Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Comparative Study of Antibacterial Activity of Different ZnO Nanoparticles, Nanoflowers, and Nanoflakes

Author(s): Nid'a H. Alshraiedeh*, Omar F. Ammar, Majed M. Masadeh, Karem H. Alzoubi*, Mohamed G. Al-Fandi, Rami J. Oweis, Rawan H. Alsharedeh, Rama A. Alabed and Rawan H. Hayajneh

Volume 18, Issue 6, 2022

Published on: 11 April, 2022

Page: [758 - 765] Pages: 8

DOI: 10.2174/1573413718666220303153123

Price: $65

conference banner
Abstract

Aim: In this study, the antibacterial activity of zinc oxide (ZnO) nanostructures of different shapes, including nanoparticles, nanoflowers, and nanoflakes, was evaluated.

Methods: The optical and morphological properties of the synthesized nanostructures were characterized by double-beam ultraviolet-visible (UV-Vis) analysis, X-ray diffraction (XRD) analysis, Energy Dispersive X-ray Analysis (EDX), and Scanning Electron Microscopy (SEM). Microdilution method was conducted, and minimum inhibitory concentration (MIC) was calculated to compare the antibacterial activity of the morphologically different nanostructures.

Results: The SEM showed that ZnO-NPs were spherical in shape with a size of 100 nm. The EDX spectrum also showed that the synthesized ZnO-NPs were mainly composed of zinc, with the minimum contaminants being carbon and oxygen. The XRD analysis confirmed that the nature of the synthesized materials was ZnO with an average grain size of 3 nm to 21 nm. The greatest antibacterial activity of ZnO nanoparticles was against Pseudomonas aeruginosa, and for ZnO nanoflakes, against Escherichia coli.

Conclusion: The study demonstrated that the antibacterial activity of nano-ZnO is shape-dependent.

Keywords: ZnO, nanoparticles, nanoflowers, nanoflakes, antibacterial, x-ray diffraction.

[1]
Smith, K.F.; Goldberg, M.; Rosenthal, S.; Carlson, L.; Chen, J.; Chen, C.; Ramachandran, S. Global rise in human infectious disease outbreaks. J. R. Soc. Interface, 2014, 11(101), 20140950.
[http://dx.doi.org/10.1098/rsif.2014.0950] [PMID: 25401184]
[2]
Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect., 2015, 6, 22-29.
[http://dx.doi.org/10.1016/j.nmni.2015.02.007] [PMID: 26029375]
[3]
Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. New England J. Med., 2010, 1804-1813.
[http://dx.doi.org/10.1056/NEJMra0904124]
[4]
Nikalje, A.P. Nanotechnology and its applications in medicine. Med. Chem., 2015, 5, 081-089.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[5]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[6]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[7]
Al-Fandi, M.G.; Alshraiedeh, N.H.; Oweis, R.J.; Hayajneh, R.H.; Alhamdan, I.R.; Alabed, R.A.; Al-Rawi, O.F. Direct electrochemical bacterial sensor using ZnO nanorods disposable electrode. Sens. Rev., 2018, 38(3), 326-334.
[http://dx.doi.org/10.1108/SR-06-2017-0117]
[8]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[9]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[10]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng., 2014, C, 44-, 278-284.
[11]
Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med., 2013, 13(10), 1633-1645.
[http://dx.doi.org/10.2174/1566524013666131111130058] [PMID: 24206130]
[12]
Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17), 6679-6686.
[http://dx.doi.org/10.1021/la0202374]
[13]
Chau, Y.F.C.; Chao, C.T.C.; Chiang, H.P.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H. Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res., 2018, 20(7), 190.
[http://dx.doi.org/10.1007/s11051-018-4293-4]
[14]
Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res., 2008, 10(4), 679-689.
[http://dx.doi.org/10.1007/s11051-007-9318-3]
[15]
Yuan-Fong Chou Chau. Chung-Ting Chou Chao, Hung Ji Huang, Usman Anwar, Chee Ming Lim, Nyuk Yoong Voo, Abdul Hanif Mahadi, N.T.R.N. Kumara, Hai-Pang Chiang. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Result Physic., 2019, 15, 102567.
[http://dx.doi.org/10.1016/j.rinp.2019.102567]
[16]
Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int., 2020, 1-29.
[http://dx.doi.org/10.1080/87559129.2020.1737709]
[17]
Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 2007, 90(213902), 2139021-2139023.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[18]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[19]
Yusof, M.H.; Mohamad, R.; Zaidan, U.H.; Abdul Rahman, N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol., 2019, 10(1), 57.
[http://dx.doi.org/10.1186/s40104-019-0368-z] [PMID: 31321032]
[20]
Preeti, Radhakrishnan VS, Mukherjee S, Mukherjee S, Singh SP and Prasad T. ZnO quantum dots: Broad spectrum microbicidal agent against multidrug resistant pathogens E. coli and C. albicans. Front. Nanotechnol., 2020, 2, 576342.
[http://dx.doi.org/10.3389/fnano.2020.576342]
[21]
Lallo da Silva, B.; Abuçafy, M.P.; Berbel Manaia, E.; Oshiro, Junior, J.A.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomedicine, 2019, 14, 9395-9410.
[http://dx.doi.org/10.2147/IJN.S216204] [PMID: 31819439]
[22]
Siddiqi, K.S.; Ur Rahman, A. Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[23]
Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. (Lausanne), 2021, 9, 641481.
[http://dx.doi.org/10.3389/fphy.2021.641481]
[24]
Guo, C.F.; Wang, Y.; Liu, Q. Ultrathin ZnO nanostructures synthesized by thermal oxidation of hexagonal Zn micro/nanostructures. J. Nanosci. Nanotechnol., 2010, 10(11), 7167-7170.
[http://dx.doi.org/10.1166/jnn.2010.2896] [PMID: 21137889]
[25]
Madathil, A.N.P.; Vanaja, K.; Jayaraj, M. Synthesis of ZnO nanoparticles by hydrothermal method. Proceedings of Nanophotonic Materials IV, , p. 66390J.
[26]
Hasnidawani, J.; Azlina, H.; Norita, H.; Bonnia, N.; Ratim, S.; Ali, E. Synthesis of ZnO nanostructures using Sol-Gel method. Procedia Chem., 2016, 19, 211-216.
[http://dx.doi.org/10.1016/j.proche.2016.03.095]
[27]
Palanikumar, L.; Ramasamy, S.N.; Balachandran, C. Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol., 2014, 8(2), 111-117.
[http://dx.doi.org/10.1049/iet-nbt.2012.0008] [PMID: 25014082]
[28]
Zhou, Q.; Chen, W.; Xu, L.; Peng, S. Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties. Sensors (Basel), 2013, 13(5), 6171-6182. a
[http://dx.doi.org/10.3390/s130506171] [PMID: 23666136]
[29]
Wang, D.; Zhao, L.; Ma, H.; Zhang, H.; Guo, L-H. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: The role of superoxide radicals. Environ. Sci. Technol., 2017, 51(17), 10137-10145.
[http://dx.doi.org/10.1021/acs.est.7b00473] [PMID: 28699742]
[30]
Jang, E-S. Recent progress in synthesis of plate-like ZnO and its applications: A review. J. Korean Ceram. Soc., 2017, 54(3), 167-183.
[http://dx.doi.org/10.4191/kcers.2017.54.3.04]
[31]
Saha, A.; Chakraborti, S. Effect of ZnO quantum dots on Escherichia coli global transcription regulator: A molecular investigation. Int. J. Biol. Macromol., 2018, 117, 1280-1288.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.001] [PMID: 29870809]
[32]
Emami-Karvani, Z.; Chehrazi, P. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res., 2011, 5, 1368-1373.
[33]
Song, Z.; Kelf, T.A.; Sanchez, W.H.; Roberts, M.S.; Rička, J.; Frenz, M.; Zvyagin, A.V. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express, 2011, 2(12), 3321-3333.
[http://dx.doi.org/10.1364/BOE.2.003321] [PMID: 22162822]
[34]
Meulenkamp, E.A. Size dependence of the dissolution of ZnO nanoparticles. J. Phys. Chem. B, 1998, 102(40), 7764-7769.
[http://dx.doi.org/10.1021/jp982305u]
[35]
Liang, Y.; Wicker, S.; Wang, X.; Erichsen, E.S.; Fu, F. Organozinc precursor-derived crystalline ZnO nanoparticles: Synthesis, characterization and their spectroscopic properties. Nanomaterials (Basel), 2018, 8(1), E22.
[http://dx.doi.org/10.3390/nano8010022] [PMID: 29300343]
[36]
Willander, M.; Nur, O.; Sadaf, J.; Qadir, M.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Luminescence from Zinc Oxide nanostructures and polymers and their hybrid devices. Materials (Basel), 2010, 3(4), 2643-2667.
[http://dx.doi.org/10.3390/ma3042643]
[37]
Wirunmongkol, T. Simple hydrothermal preparation of zinc oxide powders using thai autoclave unit. In: Energy Procedia; Elsevier Ltd., , 2013; 34, pp. 801-807.
[http://dx.doi.org/10.1016/j.egypro.2013.06.816]
[38]
Forouzani, M.; Mardani, H.R.; Ziari, M.; Malekzadeh, A.; Biparva, P. Comparative study of oxidation of benzyl alcohol: Influence of Cu-doped metal cation on nano ZnO catalytic activity. Chem. Eng. J., 2015, 275, 220-226.
[http://dx.doi.org/10.1016/j.cej.2015.04.032]
[39]
Israr-Qadir, M.; Jamil-Rana, S.; Nur, O.; Willander, M.; Larsson, L.A.; Holtz, P.O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceram. Int., 2014, 40(1), 2435-2439.
[http://dx.doi.org/10.1016/j.ceramint.2013.08.017]
[40]
Wiwanitkit, V. Outbreak of Escherichia coli and diabetes mellitus. Indian J. Endocrinol. Metab., 2011, 15(5)(Suppl. 1), S70-S71.
[http://dx.doi.org/10.4103/2230-8210.83050] [PMID: 21847464]
[41]
Davis, R.J.; Jensen, S.O.; Van Hal, S.; Espedido, B.; Gordon, A.; Farhat, R.; Chan, R. Whole genome sequencing in real-time investigation and management of a Pseudomonas aeruginosa outbreak on a neonatal intensive care unit. Infect. Control Hosp. Epidemiol., 2015, 36, 1058-1064.
[42]
Peron, E.; Zaharia, A.; Zota, L.C.; Severi, E.; Mårdh, O.; Usein, C.; Bălgrădean, M.; Espinosa, L.; Jansa, J.; Scavia, G.; Rafila, A.; Serban, A.; Pistol, A. Early findings in outbreak of haemolytic uraemic syndrome among young children caused by Shiga toxin-producing Escherichia coli, Romania, January to February 2016. Euro Surveill., 2016, 21(11), 30170.
[http://dx.doi.org/10.2807/1560-7917.ES.2016.21.11.30170] [PMID: 27020906]
[43]
Radosavljević, V.; Finke, E.J.; Belojević, G. Analysis of Escherichia coli O104: H4 outbreak in Germany in 2011 using differentiation method for unusual epidemiological events. Cent. Eur. J. Public Health, 2016, 24(1), 9-15.
[http://dx.doi.org/10.21101/cejph.a4255] [PMID: 27070964]
[44]
Tissot, F.; Blanc, D.S.; Basset, P.; Zanetti, G.; Berger, M.M.; Que, Y-A.; Eggimann, P.; Senn, L. New genotyping method discovers sustained nosocomial Pseudomonas aeruginosa outbreak in an intensive care burn unit. J. Hosp. Infect., 2016, 94(1), 2-7.
[http://dx.doi.org/10.1016/j.jhin.2016.05.011] [PMID: 27451039]
[45]
Li, G.; Hu, T.; Pan, G.; Yan, T.; Gao, X.; Zhu, H. Morphology− function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J. Phys. Chem. C, 2008, 112(31), 11859-11864.
[http://dx.doi.org/10.1021/jp8038626]
[46]
Elkady, M.; Shokry Hassan, H.; Hafez, E.E.; Fouad, A. Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorganic chemistry and applications, 2015, 2015.
[http://dx.doi.org/10.1155/2015/536854]
[47]
Harun, N.H.; Mydin, R.B.S.M.N.; Sreekantan, S.; Saharudin, K.A.; Ling, K.Y.; Basiron, N.; Radhi, F.; Seeni, A. Shape-dependent antibacterial activity against staphylococcus aureus of zinc oxide nanoparticles.
[48]
Talebian, N.; Amininezhad, S.M.; Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B, 2013, 120, 66-73.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.01.004] [PMID: 23428888]
[49]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M-A-R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[50]
Torres-Torres, C.; Castañeda, L.; Torres-Martínez, R. Evolution of the optical response in a nanostructured fluorine doped zinc oxide thin film. Semicond. Sci. Technol., 2012, 27(11), 115016.
[http://dx.doi.org/10.1088/0268-1242/27/11/115016]
[51]
Saha, R.K.; Debanath, M.K.; Paul, B.; Medhi, S.; Saikia, E. Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci. Rep., 2020, 10(1), 2598.
[http://dx.doi.org/10.1038/s41598-020-59534-x] [PMID: 32054975]
[52]
Barros, J.; Grenho, L.; Fontenente, S.; Manuel, C.M.; Nunes, O.C.; Melo, L.F.; Monteiro, F.J.; Ferraz, M.P. Staphylococcus aureus and Escherichia coli dual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles. J. Biomed. Mater. Res. A, 2017, 105(2), 491-497.
[http://dx.doi.org/10.1002/jbm.a.35925] [PMID: 27706907]
[53]
Lee, J.; Choi, K.H.; Min, J.; Kim, H.J.; Jee, J.P.; Park, B.J. Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials (Basel), 2017, 7(11), E365.
[http://dx.doi.org/10.3390/nano7110365] [PMID: 29099064]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy