiti, G.; Dioguardi, F.S.; Mercuro, G. The role of amino acids in the modulation of cardiac metabolism du-ring ischemia and heart failure. Curr. Pharm. Des., 2008, 14(25), 2592-2604.
[http://dx.doi.org/10.2174/138161208786071227] [PMID: 18991676]
[4]
Matasic, D.S.; Brenner, C.; London, B. Emerging potential benefits of modulating NAD(+) metabolism in cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2018, 314, H839-839H852.
[http://dx.doi.org/10.1152/ajpheart.00409.2017]
[5]
Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal., 2008, 10(2), 179-206.
[http://dx.doi.org/10.1089/ars.2007.1672] [PMID: 18020963]
[6]
Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(6), H2181-H2190.
[http://dx.doi.org/10.1152/ajpheart.00554.2011] [PMID: 21949114]
[7]
Chen, C.; Zhou, M.; Ge, Y.; Wang, X. SIRT1 and aging related signaling pathways. Mech. Ageing Dev., 2020, 187, 111215.
[http://dx.doi.org/10.1016/j.mad.2020.111215] [PMID: 32084459]
[8]
Martin, A.S.; Abraham, D.M.; Hershberger, K.A.; Bhatt, D.P.; Mao, L.; Cui, H.; Liu, J.; Liu, X.; Muehlbauer, M.J.; Grimsrud, P.A.; Loca-sale, J.W.; Payne, R.M.; Hirschey, M.D. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight, 2017, 2(14), 93885.
[http://dx.doi.org/10.1172/jci.insight.93885] [PMID: 28724806]
[9]
Trammell, S.A.; Schmidt, M.S.; Weidemann, B.J.; Redpath, P.; Jaksch, F.; Dellinger, R.W.; Li, Z.; Abel, E.D.; Migaud, M.E.; Brenner, C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun., 2016, 7(1), 12948.
[http://dx.doi.org/10.1038/ncomms12948] [PMID: 27721479]
[10]
Yamamoto, T.; Byun, J.; Zhai, P.; Ikeda, Y.; Oka, S.; Sadoshima, J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6), e98972.
[http://dx.doi.org/10.1371/journal.pone.0098972] [PMID: 24905194]
[11]
Yamamura, S.; Izumiya, Y.; Araki, S.; Nakamura, T.; Kimura, Y.; Hanatani, S.; Yamada, T.; Ishida, T.; Yamamoto, M.; Onoue, Y.; Arima, Y.; Yamamoto, E.; Sunagawa, Y.; Yoshizawa, T.; Nakagata, N.; Bober, E.; Braun, T.; Sakamoto, K.; Kaikita, K.; Morimoto, T.; Yamagata, K.; Tsujita, K. Cardiomyocyte Sirt (Sirtuin) 7 ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GA-TA4. Hypertension, 2020, 75(1), 98-108.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13357] [PMID: 31735083]
[12]
Mericskay, M. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and thera-peutic potential. Arch. Cardiovasc. Dis., 2016, 109(3), 207-215.
[http://dx.doi.org/10.1016/j.acvd.2015.10.004] [PMID: 26707577]
[13]
Sellés Vidal, L.; Kelly, C.L.; Mordaka, P.M.; Heap, J.T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and ap-plication. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(2), 327-347.
[http://dx.doi.org/10.1016/j.bbapap.2017.11.005] [PMID: 29129662]
[14]
Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target. Nutrients, 2019, 11(9), E2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[15]
Zimmer, A.; Teixeira, R.B.; Bonetto, J.H.P.; Bahr, A.C.; Türck, P.; de Castro, A.L.; Campos-Carraro, C.; Visioli, F.; Fernandes-Piedras, T.R.; Casali, K.R.; Scassola, C.M.C.; Baldo, G.; Araujo, A.S.; Singal, P.; Belló-Klein, A. Role of inflammation, oxidative stress, and auto-nomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hyperten-sion. Mol. Cell. Biochem., 2020, 464(1-2), 93-109.
[http://dx.doi.org/10.1007/s11010-019-03652-2] [PMID: 31728802]
[16]
Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch. Toxicol., 2015, 89(9), 1401-1438.
[http://dx.doi.org/10.1007/s00204-015-1477-x] [PMID: 25708889]
[17]
Cox, M.J.; Sood, H.S.; Hunt, M.J.; Chandler, D.; Henegar, J.R.; Aru, G.M.; Tyagi, S.C. Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(4), H1197-H1205.
[http://dx.doi.org/10.1152/ajpheart.00483.2001] [PMID: 11893552]
[18]
Pillai, V.B.; Sundaresan, N.R.; Kim, G.; Gupta, M.; Rajamohan, S.B.; Pillai, J.B.; Samant, S.; Ravindra, P.V.; Isbatan, A.; Gupta, M.P. Exo-genous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem., 2010, 285(5), 3133-3144.
[http://dx.doi.org/10.1074/jbc.M109.077271] [PMID: 19940131]
[19]
Trammell, S.A.; Weidemann, B.J.; Chadda, A.; Yorek, M.S.; Holmes, A.; Coppey, L.J.; Obrosov, A.; Kardon, R.H.; Yorek, M.A.; Brenner, C. Nicotinamide riboside opposes Type 2 diabetes and neuropathy in mice. Sci. Rep., 2016, 6(1), 26933.
[http://dx.doi.org/10.1038/srep26933] [PMID: 27230286]
[20]
Simantirakis, E.N.; Prassopoulos, V.K.; Chrysostomakis, S.I.; Kochiadakis, G.E.; Koukouraki, S.I.; Lekakis, J.P.; Karkavitsas, N.S.; Var-das, P.E. Effects of asynchronous ventricular activation on myocardial adrenergic innervation in patients with permanent dual-chamber pacemakers; an I(123)-metaiodobenzylguanidine cardiac scintigraphic study. Eur. Heart J., 2001, 22(4), 323-332.
[http://dx.doi.org/10.1053/euhj.2000.2482] [PMID: 11161951]
[21]
Klug, D.; Boule, S.; Wissocque, L.; Montaigne, D.; Marechal, X.; Hassoun, S.M.; Neviere, R. Right ventricular pacing with mechanical dyssynchrony causes apoptosis interruptus and calcium mishandling. Can. J. Cardiol., 2013, 29(4), 510-518.
[http://dx.doi.org/10.1016/j.cjca.2012.08.007] [PMID: 23062666]
[22]
Cicchitti, V.; Radico, F.; Bianco, F.; Gallina, S.; Tonti, G.; De Caterina, R. Heart failure due to right ventricular apical pacing: The importan-ce of flow patterns. Europace, 2016, 18(11), 1679-1688.
[http://dx.doi.org/10.1093/europace/euw024] [PMID: 27247008]
[23]
Bianco, F.; Cicchitti, V.; Bucciarelli, V.; Chandra, A.; Di Girolamo, E.; Pedrizzetti, G.; Tonti, G.; Romano, S.; De Caterina, R.; Gallina, S. Intraventricular flow patterns during right ventricular apical pacing. Open Heart, 2019, 6(1), e001057.
[http://dx.doi.org/10.1136/openhrt-2019-001057] [PMID: 31168394]
[24]
Lee, C.F.; Tian, R. Mitochondrion as a target for heart failure therapy: Role of protein lysine acetylation. Circ. J., 2015, 79(9), 1863-1870.
[http://dx.doi.org/10.1253/circj.CJ-15-0742] [PMID: 26248514]
[25]
Li, P.; Ge, J.; Li, H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat. Rev. Cardiol., 2020, 17(2), 96-115.
[http://dx.doi.org/10.1038/s41569-019-0235-9] [PMID: 31350538]
[26]
Yagi, M.; Toshima, T.; Amamoto, R.; Do, Y.; Hirai, H.; Setoyama, D.; Kang, D.; Uchiumi, T. Mitochondrial translation deficiency impairs NAD+ -mediated lysosomal acidification. EMBO J., 2021, 40(8), e105268.
[http://dx.doi.org/10.15252/embj.2020105268] [PMID: 33528041]
[27]
Biolo, A.; Fisch, M.; Balog, J.; Chao, T.; Schulze, P.C.; Ooi, H.; Siwik, D.; Colucci, W.S. Episodes of acute heart failure syndrome are associated with increased levels of troponin and extracellular matrix markers. Circ. Heart Fail., 2010, 3(1), 44-50.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.844324] [PMID: 19850700]
[28]
Srivastava, S.; Chandrasekar, B.; Gu, Y.; Luo, J.; Hamid, T.; Hill, B.G.; Prabhu, S.D. Downregulation of CuZn-superoxide dismutase con-tributes to β-adrenergic receptor-mediated oxidative stress in the heart. Cardiovasc. Res., 2007, 74(3), 445-455.
[http://dx.doi.org/10.1016/j.cardiores.2007.02.016] [PMID: 17362897]
[29]
Aubert, G.; Martin, O.J.; Horton, J.L.; Lai, L.; Vega, R.B.; Leone, T.C.; Koves, T.; Gardell, S.J.; Krüger, M.; Hoppel, C.L.; Lewandowski, E.D.; Crawford, P.A.; Muoio, D.M.; Kelly, D.P. The failing heart relies on ketone bodies as a fuel. Circulation, 2016, 133(8), 698-705.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017355] [PMID: 26819376]
[30]
Karamanlidis, G.; Lee, C.F.; Garcia-Menendez, L.; Kolwicz, S.C., Jr; Suthammarak, W.; Gong, G.; Sedensky, M.M.; Morgan, P.G.; Wang, W.; Tian, R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab., 2013, 18(2), 239-250.
[http://dx.doi.org/10.1016/j.cmet.2013.07.002] [PMID: 23931755]
[31]
Berthiaume, J.M.; Kurdys, J.G.; Muntean, D.M.; Rosca, M.G. Mitochondrial NAD(+)/NADH redox state and diabetic cardiomyopathy. Antioxid. Redox Signal., 2019, 30(3), 375-398.
[http://dx.doi.org/10.1089/ars.2017.7415] [PMID: 29073779]
[32]
Lee, C.F.; Chavez, J.D.; Garcia-Menendez, L.; Choi, Y.; Roe, N.D.; Chiao, Y.A.; Edgar, J.S.; Goo, Y.A.; Goodlett, D.R.; Bruce, J.E.; Tian, R. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation, 2016, 134(12), 883-894.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022495] [PMID: 27489254]
[33]
Vikram, A.; Lewarchik, C.M.; Yoon, J.Y.; Naqvi, A.; Kumar, S.; Morgan, G.M.; Jacobs, J.S.; Li, Q.; Kim, Y.R.; Kassan, M.; Liu, J.; Gaba-ni, M.; Kumar, A.; Mehdi, H.; Zhu, X.; Guan, X.; Kutschke, W.; Zhang, X.; Boudreau, R.L.; Dai, S.; Matasic, D.S.; Jung, S.B.; Margulies, K.B.; Kumar, V.; Bachschmid, M.M.; London, B.; Irani, K. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac so-dium channel. Nat. Med., 2017, 23(3), 361-367.
[http://dx.doi.org/10.1038/nm.4284] [PMID: 28191886]
[34]
Planavila, A.; Iglesias, R.; Giralt, M.; Villarroya, F. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res., 2011, 90(2), 276-284.
[http://dx.doi.org/10.1093/cvr/cvq376] [PMID: 21115502]
[35]
Wen, D.T.; Zheng, L.; Li, J.X.; Lu, K.; Hou, W.Q. The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY), 2019, 11(17), 7274-7293.
[http://dx.doi.org/10.18632/aging.102261] [PMID: 31503544]
[36]
D’Onofrio, N.; Servillo, L.; Balestrieri, M.L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid. Redox Signal., 2018, 28(8), 711-732.
[http://dx.doi.org/10.1089/ars.2017.7178] [PMID: 28661724]
[37]
Tang, X.; Chen, X.F.; Wang, N.Y.; Wang, X.M.; Liang, S.T.; Zheng, W.; Lu, Y.B.; Zhao, X.; Hao, D.L.; Zhang, Z.Q.; Zou, M.H.; Liu, D.P.; Chen, H.Z. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation, 2017, 136(21), 2051-2067.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028728] [PMID: 28947430]
[38]
Sundaresan, N.R.; Vasudevan, P.; Zhong, L.; Kim, G.; Samant, S.; Parekh, V.; Pillai, V.B.; Ravindra, P.V.; Gupta, M.; Jeevanandam, V.; Cunningham, J.M.; Deng, C.X.; Lombard, D.B.; Mostoslavsky, R.; Gupta, M.P. The sirtuin SIRT6 blocks IGF-Akt signaling and develop-ment of cardiac hypertrophy by targeting c-Jun. Nat. Med., 2012, 18(11), 1643-1650.
[http://dx.doi.org/10.1038/nm.2961] [PMID: 23086477]
[39]
Li, Y.; Meng, X.; Wang, W.; Liu, F.; Hao, Z.; Yang, Y.; Zhao, J.; Yin, W.; Xu, L.; Zhao, R.; Hu, J. Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure. Front. Physiol., 2017, 8, 394.
[http://dx.doi.org/10.3389/fphys.2017.00394] [PMID: 28659816]
[40]
Hu, D.X.; Liu, X.B.; Song, W.C.; Wang, J.A. Roles of SIRT3 in heart failure: From bench to bedside. J. Zhejiang Univ. Sci. B, 2016, 17(11), 821-830.
[http://dx.doi.org/10.1631/jzus.B1600253] [PMID: 27819129]
[41]
Chen, T.; Liu, J.; Li, N.; Wang, S.; Liu, H.; Li, J.; Zhang, Y.; Bu, P. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One, 2015, 10(3), e0118909.
[http://dx.doi.org/10.1371/journal.pone.0118909] [PMID: 25748450]
[42]
Koentges, C.; Pfeil, K.; Schnick, T.; Wiese, S.; Dahlbock, R.; Cimolai, M.C.; Meyer-Steenbuck, M.; Cenkerova, K.; Hoffmann, M.M.; Jae-ger, C.; Odening, K.E.; Kammerer, B.; Hein, L.; Bode, C.; Bugger, H. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res. Cardiol., 2015, 110(4), 36.
[http://dx.doi.org/10.1007/s00395-015-0493-6] [PMID: 25962702]
[43]
Sundaresan, N.R.; Gupta, M.; Kim, G.; Rajamohan, S.B.; Isbatan, A.; Gupta, M.P. Sirt3 blocks the cardiac hypertrophic response by aug-menting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest., 2009, 119(9), 2758-2771.
[http://dx.doi.org/10.1172/JCI39162] [PMID: 19652361]
[44]
Ghanta, S.; Grossmann, R.E.; Brenner, C. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: Chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol., 2013, 48(6), 561-574.
[http://dx.doi.org/10.3109/10409238.2013.838204] [PMID: 24050258]
[45]
Boylston, J.A.; Sun, J.; Chen, Y.; Gucek, M.; Sack, M.N.; Murphy, E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J. Mol. Cell. Cardiol., 2015, 88, 73-81.
[http://dx.doi.org/10.1016/j.yjmcc.2015.09.005] [PMID: 26388266]
[46]
Sadhukhan, S.; Liu, X.; Ryu, D.; Nelson, O.D.; Stupinski, J.A.; Li, Z.; Chen, W.; Zhang, S.; Weiss, R.S.; Locasale, J.W.; Auwerx, J.; Lin, H. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl. Acad. Sci. USA, 2016, 113(16), 4320-4325.
[http://dx.doi.org/10.1073/pnas.1519858113] [PMID: 27051063]
[47]
Zhou, L.; Wang, F.; Sun, R.; Chen, X.; Zhang, M.; Xu, Q.; Wang, Y.; Wang, S.; Xiong, Y.; Guan, K.L.; Yang, P.; Yu, H.; Ye, D. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep., 2016, 17(6), 811-822.
[http://dx.doi.org/10.15252/embr.201541643] [PMID: 27113762]
[48]
Luo, Y.X.; Tang, X.; An, X.Z.; Xie, X.M.; Chen, X.F.; Zhao, X.; Hao, D.L.; Chen, H.Z.; Liu, D.P. SIRT4 accelerates Ang II-induced patho-logical cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur. Heart J., 2017, 38(18), 1389-1398.
[http://dx.doi.org/10.1093/eurheartj/ehw138] [PMID: 27099261]
[49]
Laurent, G.; de Boer, V.C.; Finley, L.W.; Sweeney, M.; Lu, H.; Schug, T.T.; Cen, Y.; Jeong, S.M.; Li, X.; Sauve, A.A.; Haigis, M.C. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol. Cell. Biol., 2013, 33(22), 4552-4561.
[http://dx.doi.org/10.1128/MCB.00087-13] [PMID: 24043310]
[50]
Nasrin, N.; Wu, X.; Fortier, E.; Feng, Y.; Bare’, O.C.; Chen, S.; Ren, X.; Wu, Z.; Streeper, R.S.; Bordone, L. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem., 2010, 285(42), 31995-32002.
[http://dx.doi.org/10.1074/jbc.M110.124164] [PMID: 20685656]
[51]
Imai, S.; Guarente, L.; Ren, X.; Wu, Z.; Streeper, R.S.; Bordone, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol., 2014, 24(8), 464-471.
[http://dx.doi.org/10.1016/j.tcb.2014.04.002] [PMID: 24786309]
[52]
Hershberger, K.A.; Martin, A.S.; Hirschey, M.D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol., 2017, 13(4), 213-225.
[http://dx.doi.org/10.1038/nrneph.2017.5] [PMID: 28163307]
[53]
Wellman, A.S.; Metukuri, M.R.; Kazgan, N.; Xu, X.; Xu, Q.; Ren, N.S.X.; Czopik, A.; Shanahan, M.T.; Kang, A.; Chen, W.; Azcarate-Peril, M.A.; Gulati, A.S.; Fargo, D.C.; Guarente, L.; Li, X. Intestinal epithelial Sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota. Gastroenterology, 2017, 153(3), 772-786.
[http://dx.doi.org/10.1053/j.gastro.2017.05.022] [PMID: 28552621]
[54]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[55]
Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther., 2020, 5(1), 227.
[http://dx.doi.org/10.1038/s41392-020-00311-7] [PMID: 33028824]
[56]
Anderson, R.M.; Bitterman, K.J.; Wood, J.G.; Medvedik, O.; Sinclair, D.A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 2003, 423(6936), 181-185.
[http://dx.doi.org/10.1038/nature01578] [PMID: 12736687]
[57]
Camacho-Pereira, J.; Tarragó, M.G.; Chini, C.C.S.; Nin, V.; Escande, C.; Warner, G.M.; Puranik, A.S.; Schoon, R.A.; Reid, J.M.; Galina, A.; Chini, E.N. CD38 dictates age-Related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab., 2016, 23(6), 1127-1139.
[http://dx.doi.org/10.1016/j.cmet.2016.05.006] [PMID: 27304511]
[58]
Zhu, X.H.; Lu, M.; Lee, B.Y.; Ugurbil, K.; Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2876-2881.
[http://dx.doi.org/10.1073/pnas.1417921112] [PMID: 25730862]
[59]
Lautrup, S.; Sinclair, D.A.; Mattson, M.P.; Fang, E.F. NAD(+) in Brain aging and neurodegenerative disorders. Cell Metab., 2019, 30(4), 630-655.
[http://dx.doi.org/10.1016/j.cmet.2019.09.001] [PMID: 31577933]
[60]
Yaku, K.; Okabe, K.; Nakagawa, T. NAD metabolism: Implications in aging and longevity. Ageing Res. Rev., 2018, 47, 1-17.
[http://dx.doi.org/10.1016/j.arr.2018.05.006] [PMID: 29883761]
[61]
Yoshino, J.; Baur, J.A.; Imai, S.I. NAD(+) intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab., 2018, 27(3), 513-528.
[http://dx.doi.org/10.1016/j.cmet.2017.11.002] [PMID: 29249689]
[62]
Belenky, P.; Racette, F.G.; Bogan, K.L.; McClure, J.M.; Smith, J.S.; Brenner, C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell, 2007, 129(3), 473-484.
[http://dx.doi.org/10.1016/j.cell.2007.03.024] [PMID: 17482543]
[63]
Fang, E.F.; Kassahun, H.; Croteau, D.L.; Scheibye-Knudsen, M.; Marosi, K.; Lu, H.; Shamanna, R.A.; Kalyanasundaram, S.; Bollineni, R.C.; Wilson, M.A.; Iser, W.B.; Wollman, B.N.; Morevati, M.; Li, J.; Kerr, J.S.; Lu, Q.; Waltz, T.B.; Tian, J.; Sinclair, D.A.; Mattson, M.P.; Nilsen, H.; Bohr, V.A. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA re-pair. Cell Metab., 2016, 24(4), 566-581.
[http://dx.doi.org/10.1016/j.cmet.2016.09.004] [PMID: 27732836]
[64]
Balan, V.; Miller, G.S.; Kaplun, L.; Balan, K.; Chong, Z.Z.; Li, F.; Kaplun, A.; VanBerkum, M.F.A.; Arking, R.; Freeman, D.C.; Maiese, K.; Tzivion, G. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J. Biol. Chem., 2008, 283(41), 27810-27819.
[http://dx.doi.org/10.1074/jbc.M804681200] [PMID: 18678867]
[65]
Fang, E.F.; Lautrup, S.; Hou, Y.; Demarest, T.G.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. NAD(+) in aging: Molecular mechanisms and translational implications. Trends Mol. Med., 2017, 23(10), 899-916.
[http://dx.doi.org/10.1016/j.molmed.2017.08.001] [PMID: 28899755]
[66]
Rajman, L.; Chwalek, K.; Sinclair, D.A. Therapeutic potential of NAD-boosting molecules: The in vivo evidence. Cell Metab., 2018, 27(3), 529-547.
[http://dx.doi.org/10.1016/j.cmet.2018.02.011] [PMID: 29514064]
[67]
Roh, E.; Kim, M.S. Hypothalamic NAD(+)-sirtuin axis: Function and regulation. Biomolecules, 2020, 10(3), E396.
[http://dx.doi.org/10.3390/biom10030396] [PMID: 32143417]
[68]
Levine, D.C.; Hong, H.; Weidemann, B.J.; Ramsey, K.M.; Affinati, A.H.; Schmidt, M.S.; Cedernaes, J.; Omura, C.; Braun, R.; Lee, C.; Brenner, C.; Peek, C.B.; Bass, J. NAD(+) controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell, 2020, 78(5), 835-849.e7.
[http://dx.doi.org/10.1016/j.molcel.2020.04.010] [PMID: 32369735]
[69]
Marín-Aguilar, F.; Lechuga-Vieco, A.V.; Alcocer-Gómez, E.; Castejón-Vega, B.; Lucas, J.; Garrido, C.; Peralta-Garcia, A.; Pérez-Pulido, A.J.; Varela-López, A.; Quiles, J.L.; Ryffel, B.; Flores, I.; Bullón, P.; Ruiz-Cabello, J.; Cordero, M.D. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell, 2020, 19(1), e13050.
[http://dx.doi.org/10.1111/acel.13050] [PMID: 31625260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy