Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Growth Hormone/Insulin-like Growth Factor 1 Axis Associated with Modifier Factors in Children with Sickle Cell Anemia

Author(s): Domício Antônio da Costa-Júnior, Ana Paula Pinho Santos, Célia Maria da Silva and Cibele Velloso-Rodrigues*

Volume 22, Issue 9, 2022

Published on: 02 June, 2022

Page: [954 - 962] Pages: 9

DOI: 10.2174/1871530322666220303164029

Price: $65

Abstract

Background: Sickle cell anemia is a disease that develops episodes of acute pain and multiple organ dysfunction that can affect the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis. The severity of sickle cell anemia is influenced by modifying factors, such as levels of fetal hemoglobin (HbF), the co-inheritance of alphathalassemia, or treatment with hydroxyurea.

Methods: This cross-sectional study in children with sickle cell anemia evaluated bone age (BA), adult height prediction (AHP) using BA, a target height (TH) calculated as the mean SDS of the parents, and laboratory parameters. Children were grouped according to serum levels of HbF, co-inheritance of alpha-thalassemia, and hydroxyurea therapy..

Results: The mean age of the 39 children was 8.2 ± 2.2 years old. The average height was -0.75 ± 0.30 SDS, and 10.3% (4/39) had short stature. Adjusted levels of IGF-1 or IGFBP- 3 were significantly higher in children with sickle cell anemia on hydroxyurea treatment, in children with HbF levels >10%, and in those without alpha-thalassemia. Using SDS, the growth potential of children with sickle cell anemia in relation to their parents calculated by the difference between AHP and TH as well as the difference between children’s height and their TH, were lower in children with co-inheritance of alphathalassemia.

Conclusion: The study showed an association between modifying factors and the GH/IGF-1 axis in children with sickle cell anemia. Additionally, the co-inheritance of alpha-thalassemia was associated with decreased height in these children when adjusted for their parents’ height.

Keywords: Alpha-thalassemia, hydroxyurea, IGF-I, IGFBP-3, short stature, sickle cell anemia.

Graphical Abstract

[1]
Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; Vichinsky, E.P. Sickle cell disease. Nat. Rev. Dis. Primers, 2018, 4, 18010.
[http://dx.doi.org/10.1038/nrdp.2018.10] [PMID: 29542687]
[2]
Elmlinger, M.W.; Kühnel, W.; Weber, M.M.; Ranke, M.B. Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin. Chem. Lab. Med., 2004, 42(6), 654-664.
[http://dx.doi.org/10.1515/CCLM.2004.112] [PMID: 15259383]
[3]
Guven, B.; Can, M.; Mungan, G.; Acikgoz, S. Reference values for serum levels of insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3) in the West Black Sea region of Turkey. Scand. J. Clin. Lab. Invest., 2013, 73(2), 135-140.
[http://dx.doi.org/10.3109/00365513.2012.755739] [PMID: 23327101]
[4]
Luporini, S.M.; Bendit, I.; Manhani, R.; Bracco, O.L.; Manzella, L.; Giannella-Neto, D. Growth hormone and insulin-like growth factor I] axis and growth of children with different sickle cell anemia haplotypes. J. Pediatr. Hematol. Oncol., 2001, 23(6), 357-363.
[http://dx.doi.org/10.1097/00043426-200108000-00007] [PMID: 11563770]
[5]
Mandese, V.; Bigi, E.; Bruzzi, P.; Palazzi, G.; Predieri, B.; Lucaccioni, L.; Cellini, M.; Iughetti, L. Endocrine and metabolic complications in children and adolescents with Sickle Cell Disease: an Italian cohort study. BMC Pediatr., 2019, 19(1), 56.
[http://dx.doi.org/10.1186/s12887-019-1423-9] [PMID: 30744584]
[6]
Santos, B.; Delgadinho, M.; Ferreira, J.; Germano, I.; Miranda, A.; Arez, A.P.; Faustino, P.; Brito, M. Co-Inheritance of alpha-thalassemia and sickle cell disease in a cohort of Angolan pediatric patients. Mol. Biol. Rep., 2020, 47(7), 5397-5402.
[http://dx.doi.org/10.1007/s11033-020-05628-8] [PMID: 32632780]
[7]
Adegoke, S.A.; Braga, J.A.P.; Adekile, D. A.; Figueiredo, M.S. Impact of Hydroxyurea on Anthropometry and Serum 25-Hydroxyvitamin D Among Children With Sickle Cell Disease. J. Pediatr. Hematol. Oncol., 2018, 40(4), e243-e247.
[http://dx.doi.org/10.1097/MPH.0000000000001002] [PMID: 29176461]
[8]
Hankins, J.S.; Aygun, B.; Nottage, K.; Thornburg, C.; Smeltzer, M.P.; Ware, R.E.; Wang, W.C. From infancy to adolescence: fifteen years of continuous treatment with hydroxyurea in sickle cell anemia. Medicine (Baltimore), 2014, 93(28), e215.
[http://dx.doi.org/10.1097/MD.0000000000000215] [PMID: 25526439]
[9]
Hankins, J.S.; Ware, R.E.; Rogers, Z.R.; Wynn, L.W.; Lane, P.A.; Scott, J.P.; Wang, W.C. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood, 2005, 106(7), 2269-2275.
[http://dx.doi.org/10.1182/blood-2004-12-4973] [PMID: 16172253]
[10]
Battaglia, F.C.; Lubchenco, L.O. A practical classification of newborn infants by weight and gestational age. J. Pediatr., 1967, 71(2), 159-163.
[http://dx.doi.org/10.1016/S0022-3476(67)80066-0] [PMID: 6029463]
[11]
WHO. WHO Anthro Survey Analyser and other tools Available from: https://www.who.int/childgrowth/software/en/ (accessed 2020 -07 - 02).
[12]
Greulich, W.W.; Pyle, S.I. Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd ed; Stanford University Press: Stanford, 1959.
[http://dx.doi.org/10.1097/00000441-195909000-00030]
[13]
Thodberg, H.H.; Jenni, O.G.; Caflisch, J.; Ranke, M.B.; Martin, D.D. Prediction of adult height based on automated determination of bone age. J. Clin. Endocrinol. Metab., 2009, 94(12), 4868-4874.
[http://dx.doi.org/10.1210/jc.2009-1429] [PMID: 19926715]
[14]
Chong, S.S.; Boehm, C.D.; Higgs, D.R.; Cutting, G.R. Single-tube multiplex-PCR screen for common deletional determinants of α-thalassemia. Blood, 2000, 95(1), 360-362.
[http://dx.doi.org/10.1182/blood.V95.1.360] [PMID: 10607725]
[15]
Özen, S.; Ünal, S.; Erçetin, N.; Taşdelen, B. Frequency and risk factors of endocrine complications in Turkish children and adolescents with sickle cell anemia. Turk. J. Haematol., 2013, 30(1), 25-31.
[http://dx.doi.org/10.4274/tjh.2012.0001] [PMID: 24385749]
[16]
Tseng, F.Y.; Chen, Y.T.; Chi, Y.C.; Chen, P.L.; Yang, W.S. Serum levels of insulin-like growth factor 1 are negatively associated with log transformation of thyroid-stimulating hormone in Graves’ disease patients with hyperthyroidism or subjects with euthyroidism: A prospective observational study. Medicine (Baltimore), 2019, 98(11), e14862.
[http://dx.doi.org/10.1097/MD.0000000000014862] [PMID: 30882687]
[17]
Akin, F.; Yaylali, G.F.; Turgut, S.; Kaptanoglu, B. Growth hormone/insulin-like growth factor axis in patients with subclinical thyroid dysfunction. Growth Horm. IGF Res., 2009, 19(3), 252-255.
[http://dx.doi.org/10.1016/j.ghir.2008.11.003] [PMID: 19111490]
[18]
Gilad, O.; Steinberg-Shemer, O.; Dgany, O.; Krasnov, T.; Noy-Lotan, S.; Tamary, H.; Yacobovich, J. Alpha-Thalassemia Carrier due to -α3.7 Deletion: Not So Silent. Acta Haematol., 2020, 143(5), 432-437.
[http://dx.doi.org/10.1159/000503023] [PMID: 31935715]
[19]
Belisário, A.R.; Rodrigues, C.V.; Martins, M.L.; Silva, C.M.; Viana, M.B. Coinheritance of α-thalassemia decreases the risk of cerebrovascular disease in a cohort of children with sickle cell anemia. Hemoglobin, 2010, 34(6), 516-529.
[http://dx.doi.org/10.3109/03630269.2010.526003] [PMID: 21077759]
[20]
Renoux, C.; Connes, P.; Nader, E.; Skinner, S.; Faes, C.; Petras, M.; Bertrand, Y.; Garnier, N.; Cuzzubbo, D.; Divialle-Doumdo, L.; Kebaïli, K.; Renard, C.; Gauthier, A.; Etienne-Julan, M.; Cannas, G.; Martin, C.; Hardy-Dessources, M-D.; Pialoux, V.; Romana, M.; Joly, P. Alpha-thalassaemia promotes frequent vaso-occlusive crises in children with sickle cell anaemia through haemorheological changes. Pediatr. Blood Cancer, 2017, 64(8), e26455.
[http://dx.doi.org/10.1002/pbc.26455] [PMID: 28097791]
[21]
Stevens, M.C.G.; Maude, G.H.; Cupidore, L.; Jackson, H.; Hayes, R.J.; Serjeant, G.R. Prepubertal growth and skeletal maturation in children with sickle cell disease. Pediatrics, 1986, 78(1), 124-132.
[http://dx.doi.org/10.1542/peds.78.1.124]
[22]
Martins, P.R.J.; De Vito, F.B.; Resende, G.A.D.; Kerbauy, J.; Pereira, G.A.; Moraes-Souza, H.; Figueiredo, M.S.; Verreschi, I.T. Male sickle cell patients, compensated transpubertal hypogonadism and normal final growth. Clin. Endocrinol. (Oxf.), 2019, 91(5), 676-682.
[http://dx.doi.org/10.1111/cen.14075] [PMID: 31408198]
[23]
Singhal, A.; Thomas, P.; Cook, R.; Wierenga, K.; Serjeant, G. Delayed adolescent growth in homozygous sickle cell disease. Arch. Dis. Child., 1994, 71(5), 404-408.
[http://dx.doi.org/10.1136/adc.71.5.404] [PMID: 7826110]
[24]
Mahachoklertwattana, P.; Yimsumruay, T.; Poomthavorn, P.; Chuansumrit, A.; Khlairit, P. Acute effects of blood transfusion on growth hormone and insulin-like growth factor-1 levels in children with thalassemia. Horm. Res. Paediatr., 2011, 75(4), 240-245.
[http://dx.doi.org/10.1159/000321189] [PMID: 21051865]
[25]
Karamifar, H.; Karimi, M.; Amirhakimi, G.; Sharbatialaei, M.; De Sanctis, V. Reduced insulin growth factor I concentrations in iron-overloaded beta thalassaemic patients with normal growth hormone secretion and liver function. Pediatr. Endocrinol. Rev., 2004, 2(2)(Suppl. 2), 256-258.
[PMID: 16462706]
[26]
Travaglino, P.; Buzi, F.; Meazza, C.; Pagani, S.; Tinelli, C.; Iughetti, L.; De Sanctis, V.; Aimaretti, G.; Poddighe, D.; Barberi, S.; Bozzola, M. Response to long-term growth hormone therapy in short children with reduced GH bioactivity. Horm. Res., 2006, 66(4), 189-194.
[PMID: 16837793]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy