Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

A Molecular Insight into Pyrazole Congeners as Antimicrobial, Anticancer, and Antimalarial Agents

Author(s): Dipanjan Karati, Kakasaheb Ramoo Mahadik, Piyush Trivedi and Dileep Kumar*

Volume 18, Issue 10, 2022

Published on: 14 June, 2022

Page: [1044 - 1059] Pages: 16

DOI: 10.2174/1573406418666220303150640

Price: $65

conference banner
Abstract

Background: Pyrazole is a bioactive heterocyclic congener with numerous biological and pharmacological functionalities. Due to their multiple prospective applications, developing innovative and novel pyrazoles and analogs, revealing revolutionary methods for synthesizing this nucleus, investigating diverse potencies of that heterocycle, and exploring possible pyrazole applications are becoming increasingly relevant.

Objectives: Pyrazole scaffolds have been proven successful as antimicrobial, anticancer, and antimalarial therapeutics against multiple targets like DNA gyrase, topoisomerase IV, Hsp90, and several kinase enzymes. For this variability in the biotic zone, their moiety has gained the attention of many scientists interested in researching chemical and pharmacological profiles.

Results: The review covers pyrazole scaffolds with a variety of biological functions and attempts to connect the structure-activity relationship. Multiple pyrazole analogs have been produced as lead compounds, and their activities have been evaluated.

Conclusion: The combination of pyrazole with other pharmacophores in a molecule might lead to novel potent therapeutic medicines, which could aid in the development of potent lead compounds.

Keywords: Pyrazole, heterocyclic congener, antimicrobial, anticancer, antimalarial activities, topoisomerase IV.

Graphical Abstract

[1]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[2]
Ansari, A.; Ali, A.; Asif, M. Biologically active pyrazole derivatives. New J. Chem., 2017, 41, 16.
[http://dx.doi.org/10.1039/C6NJ03181A]
[3]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[4]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[5]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[6]
El Azab, I.H.; Bakr, R.B.; Elkanzi, N.A.A. Facile one-pot multicomponent synthesis of pyrazolo-thiazole substituted pyridines with poten-tial anti-proliferative activity: Synthesis, in vitro and in silico studies. Molecules, 2021, 26(11), 3103.
[http://dx.doi.org/10.3390/molecules26113103] [PMID: 34067399]
[7]
Gordon, E.M.; Barrett, R.W.; Dower, W.J.; Fodor, S.P.A.; Gordon, M.A. Applications of combinatorial technologies to drug discovery. 1. background and peptide combinatorial libraries. J. Med. Chem., 1994, 37(9), 1385.
[http://dx.doi.org/10.1021/jm00036a001] [PMID: 8182695]
[8]
Ardiansah, B. Recent Reports on pyrazole-based bioactive compounds as candidate for anticancer agents. Asian J. Pharm. Clin. Res., 2017, 10(12), 45.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.22065]
[9]
Srivastava, M.; Singh, J.; Singh, S.B.; Tiwari, K.; Pathak, K.V.; Singh, J. Synthesis of novel fused heterocycle-oxa-aza-phenanthrene and anthracene derivatives via sequential one-pot synthesis in aqueous micellar system. Green Chem., 2012, 14(4), 901.
[http://dx.doi.org/10.1039/c2gc16425f]
[10]
Pai, G.; Chattopadhyay, A.P. N-arylation of nitrogen containing heterocycles with aryl halides using copper nanoparticle catalytic system. Tetrahedron Lett., 2016, 57(29), 3140.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.019]
[11]
Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Brullo, C.; Fossa, P.; Mosti, L.; Menozzi, G.; Carraro, F.; Naldini, A.; Bernini, C.; Manetti, F.; Botta, M. New pyrazolo[3,4-d]pyrimidines endowed with A431 antiproliferative activity and inhibitory properties of Src phosphorylation. Bioorg. Med. Chem. Lett., 2004, 14(10), 2511-2517.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.013] [PMID: 15109642]
[12]
Daidone, G.; Raffa, D.; Maggio, B.; Valeria Raimondi, M.; Plescia, F.; Schillaci, D. Synthesis and antiproliferative activity of tri-azenoindazoles and triazenopyrazoles: A comparative study. Eur. J. Med. Chem., 2004, 39(3), 219-224.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.012] [PMID: 15051169]
[13]
Baraldi, P.G.; Beria, I.; Cozzi, P.; Bianchi, N.; Gambari, R.; Romagnoli, R. Synthesis and growth inhibition activity of alpha-bromoacrylic heterocyclic and benzoheterocyclic derivatives of distamycin A modified on the amidino moiety. Bioorg. Med. Chem., 2003, 11(6), 965-975.
[http://dx.doi.org/10.1016/S0968-0896(02)00533-3] [PMID: 12614881]
[14]
Bekhit, A.A.; Hymete, A.; El-Din, A.; Bekhit, A.; Damtew, A.; Aboul-Enein, H.Y. Pyrazoles as promising scaffold for the synthesis of anti-inflammatory and/or antimicrobial agent: A review. Mini Rev. Med. Chem., 2010, 10(11), 1014-1033.
[http://dx.doi.org/10.2174/1389557511009011014] [PMID: 20540709]
[15]
Bhatt, H.B.; Sharma, S. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab. J. Chem., 2017, 10, S1590-S1596.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.029]
[16]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[17]
Sharma, D.; Bansal, K.K.; Sharma, A.; Pathak, M.; Sharma, P. A brief literature and review of patents on thiazole related derivatives. Curr. Bioact. Compd., 2019, 15(3), 304-315.
[http://dx.doi.org/10.2174/1573407214666180827094725]
[18]
Gomez, L.; Hack, M.D.; Wu, J.; Wiener, J.J.M.; Venkatesan, H.; Santillán, A., Jr; Pippel, D.J.; Mani, N.; Morrow, B.J.; Motley, S.T.; Shaw, K.J.; Wolin, R.; Grice, C.A.; Jones, T.K. Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: Synthesis and preliminary SAR analysis. Bioorg. Med. Chem. Lett., 2007, 17(10), 2723-2727.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.003] [PMID: 17368897]
[19]
Bradbury, B.J.; Pucci, M.J. Recent advances in bacterial topoisomerase inhibitors. Curr. Opin. Pharmacol., 2008, 8(5), 574-581.
[http://dx.doi.org/10.1016/j.coph.2008.04.009] [PMID: 18555745]
[20]
Bondock, S.; Khalifa, W.; Fadda, A.A. Synthesis and antimicrobial activity of some new 4-hetarylpyrazole and furo[2,3-c]pyrazole deriva-tives. Eur. J. Med. Chem., 2011, 46(6), 2555-2561.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.045] [PMID: 21489661]
[21]
Rai, N.S.; Kalluraya, B.; Lingappa, B.; Shenoy, S.; Puranic, V.G. Convenient access to 1,3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. Eur. J. Med. Chem., 2008, 43(8), 1715-1720.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.002] [PMID: 17923171]
[22]
Gouda, M.A.; Berghot, M.A.; Abd El-Ghani, G.E.; Khalil, A.M. Synthesis and antimicrobial activities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzothiophene moiety. Eur. J. Med. Chem., 2010, 45(4), 1338-1345.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.020] [PMID: 20064677]
[23]
Gadakh, A.V.; Pandit, C.; Rindhe, S.S.; Karale, B.K. Synthesis and antimicrobial activity of novel fluorine containing 4-(substituted-2-hydroxybenzoyl)-1H-pyrazoles and pyrazolyl benzo[d]oxazoles. Bioorg. Med. Chem. Lett., 2010, 20(18), 5572-5576.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.019] [PMID: 20724151]
[24]
Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur. J. Med. Chem., 2009, 44(6), 2632-2635.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.029] [PMID: 18995932]
[25]
Thumar, N.J.; Patel, M.P. Synthesis, characterization, and antimicrobial evaluation of carbostyril derivatives of 1H-pyrazole. Saudi Pharm. J., 2011, 19(2), 75-83.
[http://dx.doi.org/10.1016/j.jsps.2011.01.005] [PMID: 23960745]
[26]
Boschi, D.; Guglielmo, S.; Aiello, S.; Morace, G.; Borghi, E.; Fruttero, R. Synthesis and in vitro antimicrobial activities of new (cyano-NNO-azoxy)pyrazole derivatives. Bioorg. Med. Chem. Lett., 2011, 21(11), 3431-3434.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.101] [PMID: 21530247]
[27]
Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Saudi Pharm. J., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[28]
Chandrakantha, B.; Isloor, A.M.; Shetty, P.; Isloor, S.; Malladi, S.; Fun, H.K. Synthesis, characterization and antimicrobial activity of nov-el ethyl 1-(N-substituted)-5-phenyl-1H-pyrazole-4-carboxylate derivatives. Med. Chem. Res., 2012, 21, 2702-2708.
[http://dx.doi.org/10.1007/s00044-011-9796-9]
[29]
Sharma, P.K.; Chandak, N.; Kumar, P.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of some 4-functionalized-pyrazoles as antimicrobial agents. Eur. J. Med. Chem., 2011, 46(4), 1425-1432.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.060] [PMID: 21342734]
[30]
Kanagarajan, V.; Ezhilarasi, M.R.; Gopalakrishnan, M. In vitro microbiological evaluation of 1,1'-(5,5'-(1,4-phenylene)bis(3-aryl-1H-pyrazole-5,1-(4H,5H)-diyl))diethanones, novel bisacetylated pyrazoles. Org. Med. Chem. Lett., 2011, 1(1), 8.
[http://dx.doi.org/10.1186/2191-2858-1-8] [PMID: 22373408]
[31]
National Cancer Institute. 2021. Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
[32]
Karati, D.; Mahadik, K.R.; Trivedi, P.; Kumar, D. Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer. Agents Med. Chem., 2021, 21, 1-7.
[http://dx.doi.org/10.2174/1871520621666210811105344] [PMID: 34382529]
[33]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[34]
World Health Organization. Cancer, Fact sheet N°297 Available from: http://www. who.int/mediacentre/factsheets/fs297/en/ (Accessed on: September 12, 2018).
[35]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine deriva-tives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[36]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[37]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[38]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[39]
Najm, M.A.A.; Oudah, K.H.; Hassan, W.N.M.; Roomi, A.B. An insight into Pyrazolo scaffold as anticancer. Sys. Rev. Pharm., 2020, 11(11), 254-263.
[40]
Whitesell, L.; Bagatell, R.; Falsey, R. The stress response: Implications for the clinical development of hsp90 inhibitors. Curr. Cancer Drug Targets, 2003, 3(5), 349-358.
[http://dx.doi.org/10.2174/1568009033481787] [PMID: 14529386]
[41]
Brough, P.A.; Barril, X.; Beswick, M.; Dymock, B.W.; Drysdale, M.J.; Wright, L.; Grant, K.; Massey, A.; Surgenor, A.; Workman, P. 3-(5-Chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone. Bioorg. Med. Chem. Lett., 2005, 15(23), 5197-5201.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.091] [PMID: 16213716]
[42]
Farag, A.M.; Ali, K.A.; El-Debss, T.M.; Mayhoub, A.S.; Amr, A.G.; Abdel-Hafez, N.A.; Abdulla, M.M. Design, synthesis and structure-activity relationship study of novel pyrazole-based heterocycles as potential antitumor agents. Eur. J. Med. Chem., 2010, 45(12), 5887-5898.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.054] [PMID: 20950898]
[43]
Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[44]
Zhou, B.B.S.; Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat. Rev. Cancer, 2004, 4(3), 216-225.
[http://dx.doi.org/10.1038/nrc1296] [PMID: 14993903]
[45]
Tao, Z.F.; Li, G.; Tong, Y.; Stewart, K.D.; Chen, Z. Structure-based design, synthesis, and biological evaluation of potent and selective macrocyclic checkpoint kinase 1 inhibitors. J. Med. Chem., 2007, 50(7), 1514-1527.
[http://dx.doi.org/10.1021/jm061247v] [PMID: 17352464]
[46]
Newhouse, B.J.; Hansen, J.D.; Grina, J.; Welch, M.; Topalov, G.; Littman, N.; Callejo, M.; Martinson, M.; Galbraith, S.; Laird, E.R.; Brandhuber, B.J.; Vigers, G.; Morales, T.; Woessner, R.; Randolph, N.; Lyssikatos, J.; Olivero, A. Non-oxime pyrazole based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett., 2011, 21(11), 3488-3492.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.038] [PMID: 21536432]
[47]
Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Almassy, R.; Lu, J.; Averill, A.; Yager, K.M.; Chu, S. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett., 2007, 17(15), 4191-4195.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.041] [PMID: 17540560]
[48]
Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Lu, J.; Averill, A.; Almassy, R.; Chu, S. Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a] [1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities. Bioorg. Med. Chem. Lett., 2008, 18(2), 619-623.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.074] [PMID: 18055206]
[49]
Balbi, A.; Anzaldi, M.; Macciò, C.; Aiello, C.; Mazzei, M.; Gangemi, R.; Castagnola, P.; Miele, M.; Rosano, C.; Viale, M. Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur. J. Med. Chem., 2011, 46(11), 5293-5309.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.014] [PMID: 21920636]
[50]
Lv, P.C.; Li, H.Q.; Sun, J.; Zhou, Y.; Zhu, H.L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2010, 18(13), 4606-4614.
[http://dx.doi.org/10.1016/j.bmc.2010.05.034] [PMID: 20627597]
[51]
Lian, S.; Su, H.; Zhao, B.X.; Liu, W.Y.; Zheng, L.W.; Miao, J.Y. Synthesis and discovery of pyrazole-5-carbohydrazide N-glycosides as inducer of autophagy in A549 lung cancer cells. Bioorg. Med. Chem., 2009, 17(20), 7085-7092.
[http://dx.doi.org/10.1016/j.bmc.2009.09.004] [PMID: 19773174]
[52]
Zhang, J.H.; Fan, C.D.; Zhao, B.X.; Shin, D.S.; Dong, W.L.; Xie, Y.S.; Miao, J.Y. Synthesis and preliminary biological evaluation of novel pyrazolo[1,5-a]pyrazin-4(5H)-one derivatives as potential agents against A549 lung cancer cells. Bioorg. Med. Chem., 2008, 16(24), 10165-10171.
[http://dx.doi.org/10.1016/j.bmc.2008.10.066] [PMID: 19013820]
[53]
Xia, Y.; Fan, C.D.; Zhao, B.X.; Zhao, J.; Shin, D.S.; Miao, J.Y. Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents against A549 lung cancer cells. Eur. J. Med. Chem., 2008, 43(11), 2347-2353.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.021] [PMID: 18313806]
[54]
Chou, L.C.; Huang, L.J.; Hsu, M.H.; Fang, M.C.; Yang, J.S.; Zhuang, S.H.; Lin, H.Y.; Lee, F.Y.; Teng, C.M.; Kuo, S.C. Synthesis of 1-benzyl-3-(5-hydroxymethyl-2-furyl)selenolo[3,2-c]pyrazole derivatives as new anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1395-1402.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.039] [PMID: 20097456]
[55]
Nitulescu, G.M.; Draghici, C.; Missir, A.V. Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur. J. Med. Chem., 2010, 45(11), 4914-4919.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.064] [PMID: 20728965]
[56]
Bandgar, B.P.; Totre, J.V.; Gawande, S.S.; Khobragade, C.N.; Warangkar, S.C.; Kadam, P.D. Synthesis of novel 3,5-diaryl pyrazole deriva-tives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg. Med. Chem., 2010, 18(16), 6149-6155.
[http://dx.doi.org/10.1016/j.bmc.2010.06.046] [PMID: 20638287]
[57]
Rao, R.R.; Chaturvedi, V.; Babu, K.S. Synthesis and anticancer effects of pongamol derivatives on mitogen signalling and cell cycle kinas-es. Med. Chem. Res., 2012, 21, 634-641.
[http://dx.doi.org/10.1007/s00044-011-9563-y]
[58]
Quirante, J.; Ruiz, D.; Gonzalez, A.; López, C.; Cascante, M.; Cortés, R.; Messeguer, R.; Calvis, C.; Baldomà, L.; Pascual, A.; Guérardel, Y.; Pradines, B.; Font-Bardía, M.; Calvet, T.; Biot, C. Platinum(II) and palladium(II) complexes with (N,N') and (C,N,N')- ligands derived from pyrazole as anticancer and antimalarial agents: Synthesis, characterization and in vitro activities. J. Inorg. Biochem., 2011, 105(12), 1720-1728.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.09.021] [PMID: 22104300]
[59]
Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C.R.; Alam, M.M.; Zama, M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem., 2018, 149, 139-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.082] [PMID: 29499486]
[60]
Aher, R.B.; Wanare, G.; Kawathekar, N.; Kumar, R.R.; Kaushik, N.K.; Sahal, D.; Chauhan, V.S. Dibenzylideneacetone analogues as novel Plasmodium falciparum inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(10), 3034-3036.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.037] [PMID: 21493068]
[61]
González Cabrera, D.; Douelle, F.; Feng, T.S.; Nchinda, A.T.; Younis, Y.; White, K.L.; Wu, Q.; Ryan, E.; Burrows, J.N.; Waterson, D.; Witty, M.J.; Wittlin, S.; Charman, S.A.; Chibale, K. Novel orally active antimalarial thiazoles. J. Med. Chem., 2011, 54(21), 7713-7719.
[http://dx.doi.org/10.1021/jm201108k] [PMID: 21966980]
[62]
Kortagere, S.; Welsh, W.J.; Morrisey, J.M.; Daly, T.; Ejigiri, I.; Sinnis, P.; Vaidya, A.B.; Bergman, L.W. Structure-based design of novel small-molecule inhibitors of Plasmodium falciparum. J. Chem. Inf. Model., 2010, 50(5), 840-849.
[http://dx.doi.org/10.1021/ci100039k] [PMID: 20426475]
[63]
Wanare, G.; Aher, R.; Kawathekar, N.; Ranjan, R.; Kaushik, N.K.; Sahal, D. Synthesis of novel alpha-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(15), 4675-4678.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.069] [PMID: 20576433]
[64]
Mishra, S.; Karmodiya, K.; Surolia, N.; Surolia, A. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg. Med. Chem., 2008, 16(6), 2894-2902.
[http://dx.doi.org/10.1016/j.bmc.2007.12.054] [PMID: 18194869]
[65]
Cunico, W.; Cechinel, C.A.; Bonacorso, H.G.; Martins, M.A.; Zanatta, N.; de Souza, M.V.; Freitas, I.O.; Soares, R.P.; Krettli, A.U. Antima-larial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues. Bioorg. Med. Chem. Lett., 2006, 16(3), 649-653.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.033] [PMID: 16257205]
[66]
Kumar, S.; Kumar, G.; Kapoor, M. Synthesis and evaluation of substituted pyrazoles: potential antimalarials targeting the Enoyl-ACP reductase of Plasmodium falciparum. Synth. Commun., 2006, 36, 215.
[http://dx.doi.org/10.1080/00397910500334561]
[67]
El-Borai, M.A.; Rizk, H.F.; Beltagy, D.M.; El-Deeb, I.Y. Microwave-assisted synthesis of some new pyrazolopyridines and their antioxi-dant, antitumor and antimicrobial activities. Eur. J. Med. Chem., 2013, 66, 415-422.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.043] [PMID: 23831694]
[68]
Sharifzadeh, B.; Mahmoodi, N.O.; Mamaghani, M.; Tabatabaeian, K.; Chirani, A.S.; Nikokar, I. Facile regioselective synthesis of novel bioactive thiazolyl-pyrazoline derivatives via a three-component reaction and their antimicrobial activity. Bioorg. Med. Chem. Lett., 2013, 23(2), 548-551.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.024] [PMID: 23228471]
[69]
Aggarwal, R.; Masan, E.; Kaushik, P. Synthesis and biological evaluation of 7-trifluoromethylpyrazolo [1, 5-a] pyrimidines as anti-inflammatory and antimicrobial agents. J. Fluor. Chem., 2014, 168, 16.
[http://dx.doi.org/10.1016/j.jfluchem.2014.08.017]
[70]
Kumar, R.; Arora, J.; Ruhil, S.; Phougat, N.; Chhillar, A.K.; Prasad, A.K. Synthesis and antimicrobial studies of pyrimidine pyrazole heter-ocycles. Adv. Chem., 2014, 2014, 329681.
[http://dx.doi.org/10.1155/2014/329681]
[71]
Ibrahim, H.S.; Abou-Seri, S.M.; Tanc, M.; Elaasser, M.M.; Abdel-Aziz, H.A.; Supuran, C.T. Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem., 2015, 103, 583-593.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.021] [PMID: 26408817]
[72]
Aziz, H.; Zahoor, A.F.; Ahmad, S. Pyrazole bearing molecules as bioactive scaffolds: A review. J. Chil. Chem. Soc., 2020, 65(1), 4746-4753.
[http://dx.doi.org/10.4067/S0717-97072020000104746]
[73]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[74]
Saleh, N.M.; El-Gazzar, M.G.; Aly, H.M.; Othman, R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem., 2020, 7, 917.
[http://dx.doi.org/10.3389/fchem.2019.00917] [PMID: 32039146]
[75]
Lin, T.; Li, J.; Liu, L.; Li, Y.; Jiang, H.; Chen, K.; Xu, P.; Luo, C.; Zhou, B. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur. J. Med. Chem., 2021, 215, 113281.
[http://dx.doi.org/10.1016/j.ejmech.2021.113281] [PMID: 33611192]
[76]
Cherukumalli, P.K.R.; Tadiboina, B.R.; Gulipalli, K.C.; Bodige, S.; Badavath, V.N. Design and synthesis of novel urea derivatives of py-rimidine-pyrazoles as anticancer agents. J. Mol. Struct., 2021, 1251, 131937.
[http://dx.doi.org/10.1016/j.molstruc.2021.131937]
[77]
Alsayari, A.; Asiri, Y.I.; Muhsinah, A.B. Anticolon cancer properties of pyrazole derivatives acting through xanthine oxidase inhibition. J. Oncol., 2021, 2021, 1-5.
[http://dx.doi.org/10.1155/2021/5691982]
[78]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.002] [PMID: 29571113]
[79]
AboulWafa. O.M.; Daabees, H.M.G.; Badawi, W.A.; AboulWafaa, O.M. 2-Anilinopyrimidine derivatives: Design, synthesis, in vitro anti-proliferative activity, EGFR and ARO inhibitory activity, cell cycle analysis and molecular docking study. Bioorg. Chem., 2020, 99, 103798.
[http://dx.doi.org/10.1016/j.bioorg.2020.103798] [PMID: 32247112]
[80]
Schenone, S.; Radi, M.; Musumeci, F.; Brullo, C.; Botta, M. Biologically driven synthesis of pyrazolo[3,4-d]pyrimidines as protein kinase inhibitors: an old scaffold as a new tool for medicinal chemistry and chemical biology studies. Chem. Rev., 2014, 114(14), 7189-7238.
[http://dx.doi.org/10.1021/cr400270z] [PMID: 24873489]
[81]
El-Moghazy, S.M.; George, R.F.; Osman, E.E.A.; Elbatrawy, A.A.; Kissova, M.; Colombo, A.; Crespan, E.; Maga, G. Novel pyrazolo[3,4-d]pyrimidines as dual Src-Abl inhibitors active against mutant form of Abl and the leukemia K-562 cell line. Eur. J. Med. Chem., 2016, 123, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.034] [PMID: 27474918]
[82]
Fraser, C.; Dawson, J.C.; Dowling, R.; Houston, D.R.; Weiss, J.T.; Munro, A.F.; Muir, M.; Harrington, L.; Webster, S.P.; Frame, M.C.; Brunton, V.G.; Patton, E.E.; Carragher, N.O.; Unciti-Broceta, A. Rapid discovery and structure-activity relationships of pyrazolopyrim-idines that potently suppress breast cancer cell growth via SRC kinase inhibition with exceptional selectivity over ABL kinase. J. Med. Chem., 2016, 59(10), 4697-4710.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00065] [PMID: 27115835]
[83]
Gaber, A.A.; Bayoumi, A.H.; El-Morsy, A.M.; Sherbiny, F.F.; Mehany, A.B.M.; Eissa, I.H. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg. Chem., 2018, 80, 375-395.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.017] [PMID: 29986185]
[84]
Marinescu, M. Synthesis of antimicrobial benzimidazole-pyrazole compounds and their biological activities. Antibiotics (Basel), 2021, 10(8), 1002.
[http://dx.doi.org/10.3390/antibiotics10081002] [PMID: 34439052]
[85]
Alnufaie, R. KC, H. R.; Alsup, N.; Whitt, J.; Chambers, S. A.; Gilmore, D.; Alam, M.A. Synthesis and antimicrobial studies of coumarin-substituted pyrazole derivatives as potent anti-staphylococcus aureus agents. Molecules, 2020, 25, 2758.
[http://dx.doi.org/10.3390/molecules25122758]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy