Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Supported Ionic Liquids and their Applications in Organic Transformations

Author(s): Ambika and Pradeep Pratap Singh*

Volume 19, Issue 8, 2022

Published on: 13 May, 2022

Page: [905 - 922] Pages: 18

DOI: 10.2174/1570179419666220303110933

Price: $65

Abstract

Ionic liquids are one of the greener solvents which have emerged as a replacement for toxic and harmful volatile organic solvents. In the past decade, the concept of supported ionic liquids (SILs) has attracted the attention of the scientific community due to their unique chemical and physical properties. SILs can be synthesized by coating a thin layer of IL film onto/into the surface of solid support. They can be classified as supported IL phase catalyst, solid catalyst with IL and supported IL catalysis. SILs demonstrated the combined properties of both heterogeneous and homogeneous catalysts. These ILs offer several advantages such as enhanced stability, reusability, recoverability, easy product isolation, absence of IL leaching, as compared to conventional solvents. In this review, various aspects of SILs, classification, method of preparation and their applications in various organic transformations such as cross-coupling reactions, oxidation, reduction, synthesis of different heterocyclic compounds, biocatalytic reactions etc., have been discussed.

Keywords: Supported ionic liquids, organic transformations, green catalyst, cross-coupling reaction, designer solvent, pollutants.

Graphical Abstract

[1]
Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: Applications in catalysis. Catal. Today, 2002, 74(1-2), 157-189.
[http://dx.doi.org/10.1016/S0920-5861(01)00541-7]
[2]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. , 2001, (23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[3]
Hurley, F.H.; Wier, T.P. The electrodeposition of aluminum from nonaqueous solutions at room temperature. J. Electrochem. Soc., 1951, 98(5), 207.
[http://dx.doi.org/10.1149/1.2778133]
[4]
Fuller, J.; Carlin, R.T.; De Long, H.C.; Haworth, D.J. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: Model for room temperature molten salts. J. Chem. Soc. Chem. Commun., 1994, (3), 299-300.
[http://dx.doi.org/10.1039/c39940000299]
[5]
Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 2020, 297, 112038.
[http://dx.doi.org/10.1016/j.molliq.2019.112038]
[6]
Freemantle, M. Designer solvents, Ionic liquids may boost clean technology development. Chem. Eng. News, 1998, 76(13), 32-37.
[http://dx.doi.org/10.1021/cen-v076n013.p032]
[7]
Hagiwara, R.; Ito, Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluor. Chem., 2000, 105(2), 221-227.
[http://dx.doi.org/10.1016/S0022-1139(99)00267-5]
[8]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[9]
Sowmiah, S.; Cheng, C.I.; Chu, Y.H. Ionic liquids for green organic synthesis. Curr. Org. Synth., 2012, 9, 74-95.
[http://dx.doi.org/10.2174/157017912798889116]
[10]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen., 2010, 373(1-2), 1-56.
[http://dx.doi.org/10.1016/j.apcata.2009.10.008]
[11]
Elgharbawy, A.A.; Riyadi, F.A.; Alam, M.; Moniruzzaman, M.Z.; Moniruzzaman, M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J. Mol. Liq., 2018, 251, 150-166.
[http://dx.doi.org/10.1016/j.molliq.2017.12.050]
[12]
Singh, P.P.; Chauhan, S.M.S. Chemoselective epoxidation of electron rich and electron deficient olefins catalyzed by meso-tetraarylporphyrin iron(III)chlorides in imidazolium ionic liquids. New J. Chem., 2012, 36(3), 650-655.
[http://dx.doi.org/10.1039/c1nj20739c]
[13]
Singh, P.P. Ambika; Chauhan, S.M. Synthesis of 3,4-dihydropyrimidin-2(1H)ones derivatives of acid sensitive aldehydes catalyzed by lanthanum nitrate in ionic liquids. J. Mat. Nano Sci., 2016, 3(1), 14-16.
[14]
Ambika; Singh, P.P.; Chauhan, S.M. Chemoselective esterification of phenolic acids in the presence of sodium bicarbonate in ionic liq-uids. Synth. Commun., 2008, 38(6), 928-936.
[http://dx.doi.org/10.1080/00397910701845480]
[15]
Ambika; Singh, P.P.; Chand, S.; Gautam, D.K.; Kumar, R.; Nagpal, K.; Verma, R.; Mittal, M.; Kaushik, N.; Kaur, S.; Piplani, N.; Mukherjee, S.; Gupta, S.; Rai, R. Interaction studies of carbon monoxide and iron porphyrins in ionic liquids. Interact. Stud., 2016, 2(1), 13-19.
[16]
Ambika; Singh, P.P. Carbon nanocomposites: The potential heterogeneous catalysts for organic transformations. Curr. Org. Chem., 2021, 24, 332-350.
[17]
Van Doorslaer, C.; Wahlen, J.; Mertens, P.; Binnemans, K.; De Vos, D. Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Trans., 2010, 39(36), 8377-8390.
[http://dx.doi.org/10.1039/c001285h] [PMID: 20419187]
[18]
Fehrmann, R.; Riisager, A.; Haumann, M., Eds.; Supported Ionic Liquids: Fundamentals and Applications; Wiley VCH Verlag: Weinheim, Germany, 2014.
[http://dx.doi.org/10.1002/9783527654789]
[19]
Bartlewicz, O.; Dabek, I.; Szymanska, A.; Maciejewski, H. Heterogeneous catalysis with the participation of ionic liquids. Catalysts, 2020, 10(11), 1227.
[http://dx.doi.org/10.3390/catal10111227]
[20]
Li, H.; Bhadury, P.S.; Song, B.; Yang, S. Immobilized functional ionic liquids: Efficient, green, and reusable catalysts. RSC Advances, 2012, 2(33), 12525-12551.
[http://dx.doi.org/10.1039/c2ra21310a]
[21]
Selvam, T.; Machoke, A.; Schwieger, W. Supported ionic liquids on non-porous and porous inorganic materials - A topical review. Appl. Catal. A Gen., 2012, 445-446, 92-101.
[http://dx.doi.org/10.1016/j.apcata.2012.08.007]
[22]
Li, Z.L.; Lin, G.; Jiang, Z.Z.; Ji, C.; Min, Z.S. The preparation of Supported Ionic Liquids (SILs) and their application in rare metals sepa-ration. Sci. China Chem., 2012, 55(8), 1479-1487.
[http://dx.doi.org/10.1007/s11426-012-4632-8]
[23]
Zhang, G.R.; Etzold, B.J.M. Emerging applications of solid catalysts with ionic liquid layer concept in electrocatalysis. Adv. Funct. Mater., 2021, 31(28), 202010977.
[http://dx.doi.org/10.1002/adfm.202010977]
[24]
Kernchen, U.; Etzold, B.; Korth, W.; Jess, A. Solid Catalyst with Ionic Liquid Layer (SCILL) - A new concept to improve selectivity illus-trated by hydrogenation of cyclooctadiene. Chem. Eng. Technol., 2007, 30(8), 985-994.
[http://dx.doi.org/10.1002/ceat.200700050]
[25]
Virtanen, P.; Salmi, T.O.; Mikkola, J.P. Supported Ionic Liquid Catalysts (SILCA) for preparation of organic chemicals. Top. Catal., 2010, 53(15-18), 1096-1103.
[http://dx.doi.org/10.1007/s11244-010-9540-6]
[26]
Riisager, A.; Fehrmann, R.; Haumann, M. Supported ionic liquids: Versatile reaction and separation media. Top. Catal., 2006, 40(1-4), 91-102.
[http://dx.doi.org/10.1007/s11244-006-0111-9]
[27]
Mehnert, C.P.; Cook, R.A.; Dispenziere, N.C.; Afeworki, M. Supported ionic liquid catalysis--a new concept for homogeneous hydro-formylation catalysis. J. Am. Chem. Soc., 2002, 124(44), 12932-12933.
[http://dx.doi.org/10.1021/ja0279242] [PMID: 12405804]
[28]
Valkenberg, M.H.; deCastro, C.; Olderich, W.F.H. Immobilisation of ionic liquids on solid supports. Green Chem., 2002, 4(2), 88-93.
[http://dx.doi.org/10.1039/b107946h]
[29]
Wolfson, A.; Vankelecom, I.F.J.; Jacobs, P.A. Co-immobilization of transition-metal complexes and ionic liquids in a polymeric support for liquid-phase hydrogenations. Tetrahedron Lett., 2003, 44(6), 1195-1198.
[http://dx.doi.org/10.1016/S0040-4039(02)02843-5]
[30]
Safavi, A.; Maleki, N.; Iranpoor, N.; Firouzabadi, H.; Banazadeh, A.R.; Azadi, R.; Sedaghati, F. Highly efficient and stable palladium nano-catalysts supported on an ionic liquid-modified xerogel. Chem. Commun. , 2008, (46), 6155-6157.
[http://dx.doi.org/10.1039/b814559h] [PMID: 19082104]
[31]
Neouze, M.A.; Bideau, J.L.; Gaveau, P.; Bellayer, S.; Vioux, A. Ionogels, New materials arising from the confinement of ionic liquids with-in silica-derived networks. Chem. Mater., 2006, 18(17), 3931-3936.
[http://dx.doi.org/10.1021/cm060656c]
[32]
Machadoa, B.F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol., 2012, 2(1), 54-75.
[http://dx.doi.org/10.1039/C1CY00361E]
[33]
Meijere, A.; Diedrich, F. Metal-catalyzed Cross-Coupling Reactions; Wiley-VCH, Verlag: Weinheim, Germany, 2004.
[http://dx.doi.org/10.1002/9783527619535]
[34]
Ganapathy, D.; Sekar, G. Palladium nanoparticles stabilized by metal-carbon covalent bond: An efficient and reusable nanocatalyst in cross-coupling reactions. Catal. Commun., 2013, 39, 50-54.
[http://dx.doi.org/10.1016/j.catcom.2013.04.028]
[35]
Jagtap, S. Heck reaction-state of the art. Catalysts, 2017, 7(9), 1-53.
[http://dx.doi.org/10.3390/catal7090267]
[36]
Martinez, A.V.; Mayoral, J.A.; Garcia, J.I. Pd nanoparticles immobilized in [bmim][PF6] supported on laponite clay as highly recyclable catalysts for the Mizoroki-Heck reaction. Appl. Catal. A Gen., 2014, 472, 21-28.
[http://dx.doi.org/10.1016/j.apcata.2013.12.010]
[37]
Pashaei, M.; Mehdipour, E.; Azaroon, M. Engineered mesoporous ionic-modified γ-Fe2O3@hydroxyapatite decorated with palladium na-noparticles and its catalytic properties in water. Appl. Organomet. Chem., 2019, 33(1), e4622.
[http://dx.doi.org/10.1002/aoc.4622]
[38]
Volland, S.; Gruit, M.; Regnier, T.; Viau, L.; Lavastre, O.; Vioux, A. Encapsulation of Pd(OAc)2 catalyst in an ionic liquid phase confined in silica gels. Application to Heck-Mizoroki reaction. New J. Chem., 2009, 33(10), 2015-2021.
[http://dx.doi.org/10.1039/b902909e]
[39]
Vucetic, N.; Virtanen, P.; Nuri, A.; Mattsson, I.; Aho, A.; Mikkola, J.P.; Salmi, T. Preparation and characterization of a new bis-layered Supported Ionic Liquid Catalyst (SILCA) with an unprecedented activity in the Heck reaction. J. Catal., 2019, 371, 35-46.
[http://dx.doi.org/10.1016/j.jcat.2019.01.029]
[40]
Safari, J.; Zarnegar, Z. Ni ion-containing immobilized ionic liquid on magnetic Fe3O4 nanoparticles: An effective catalyst for the heck reac-tion. C. R. Chim., 2013, 16(9), 821-828.
[http://dx.doi.org/10.1016/j.crci.2013.03.018]
[41]
Liu, W.; Wang, D.; Duan, Y.; Zhang, Y.; Bian, F. Palladium supported on poly (ionic liquid) entrapped magnetic nanoparticles as a highly efficient and reusable catalyst for the solvent-free Heck reaction. Tetrahedron Lett., 2015, 56(14), 1784-1789.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.047]
[42]
Liu, X.; Zhao, X.; Lu, M. Pd nanoparticles immobilized on Fe3O4 @ Poly(ethylene glycol) bridged amine functionalized imidazolium ionic liquid: A magnetically separable catalyst for Heck in water. Catal. Lett., 2015, 145(8), 1549-1556.
[http://dx.doi.org/10.1007/s10562-015-1534-3]
[43]
Bahadorikhalili, S.; Mamani, L.; Mahdavi, H.; Shafiee, A. Palladium catalyst supported on Pegylated imidazolium based phosphinite ionic liquid-modified magnetic silica core–shell nanoparticles: A worthy and highly water-dispersible catalyst for organic reactions in water. RSC Advances, 2015, 5(87), 71297-71305.
[http://dx.doi.org/10.1039/C5RA12747E]
[44]
Rafiee, E.; Kahrizi, M. Mechanistic investigation of Heck reaction catalyzed by new catalytic system composed of Fe3O4@OA-Pd and ionic liquids as co-catalyst. J. Mol. Liq., 2016, 218, 625-631.
[http://dx.doi.org/10.1016/j.molliq.2016.02.055]
[45]
Sadjadi, S.; Heravi, M.M.; Raja, M. Composite of ionic liquid decorated cyclodextrin nanosponge, graphene oxide and chitosan: A novel catalyst support. Int. J. Biol. Macromol., 2019, 122, 228-237.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.160] [PMID: 30393138]
[46]
Burguete, M.I.; Garcia-Verdugo, E.; Garcia-Villar, I.; Gelat, F.; Licence, P.; Luis, S.V.; Sans, V. Pd catalysts immobilized onto gel-Supported Ionic Liquid-Like Phases (g-SILLPs): A remarkable effect of the nature of the support. J. Catal., 2010, 269(1), 150-160.
[http://dx.doi.org/10.1016/j.jcat.2009.11.002]
[47]
Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles. J. Organomet. Chem., 1999, 576(1-2), 147-168.
[http://dx.doi.org/10.1016/S0022-328X(98)01055-9]
[48]
Kusumawati, E.N.; Sasaki, T. Highly active and stable supported Pd catalysts on ionic liquid-functionalized SBA-15 for Suzuki Miyaura cross-coupling and transfer hydrogenation reactions. Green Ener. Env., 2019, 4(2), 180-189.
[http://dx.doi.org/10.1016/j.gee.2019.02.003]
[49]
Kargar, S.; Elhamifar, D.; Elhamifar, D. Ionic liquid-containing polyethylene supported palladium: A green, highly efficient and stable cata-lyst for Suzuki reaction. Mater. Today Chem., 2020, 17, 100318.
[http://dx.doi.org/10.1016/j.mtchem.2020.100318]
[50]
Borkowski, T.; Dobosz, J.; Tylus, W.; Trzeciak, A.M. Palladium supported on Al2O3-CeO2 modified with ionic liquids as a highly active catalyst of the Suzuki-Miyaura cross-coupling. J. Catal., 2014, 319, 87-94.
[http://dx.doi.org/10.1016/j.jcat.2014.08.007]
[51]
Veisi, H.; Pirhayati, M.; Kakanejadifard, A. Immobilization of palladium nanoparticles on ionic liquid-triethyl ammonium chloride func-tionalized magnetic nanoparticles: As a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Tetrahedron Lett., 2017, 58(45), 4269-4276.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.078]
[52]
Arkhipova, D.; Ermolaev, V.; Miluykov, V.; Gaynanova, G.; Zakharova, L.; Wagner, G.; Oeckler, O.; Hey-Hawkins, E. Effect of phospho-nium ionic liquid/Pd ratio on the catalytic activity of palladium nanoparticles in Suzuki cross-coupling reaction. J. Organomet. Chem., 2020, 923, 121454.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121454]
[53]
More, S.; Jadhav, S.; Salunkhe, R.; Kumbhar, A. Palladium supported ionic liquid phase catalyst (Pd@SILP-PS) for room temperature Su-zuki-Miyaura cross-coupling reaction. Mol. Cat., 2017, 442, 126-132.
[http://dx.doi.org/10.1016/j.mcat.2017.08.023]
[54]
Boruah, P.R.; Gehlot, P.S.; Kumar, A.; Sarma, D. Palladium immobilized on the surface of MMT K 10 with the aid of [BMIM][BF4]: An efficient catalyst for Suzuki-Miyaura cross-coupling reactions. Mol. Cat., 2018, 461, 54-59.
[http://dx.doi.org/10.1016/j.mcat.2018.10.004]
[55]
Gu, Y.; Favier, I.; Pradel, C.; Gin, D.L.; Lahitte, J.F.; Noble, R.D.; Gomez, M.; Remigy, J.C. High catalytic efficiency of palladium nanopar-ticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction. J. Membr. Sci., 2015, 492, 331-339.
[http://dx.doi.org/10.1016/j.memsci.2015.05.051]
[56]
Doherty, S.; Knight, J.G.; Backhouse, T.; Abood, E.; Al-Shaikh, H.; Clemmet, A.R.; Ellison, J.R.; Bourne, R.A.; Chamberlain, T.W.; Stones, R.; Warren, N.J.; Fairlamb, I.J.; Lovelock, K.R. Heteroatom donor-decorated polymer-immobilized ionic liquid stabilized palladium nano-particles: Efficient catalysts for room-temperature Suzuki-Miyaura cross-coupling in aqueous media. Adv. Synth. Catal., 2018, 360(19), 3716-3731.
[http://dx.doi.org/10.1002/adsc.201800561]
[57]
Massaro, M.; Riela, S.; Lazzarab, G.; Gruttadauriaa, M.; Miliotob, S.; Noto, R. Green conditions for the Suzuki reaction using microwave irradiation and a new HNT Supported Ionic Liquid-Like phase (HNT-SILLP) catalyst. Appl. Organomet. Chem., 2014, 28(4), 234-238.
[http://dx.doi.org/10.1002/aoc.3114]
[58]
Beletskaya, I.P.; Cheprakov, A.V. The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313]
[59]
Shaker, M.; Elhamifar, D. Pd-containing IL-based ordered nanostructured organosilica: A powerful and recoverable catalyst for So-nogashira reaction. Tetrahedron Lett., 2020, 61(47), 152481.
[http://dx.doi.org/10.1016/j.tetlet.2020.152481]
[60]
Nasseri, M.A.; Rezazadeh, Z.; Kazemnejadi, M.; Allahresani, A. Magnetic Cu-Schiff base complex with an ionic tail as a recyclable bifunc-tional catalyst for base/Pd-free Sonogashira coupling reaction. J. Iran. Chem. Soc., 2019, 16(12), 2693-2705.
[http://dx.doi.org/10.1007/s13738-019-01732-0]
[61]
Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev., 2012, 41(10), 3790-3807.
[http://dx.doi.org/10.1039/c2cs15356d] [PMID: 22422343]
[62]
Moghaddam, F.M.; Ayati, S.E.; Hosseini, S.H.; Pourjavadi, A. Gold immobilized onto poly(ionic liquid) functionalized magnetic nanoparti-cles: A robust magnetically recoverable catalyst for the synthesis of propargylamine in water. RSC Advances, 2015, 5(43), 34502-34510.
[http://dx.doi.org/10.1039/C5RA02974K]
[63]
Soengas, R.; Navarro, Y.; Iglesias, M.J.; López-Ortiz, F. Immobilized gold nanoparticles prepared from gold(III)-containing ionic liquids on silica: Application to the sustainable synthesis of propargylamines. Molecules, 2018, 23(11), 2975.
[http://dx.doi.org/10.3390/molecules23112975] [PMID: 30441851]
[64]
Bobadilla, L.F.; Blasco, T.; Odriozola, J.A. Gold(III) stabilized over ionic liquids grafted on MCM-41 for highly efficient three-component coupling reactions. Phys. Chem. Chem. Phys., 2013, 15(39), 16927-16934.
[http://dx.doi.org/10.1039/c3cp52924j] [PMID: 24002208]
[65]
Gupta, J. An efficient synthesis of propargylamines via A3 coupling catalyzed by silica-grafted imidazolium-based ionic liquids. J. Chem. Pharm. Res., 2018, 10(6), 141-147.
[66]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Green bio‐based synthesis of Fe2O3@SiO2‐IL/Ag hollow spheres and their catalytic utility for ultrasonic‐assisted synthesis of propargylamines and benzo[b]furans. Appl. Organomet. Chem., 2018, 32(2), e4029.
[http://dx.doi.org/10.1002/aoc.4029]
[67]
Dobras, G.; Kasperczyk, K.; Jurczyk, S.; Orlinska, B. N-Hydroxyphthalimide supported on silica coated with ionic liquids containing CoCl2 (SCILLs) as new catalytic system for solvent-free ethylbenzene oxidation. Catalysts, 2020, 10(252), 1-13.
[http://dx.doi.org/10.3390/catal10020252]
[68]
Yari, O.; Elhamifar, D.; Shaker, M. Self-assembled ionic liquid based organosilica-titania: A novel and efficient catalyst for green epoxida-tion of alkenes. J. Organomet. Chem., 2021, 940(15), 121787.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121787]
[69]
Masteri-Farahani, M.; Modarres, M. Clicked graphene oxide as new support for the immobilization of peroxophosphotungstate: Efficient catalysts for the epoxidation of olefins. Colloids Surf. A Physicochem. Eng. Asp., 2017, 529, 886-892.
[http://dx.doi.org/10.1016/j.colsurfa.2017.06.073]
[70]
Hajian, R.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Khosropour, R.A. [PZnMo2W9O39]5- immobilized on ionic liquid-modified silica as a heterogeneous catalyst for epoxidation of olefins with hydrogen peroxide. C. R. Chim., 2012, 15(11-12), 975-979.
[http://dx.doi.org/10.1016/j.crci.2012.06.002]
[71]
Yuan, C.; Huang, Z.; Chen, J. Basic ionic liquid supported on mesoporous SBA-15: An efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal. Commun., 2012, 24, 56-60.
[http://dx.doi.org/10.1016/j.catcom.2012.03.003]
[72]
Bozek, B.; Neves, P.; Lasocha, W.; Valente, A.A. Ionic ammonium and anilinium based polymolybdate hybrid catalysts for olefin epoxida-tion. Appl. Catal. A Gen., 2018, 564, 13-25.
[http://dx.doi.org/10.1016/j.apcata.2018.07.001]
[73]
Yangjin, W.; Yiwei, Z.; Xushuai, L.; Chunfeng, M.; Yuming, Z.; Wenting, W.; Hui, Z.; Ziwei, H. Synthesis of polymeric ionic liquids mir-crospheres/Pd nanoparticles/CeO2 core-shell structure catalyst for catalytic oxidation of benzyl alcohol. J. Taiwan Inst. Chem. Eng., 2020, 107, 161-170.
[http://dx.doi.org/10.1016/j.jtice.2019.11.006]
[74]
Kashyap, N.; Das, S.; Borah, R. Solvent responsive self-separation behaviour of Bronsted acidic ionic liquid-polyoxometalate hybrid cata-lysts on H2O2 mediated oxidation of alcohols. Polyhedron, 2021, 196, 114993.
[http://dx.doi.org/10.1016/j.poly.2020.114993]
[75]
Zhang, W.H.; Shen, J.J.; Wu, J.; Liang, X.Y.; Xu, J.; Liu, P.; Xue, B.; Li, Y.X. An amphiphilic graphene oxide-immobilized polyoxomet-alate-based ionic liquid: A highly efficient triphase transfer catalyst for the selective oxidation of alcohols with aqueous H2O2. Mol. Cat., 2017, 443, 262-269.
[http://dx.doi.org/10.1016/j.mcat.2017.10.018]
[76]
Zheng, W.; Wu, M.; Yang, C.; Chen, Y.; Tan, R.; Yin, D. Alcohols selective oxidation with H2O2 catalyzed by robust heteropolyanions intercalated in ionic liquid-functionalized graphene oxide. Mater. Chem. Phys., 2020, 256, 123681.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123681]
[77]
Chrobok, A.; Baj, S.; Pudło, W.; Jarzebski, A. Supported ionic liquid phase catalysis for aerobic oxidation of primary alcohols. Appl. Catal. A Gen., 2010, 389(1-2), 179-185.
[http://dx.doi.org/10.1016/j.apcata.2010.09.022]
[78]
Hosseinzadeh-Khanmiri, R.; Kamel, Y.; Keshvari, Z.; Mobaraki, A.; Shahverdizadeh, G.H.; Vessally, E.; Babazadeh, M. Synthesis and characterization of a Ni nanoparticle stabilized on ionic liquid-functionalized magnetic silica nanoparticles for tandem oxidative reaction of primary alcohols. Appl. Organomet. Chem., 2018, 32(9), e4452.
[http://dx.doi.org/10.1002/aoc.4452]
[79]
Zohreh, N.; Tavakolizadeh, M.; Hosseini, S.H.; Pourjavadi, A.; Bennett, C. Tungstate-loaded triazine-based magnetic poly(Bis-imidazolium ionic liquid): An effective bi-functional catalyst for tandem selective oxidation/Knoevenagel condensation in water. Polymer (Guildf.), 2017, 112, 342-350.
[http://dx.doi.org/10.1016/j.polymer.2017.02.028]
[80]
Norouzi, M.; Elhamifar, D. Ionic liquid-modified magnetic mesoporous silica supported tungstate: A powerful and magnetically recovera-ble nanocatalyst. Compos., Part B Eng., 2019, 176, 107308.
[http://dx.doi.org/10.1016/j.compositesb.2019.107308]
[81]
Vessally, E.; Ghasemisarabbadeih, M.; Ekhteyari, Z.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E.; Ejlali, L. Platinum nanoparticles supported on polymeric ionic liquid functionalized magnetic silica: Effective and reusable heterogeneous catalysts for the selective oxida-tion of alcohols in water. RSC Advances, 2016, 6(108), 106769-106777.
[http://dx.doi.org/10.1039/C6RA16851E]
[82]
Rajabi, F.; Nafe, M.; Bardajee, G.R.; Luque, R. Tungstate ion (WO42-) confined in hydrophilic/hydrophobic nanomaterials functionalized bronsted acidic ionic liquid as highly active catalyst in the selective aerobic oxidation of alcohols in water. Mol. Cat., 2020, 497, 111202.
[http://dx.doi.org/10.1016/j.mcat.2020.111202]
[83]
Azizi, K.; Esfandiary, N.; Karimi, M.; Yazdani, E.; Heydari, A. Imidazolium chloride immobilized on copper acetylacetonate-grafted mag-netic chitosan as a new metal/ionic liquid bifunctional catalyst for selective oxidation of benzyl alcohols in water. RSC Advances, 2016, 6(92), 89313-89321.
[http://dx.doi.org/10.1039/C6RA18100G]
[84]
Shaker, M.; Elhamifar, D. Magnetic methylene-based mesoporous organosilica composite-supported IL/Pd: A powerful and highly recov-erable catalyst for oxidative coupling of phenols and naphthols. Mater. Today Chem., 2020, 18, 100377.
[http://dx.doi.org/10.1016/j.mtchem.2020.100377]
[85]
Sadjadi, S.; Malmir, M.; Heravi, M.M. A novel magnetic heterogeneous catalyst based on decoration of halloysite with ionic liquid-containing dendrimer. Appl. Clay Sci., 2019, 168, 184-195.
[http://dx.doi.org/10.1016/j.clay.2018.11.012]
[86]
Varyani, M.; Khatri, P.K.; Jain, S.L. Amino acid derived ionic liquid supported iron Schiff base catalyzed greener approach for the aerobic oxidation of amines to nitriles. Tetrahedron Lett., 2016, 57(7), 723-727.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.082]
[87]
Xu, H.; Zhang, J.; Zhang, D.; Guo, Y.; Wu, F. Catalytic oxidation desulfurization of silica-gel-supported ionic liquid [Bmim]CoCl3 coupling oxone. Fuel, 2021, 288, 119655.
[http://dx.doi.org/10.1016/j.fuel.2020.119655]
[88]
Ding, W.; Zhu, W.; Xiong, J.; Yang, L.; Wei, A.; Zhang, M.; Li, H. Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chem. Eng. J., 2015, 266, 213-221.
[http://dx.doi.org/10.1016/j.cej.2014.12.040]
[89]
Alizadeh, A.; Fakhari, M.; Khodeai, M.M.; Abdi, G.; Amirian, J. Oxidative desulfurization of model oil in an organic biphasic system cata-lysed by Fe3O4@SiO2-ionic liquid. RSC Advances, 2017, 7(56), 34972-34983.
[http://dx.doi.org/10.1039/C7RA04957A]
[90]
Kermani, A.M.; Mahmoodi, V.; Ghahramaninezhad, M.; Ahmadpour, A. Highly efficient and green catalyst of {Mo132} nanoballs sup-ported on ionic liquid-functionalized magnetic silica nanoparticles for oxidative desulfurization of dibenzothiophene. Separ. Purif. Tech., 2021, 258(1), 117960.
[http://dx.doi.org/10.1016/j.seppur.2020.117960]
[91]
Xun, S.; Jiang, W.; Guo, T.; He, M.; Ma, R.; Zhang, M.; Zhu, W.; Li, H. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. J. Colloid Interface Sci., 2019, 534, 239-247.
[http://dx.doi.org/10.1016/j.jcis.2018.08.115] [PMID: 30227380]
[92]
Jiang, W.; Jia, H.; Fan, X.; Dong, L.; Guo, T.; Zhu, L.; Zhu, W.; Li, H. Ionic liquid immobilized on magnetic mesoporous microspheres with rough surface: Application as recyclable amphiphilic catalysts for oxidative desulfurization. Appl. Surf. Sci., 2019, 484, 1027-1034.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.341]
[93]
Hosseini, S.H.; Tavakolizadeh, M.; Zohreh, N.; Soleyman, R. Green route for selective gram-scale oxidation of sulfides using tung-state/triazine-based ionic liquid immobilized on magnetic nanoparticles as a phase-transfer heterogeneous catalyst. Appl. Organomet. Chem., 2018, 32(1), e3953.
[http://dx.doi.org/10.1002/aoc.3953]
[94]
Nassor, E.C.O.; Tristao, J.C.; Oliveira, H.S.; Moura, F.C.C.; dos Santos, E.N.; Lago, R.M.; Araujo, M.H. Magnetic carbon nanofiber net-works as support for ionic liquid based catalyst. Catal. Lett., 2015, 145(2), 505-510.
[http://dx.doi.org/10.1007/s10562-014-1374-6]
[95]
Salminen, E.; Virtanen, P.; Mikkola, J.P. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal. Front Chem., 2014, 2, 3.
[http://dx.doi.org/10.3389/fchem.2014.00003] [PMID: 24790972]
[96]
Mehnert, C.P.; Mozeleski, E.J.; Cook, R.A. Supported ionic liquid catalysis investigated for hydrogenation reactions. Chem. Commun. , 2002, (24), 3010-3011.
[http://dx.doi.org/10.1039/b210214e] [PMID: 12536791]
[97]
Arumugam, V.; Sriram, P.; Yen, T.J.; Redhi, G.G.; Gengan, R.M. Nano-material as an excellent catalyst for reducing a series of nitroan-ilines and dyes: Triphosphonated ionic liquid-CuFe2O4-modified boron nitride. Appl. Catal. B, 2018, 222, 99-114.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.059]
[98]
Moghaddam, F.M.; Ayati, S.E.; Firouzi, H.R.; Hosseini, S.H.; Pourjavadi, A. Gold nanoparticles anchored onto the magnetic poly(ionic‐liquid) polymer as robust and recoverable catalyst for reduction of nitroarenes. Appl. Org. Chem., 2017, 31(12), e3825.
[http://dx.doi.org/10.1002/aoc.3825]
[99]
Nasab, M.J.; Kiasat, A.R. Multifunctional Fe3O4@nSiO2@mSiO2/Pr-Imi-NH2·Ag core-shell microspheres as highly efficient catalysts in the aqueous reduction of nitroarenes: Improved catalytic activity and facile catalyst recovery. RSC Advances, 2016, 6(48), 41871-41877.
[http://dx.doi.org/10.1039/C6RA00120C]
[100]
Fernandez, G.; Sort, J.; Pleixats, R. Nickel Nanoparticles stabilized by trisimidazolium salts: Synthesis, characterization and application as recyclable catalysts for the reduction of nitroarenes. ChemistrySelect, 2018, 3(30), 8597-8603.
[http://dx.doi.org/10.1002/slct.201801839]
[101]
Pashaei, M.; Mehdipour, E. Silver nanoparticles supported on ionic-tagged magnetic hydroxyapatite as a highly efficient and reusable nanocatalyst for hydrogenation of nitroarenes in water. Appl. Organomet. Chem., 2018, 32(4), e4226.
[http://dx.doi.org/10.1002/aoc.4226]
[102]
Brunig, J.; Csendes, Z.; Weber, S.; Gorgas, N.; Bittner, R.W.; Limbeck, A.; Bica, K.; Hoffmann, H.; Kirchner, K. Chemoselective Supported Ionic-Liquid-Phase (SILP) aldehyde hydrogenation catalyzed by an Fe(II) PNP pincer complex. ACS Catal., 2018, 8(2), 1048-1051.
[http://dx.doi.org/10.1021/acscatal.7b04149]
[103]
Csendes, Z.; Brünig, J.; Yigit, N.; Rupprechter, G.; Bica-Schröder, K.; Hoffmann, H.; Kirchner, K. Influence of the ionic liquid on the activ-ity of a supported ionic liquid phase FeII pincer catalyst for the hydrogenation of aldehydes. Eur. J. Inorg. Chem., 2019, 2019(30), 3503-3510.
[http://dx.doi.org/10.1002/ejic.201900636] [PMID: 31588182]
[104]
Liang, X. Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylben-zene. Energy, 2013, 63, 103-108.
[http://dx.doi.org/10.1016/j.energy.2013.10.043]
[105]
Xie, W.; Wan, F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J., 2019, 365, 40-50.
[http://dx.doi.org/10.1016/j.cej.2019.02.016]
[106]
Rajabi, F.; Luque, R. Highly ordered mesoporous functionalized pyridinium protic ionic liquids framework as efficient system in esterifi-cation reactions for biofuels production. Mol. Cat., 2020, 498, 111238.
[http://dx.doi.org/10.1016/j.mcat.2020.111238]
[107]
Masri, A.N.; Abdul Mutalib, M.I.; Yahya, W.Z.N.; Aminuddin, N.F.; Leveque, J.M. Rapid esterification of fatty acid using dicationic acidic ionic liquid catalyst via ultrasonic-assisted method. Ultrason. Sonochem., 2020, 60, 104732.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104732] [PMID: 31499322]
[108]
Ling, X.; Xie, Y.; Lin, X.C.; Li, L.; Qiu, T. Porous polymer microsphere functionalized with benzimidazolium based ionic liquids as effec-tive solid catalysts for esterification. Chin. J. Chem. Eng., 2019, 27(10), 2455-2466.
[http://dx.doi.org/10.1016/j.cjche.2019.01.039]
[109]
Vafaeezadeh, M.; Hashemi, M.M. Efficient fatty acid esterification using silica supported bronsted acidic ionic liquid catalyst: Experi-mental study and DFT modeling. Chem. Eng. J., 2014, 250, 35-41.
[http://dx.doi.org/10.1016/j.cej.2014.04.001]
[110]
Wu, Z.; Li, Z.; Wu, G.; Wang, L.; Lu, S.; Wang, L.; Wan, H.; Guan, G. Bronsted acidic ionic liquid modified magnetic nanoparticle: An efficient and green catalyst for biodiesel production. Ind. Eng. Chem. Res., 2014, 53(8), 3040-3046.
[http://dx.doi.org/10.1021/ie4040016]
[111]
Zhang, L.; Cui, Y.; Zhang, C.; Wang, L.; Wan, H.; Guan, G. Biodiesel production by esterification of oleic acid over bronsted acidic ionic liquid supported onto Fe-incorporated SBA-15. Ind. Eng. Chem. Res., 2012, 51(51), 16590-16596.
[http://dx.doi.org/10.1021/ie302419y]
[112]
Miao, J.; Wan, H.; Guan, G. Synthesis of immobilized bronsted acidic ionic liquid on silica gel as heterogeneous catalyst for esterification. Catal. Commun., 2011, 12(5), 353-356.
[http://dx.doi.org/10.1016/j.catcom.2010.10.014]
[113]
Karimi, B.; Vafaeezadeh, M. SBA-15-functionalized sulfonic acid confined acidic ionic liquid: A powerful and water-tolerant catalyst for solvent-free esterifications. Chem. Commun. , 2012, 48(27), 3327-3329.
[http://dx.doi.org/10.1039/c2cc17702a] [PMID: 22361844]
[114]
Li, K.; Chen, L.; Wang, H.; Lin, W.; Yan, Z. Heteropolyacid salts as self-separation and recyclable catalysts for transesterification of trime-thylolpropane. Appl. Catal. A Gen., 2011, 392(1-2), 233-237.
[http://dx.doi.org/10.1016/j.apcata.2010.11.011]
[115]
Sadjadi, S.; Koohestani, F.; Heravi, M. Biochar-based graphitic carbon nitride adorned with ionic liquid containing acidic polymer: A versa-tile, non-metallic catalyst for acid catalyzed reaction. Molecules, 2020, 25(24), 5958.
[http://dx.doi.org/10.3390/molecules25245958] [PMID: 33339246]
[116]
Zhuo, C.; Xian, D.; Jian-Wei, W.; Hui, X. An efficient and recyclable ionic liquid-supported proline catalyzed knoevenagel condensation. ISRN Org. Chem., 2011, 2011, 676789.
[http://dx.doi.org/10.5402/2011/676789] [PMID: 24052829]
[117]
Chen, P.; Zhang, L.; Sun, J.S.; Xiao, E.K.; Wu, X.T.; Zhu, G. An ionic liquid on a porous organic framework support: A recyclable catalyst for the Knoevenagel condensation in an aqueous system. ChemPlusChem, 2020, 85(5), 943-947.
[http://dx.doi.org/10.1002/cplu.202000093] [PMID: 32401419]
[118]
Tan, N.Y.J.; Liu, X.; Liu, Y.; Hu, Y.L. Multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids as nov-el and efficient catalysts for heterogeneous Knoevenagel condensation. J. Saudi Chem. Soc., 2019, 23(6), 740-752.
[http://dx.doi.org/10.1016/j.jscs.2019.01.001]
[119]
Li, J.R.; Chen, C.; Hu, Y.L. Novel and efficient Knoevenagel condensation over mesoporous SBA‐15 supported acetate‐functionalized basic ionic liquid catalyst. Chem. Select, 2020, 5(46), 14578-14582.
[120]
Hierro, I.; Perez, Y.; Fajardo, M. Silanization of iron oxide magnetic nanoparticles with ionic liquids based on amino acids and its applica-tion as heterogeneous catalysts for Knoevenagel condensation reactions. Mol. Cat., 2018, 450, 112-120.
[http://dx.doi.org/10.1016/j.mcat.2018.03.008]
[121]
Kakesh, N.; Sayyahi, S.; Badri, R. Magnetic nanoparticle coated with ionic organic networks: A robust catalyst for Knoevenagel condensa-tion. C. R. Chim., 2018, 21(11), 1023-1028.
[http://dx.doi.org/10.1016/j.crci.2018.09.009]
[122]
Karimi-Chayjani, R.; Daneshvar, N.; Shirini, F.; Tajik, H. New magnetic nanocatalyst containing a bis-dicationic ionic liquid framework for Knoevenagel condensation reaction. Res. Chem. Intermed., 2019, 45(4), 2471-2488.
[http://dx.doi.org/10.1007/s11164-019-03747-x]
[123]
Ghorbani-Choghamarani, A.; Nikoorazm, M.; Norouzi, M. Efficient synthesis of benzo[b]pyrans and Knoevenagel products using mag-netically separable nano TPPA-IL-Fe3O4. Org. Chem. Res., 2018, 4(1), 11-22.
[124]
Rajoriya, P.; Rani, A. Supported imidazolium based ionic liquid as a green, highly effective and reusable catalyst for microwave assisted Knoevenagel condensation. Chem. Sci. Rev. Lett., 2017, 6(22), 772-778.
[125]
Ren, Y.; Li, H.; Yang, W.; Shi, D.; Wu, Q.; Zhao, Y.; Feng, C.; Liu, H.; Jiao, Q. Alkaline ionic liquids immobilized on protective copoly-mers coated magnetic nanoparticles: An efficient and magnetically recyclable catalyst for Knoevenagel condensation. Ind. Eng. Chem. Res., 2019, 58(8), 2824-2834.
[http://dx.doi.org/10.1021/acs.iecr.8b05933]
[126]
Yuan, H.; Jiao, Q.; Zhang, Y.; Zhang, J.; Wu, Q.; Zhao, Y.; Neerunjun, S.; Li, H. Magnetic CoFe2O4 nanoparticles supported basic poly(ionic liquid)s catalysts: Preparation and catalytic performance comparison in transesterification and Knoevenagel condensation. Catal. Lett., 2016, 146(5), 951-959.
[http://dx.doi.org/10.1007/s10562-016-1718-5]
[127]
Azizi, N.; Abbasi, F.; Abdoli-Senejani, M. Natural acidic ionic liquid immobilized on magnetic silica: Preparation and catalytic performance in chemoselective synthesis of dicoumarols and substituted xanthene derivatives. ChemistrySelect, 2018, 3(13), 3797-3802.
[http://dx.doi.org/10.1002/slct.201800138]
[128]
Saikia, A.A.; Rao, R.N.; Das, S.; Jena, S.; Rej, S.; Maiti, B.; Chanda, K. Sequencing [3+2]-cycloaddition and multicomponent reactions: A regioselective microwave-assisted synthesis of 1,4-disubstituted 1,2,3-triazoles using ionic liquid supported Cu(II) precatalysts in metha-nol. Tetrahedron Lett., 2020, 61(36), 152273.
[http://dx.doi.org/10.1016/j.tetlet.2020.152273]
[129]
Rajabzadeh, M.; Eshghi, H.; Khalifeh, R.; Bakavoli, M. 2‐Hydroxyethylammonium formate ionic liquid grafted magnetic nanoparticle as a novel heterogeneous catalyst for the synthesis of substituted imidazoles. Appl. Organomet. Chem., 2018, 32(2), e4052.
[http://dx.doi.org/10.1002/aoc.4052]
[130]
Tan, J.; Rui, J.; Yu, L.; Hu, L. Novel and efficient multifunctional periodic mesoporous organosilica supported benzotriazolium ionic liq-uids for reusable synthesis of 2,4,5-trisubstituted imidazoles. J. Saudi Chem. Soc., 2020, 24(10), 777-784.
[http://dx.doi.org/10.1016/j.jscs.2020.08.006]
[131]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Rana, P.; Yadav, P.; Adholeya, A.; Sharma, R.K. Silica-coated magnetic-nanoparticle-supported DABCO-derived acidic ionic liquid for the efficient synthesis of bioactive 3,3-di(indolyl)indolin-2-ones. ACS Omega, 2019, 4(25), 21529-21539.
[http://dx.doi.org/10.1021/acsomega.9b03237] [PMID: 31867549]
[132]
Ghorbani-Vaghei, R.; Mahmoodi, J.; Shahriari, A.; Maghbooli, Y. Synthesis of pyrano[2,3‐c]pyrazole derivatives using Fe3O4@SiO2@piperidinium benzene‐1,3‐disulfonate (Fe3O4@SiO2 nanoparticle‐supported IL) as a novel, green and heterogeneous catalyst. Appl. Organomet. Chem., 2017, 31(12), e3816.
[http://dx.doi.org/10.1002/aoc.3816]
[133]
Rezaei, F.; Ali Amrollahi, M.; Khalifeh, R. Bronsted acidic dicationic ionic liquid immobilized on Fe3O4@SiO2 nanoparticles as an efficient and magnetically separable catalyst for the synthesis of bispyrazoles. Chem. Select, 2020, 5, 1760-1766.
[134]
Kargar, S.; Elhamifar, D.; Zarnegaryan, A. Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surf. Interfaces, 2021, 23, 100946.
[http://dx.doi.org/10.1016/j.surfin.2021.100946]
[135]
Hamidinasab, M.; Bodaghifard, M.A.; Mobinikhaledi, A. Green synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitrile derivatives using a new bifunctional base-ionic liquid hybrid magnetic nanocatalyst. Appl. Organomet. Chem., 2020, 34(2), e5386.
[http://dx.doi.org/10.1002/aoc.5386]
[136]
Neysi, M.; Elhamifar, D.; Norouzi, M. Ionic liquid functionalized magnetic organosilica nanocomposite: A powerful and efficient support for manganese catalyst. Mater. Chem. Phys., 2020, 243, 122589.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122589]
[137]
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. Chem., 2015, 398, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[138]
Sadeghzadeh, S.M.; Malekzadeh, M. Synthesis of 1,3-thiazolidin-4-one using ionic liquid immobilized onto Fe3O4/SiO2/Salen/Mn. J. Mol. Liq., 2015, 202, 46-51.
[http://dx.doi.org/10.1016/j.molliq.2014.12.011]
[139]
Zarnegar, Z.; Safari, J. Magnetic carbon nanotube‐supported imidazolium cation‐based ionic liquid as a highly stable nanocatalyst for the synthesis of 2‐aminothiazoles. Appl. Organomet. Chem., 2016, 30(12), 1043-1049.
[http://dx.doi.org/10.1002/aoc.3540]
[140]
Rastegari, F.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M. 1-Methyl-3-(propyl-3-sulfonic acid) imidazolium triflate supported on magnetic nanoparticles: An efficient and reusable catalyst for synthesis of mono- and bis-isobenzofuran-1(3H)-ones under solvent-free conditions. RSC Advances, 2015, 5(20), 15274-15282.
[http://dx.doi.org/10.1039/C4RA14112A]
[141]
Shirzaei, M.; Mollashahi, E.; Maghsoodlou, M.T.; Lashkari, M. Novel synthesis of silica-coated magnetic nano-particles based on acidic ionic liquid, as a highly efficient catalyst for three component system leads to furans derivatives. J. Saudi Chem. Soc., 2020, 24(2), 216-222.
[http://dx.doi.org/10.1016/j.jscs.2020.01.001]
[142]
Rahmani, F.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Novel multicomponent synthesis of pyridine-pyrimidines and their bis-derivatives catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on functionalized nanosilica. ACS Comb. Sci., 2018, 20(1), 19-25.
[http://dx.doi.org/10.1021/acscombsci.7b00079] [PMID: 29215873]
[143]
Sadjadi, S.; Koohestani, F. Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidi-nones. J. Mol. Liq., 2020, 319, 114393.
[http://dx.doi.org/10.1016/j.molliq.2020.114393]
[144]
Azizi, N.; Edrisi, M. Preparation of choline sulfate ionic liquid supported on porous graphitic carbon nitride nanosheets by simple surface modification for enhanced catalytic properties. J. Mol. Liq., 2020, 300, 112263.
[http://dx.doi.org/10.1016/j.molliq.2019.112263]
[145]
Solgi, S.; Ghorbani-Vaghei, R.; Alavinia, S.; Izadkhah, V. Preparation and application of highly efficient and reusable nanomagnetic catalyst supported with sulfonated-hexamethylenetetramine for synthesis of 2,3-dihydroquinazolin-4(1H)-ones; Poly. Arom. Comp, 2020, pp. 1-10.
[146]
Li, D.; Wang, J.; Chen, F.; Jing, H. Fe3O4@SiO2 supported aza-crown ether complex cation ionic liquids: Preparation and applications in organic reactions. RSC Advances, 2017, 7(8), 4237-4242.
[http://dx.doi.org/10.1039/C6RA25291E]
[147]
Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto magnetic fibrous nano-silica as robust and recyclable heteroge-neous catalysts for the synthesis of tetrahydrodipyrazolopyridines in water. RSC Advances, 2016, 6(79), 75973-75980.
[http://dx.doi.org/10.1039/C6RA15766A]
[148]
Shojaei, R.; Zahedifar, M.; Mohammadi, P.; Saidi, K.; Sheibani, H. Novel magnetic nanoparticle supported ionic liquid as an efficient cata-lyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. J. Mol. Struct., 2019, 1178, 401-407.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.052]
[149]
Sajjadifar, S.; Zolfigol, M.A.; Tami, F. Application of 1‐methyl imidazole‐based ionic liquid‐stabilized silica‐coated Fe3O4 as a novel modified magnetic nanocatalyst for the synthesis of pyrano[2,3‐d]pyrimidines. J. Chin. Chem. Soc. , 2019, 66(3), 307-315.
[http://dx.doi.org/10.1002/jccs.201800171]
[150]
Abaeezadeh, S.; Elhamifar, D.; Norouzi, M.; Shaker, M. Magnetic nanoporous MCM‐41 supported ionic liquid/palladium complex: An efficient nanocatalyst with high recoverability. Appl. Organomet. Chem., 2019, 33(6), e4862.
[http://dx.doi.org/10.1002/aoc.4862]
[151]
Nejad, M.S.; Sheibani, H. Multi-layer functionalized poly(2-vinylpyridinium) ionic liquid immobilized on magnetic nanoparticles: Highly recoverable and magnetically separable brønsted acid catalyst. Catal. Lett., 2018, 148(1), 125-133.
[http://dx.doi.org/10.1007/s10562-017-2219-x]
[152]
Heydari, Z.; Bahadorikhalili, S.; Ranjbar, P.R.; Mahdavi, M. DABCO‐modified super‐paramagnetic nanoparticles as an efficient and wa-ter‐compatible catalyst for the synthesis of pyrano[3,2‐c:5,6‐c′]dichromene‐6,8‐dione derivatives under mild reaction conditions. Appl. Organomet. Chem., 2018, 32(12), e4561.
[http://dx.doi.org/10.1002/aoc.4561]
[153]
Rajabi-Salek, M.; Zolfigol, M.A.; Zarei, M. Synthesis of a novel DABCO-based nanomagnetic catalyst with sulfonic acid tags: Application to the synthesis of diverse spiropyrans. Res. Chem. Intermed., 2018, 44(9), 5255-5269.
[http://dx.doi.org/10.1007/s11164-018-3421-1]
[154]
Aghbash, K.O.; Pesyan, N.N.; Batmani, H. Fe3O4@silica-MCM-41@DABCO: A novel magnetically reusable nanostructured catalyst for clean in situ synthesis of substituted 2-aminodihydropyrano[3,2-b]pyran-3-cyano. Appl. Organomet. Chem., 2019, 33, e5227.
[155]
Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives. J. Mol. Liq., 2019, 275, 523-534.
[http://dx.doi.org/10.1016/j.molliq.2018.11.042]
[156]
Teimuri-Mofrad, R.; Gholamhosseini-Nazari, M.; Payami, E.; Esmati, S. Ferrocene‐tagged ionic liquid stabilized on silica‐coated magnet-ic nanoparticles: Efficient catalyst for the synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions. Appl. Organomet. Chem., 2018, 32(1), e3955.
[http://dx.doi.org/10.1002/aoc.3955]
[157]
Hormozinezhad, Z.; Gorjizadeh, M.; Taheri, N.; Sayyahi, S. [Fe3O4@SiO2@(C3H6)2-(imidazolium)2-butyl][MnCl42-] as a novel nanomag-netic catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives. Bull. Chem. Soc. Ethiop., 2018, 32(2), 309-321.
[http://dx.doi.org/10.4314/bcse.v32i2.10]
[158]
Teimuri-Mofrad, R.; Tahmasebi, S.; Payami, E. Fe3O4@SiO2@Im-bisethylFc [HC2O4] as a novel recyclable heterogeneous nanocatalyst for synthesis of bis-coumarin derivatives. Appl. Organomet. Chem., 2019, 33(6), e4773.
[http://dx.doi.org/10.1002/aoc.4773]
[159]
Mousavifar, S.M.; Kefayati, H.; Shariati, S. Fe3O4@Propylsilane@Histidine[HSO4‐] magnetic nanocatalysts: Synthesis, characterization and catalytic application for highly efficient synthesis of xanthene derivatives. Appl. Organomet. Chem., 2018, 32(4), e4242.
[http://dx.doi.org/10.1002/aoc.4242]
[160]
Safaei-Ghomi, J.; Eshteghal, F.; Shahbazi-Alavi, H. An efficient synthesis of dihydropyrano[3,2-c]chromene and biscoumarin derivatives catalyzed by ionic liquid immobilized on FeNi3 nanocatalyst. Polycycl. Aromat. Compd., 2020, 40(1), 13-20.
[http://dx.doi.org/10.1080/10406638.2017.1348368]
[161]
Wang, Y.F.; Xu, B.H.; Du, Y.R.; Zhang, S.J. Heterogeneous cyclization of sorbitol to isosorbide catalyzed by a novel basic porous poly-mer-supported ionic liquid. Mol. Cat., 2018, 457, 59-66.
[http://dx.doi.org/10.1016/j.mcat.2018.07.019]
[162]
Arya, K.; Prabhakar, B. Ionic liquid confined zeolite system: An approach towards water mediated room temperature synthesis of spi-ro[pyrazolo[3,4-]benzothiazepines Green Chem., 2013, 15(10), 2885-2894.
[http://dx.doi.org/10.1039/c3gc40553b]
[163]
Kurane, R.; Jadhav, J.; Khanapure, S.; Salunkhe, R.; Rashinkar, G. Synergistic catalysis by an Aerogel Supported Ionic Liquid Phase (ASILP) in the synthesis of 1,5-benzodiazepines. Green Chem., 2013, 15(7), 1849-1856.
[http://dx.doi.org/10.1039/c3gc40592c]
[164]
Nejadshafiee, V.; Naeimi, H. Molecular ionic liquid supported on mesoporous silica nanoparticles-imprinted iron metal: A recyclable het-erogeneous catalyst for one-pot, three-component synthesis of a library of benzodiazepines. Curr. Org. Synth., 2019, 16(1), 136-144.
[http://dx.doi.org/10.2174/1570179415666181031123504] [PMID: 31965927]
[165]
Ghasemi, M.H.; Kowsari, E.; Shafiee, A. Aza-Michael-type addition reaction catalysed by a supported ionic liquid phase incorporating an anionic heteropoly acid. Tetrahedron Lett., 2016, 57(10), 1150-1153.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.107]
[166]
Azizi, S.; Shadjou, N. Iron oxide (Fe3O4) magnetic nanoparticles supported on Wrinkled Fibrous Nanosilica (WFNS) functionalized by biimidazole ionic liquid as an effective and reusable heterogeneous magnetic nanocatalyst for the efficient synthesis of N-sulfonylamidines. Heliyon, 2021, 7(1), e05915.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05915] [PMID: 33553722]
[167]
Zhang, Q.; Luo, J.; Wei, Y. Wei. Y. A silica gel supported dual acidic ionic liquid: An efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem., 2010, 12(12), 2246-2254.
[http://dx.doi.org/10.1039/c0gc00472c]
[168]
Jin, T.; Dong, F.; Liu, Y.; Hu, Y.L. Novel and effective strategy of dual bis(trifluoromethylsulfonyl) imide imidazolium ionic liquid immo-bilized on periodic mesoporous organosilica for greener cycloaddition of carbon dioxide to epoxides. New J. Chem., 2019, 43(6), 2583-2590.
[http://dx.doi.org/10.1039/C8NJ05273E]
[169]
Headley, A.D. Chapter 2, Ionic Liquid-Supported Organocatalysts for Asymmetric. Organic Synthesis: Sustainable Catalysis in Ionic Liq-uids. CRC Press Boca Raton, USA; , 2018.
[170]
Xiang, X.; Suo, H.; Xu, C.; Hu, Y. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids Surf. B Biointerfaces, 2018, 165, 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.033] [PMID: 29499527]
[171]
Lee, J.K.; Kim, M.J. Ionic liquid-coated enzyme for biocatalysis in organic solvent. J. Org. Chem., 2002, 67(19), 6845-6847.
[http://dx.doi.org/10.1021/jo026116q] [PMID: 12227824]
[172]
Itoh, T.; Matsushita, Y.; Abe, Y.; Han, S.H.; Wada, S.; Hayase, S.; Kawatsura, M.; Takai, S.; Morimoto, M.; Hirose, Y. Increased enanti-oselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid. Chemistry, 2006, 12(36), 9228-9237.
[http://dx.doi.org/10.1002/chem.200601043] [PMID: 17029309]
[173]
Yang, J.; Hu, Y.; Jiang, L.; Zou, B.; Jia, R.; Hu, Y. Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid. Biochem. Eng. J., 2013, 70, 46-54.
[http://dx.doi.org/10.1016/j.bej.2012.09.016]
[174]
Zou, B.; Hu, Y.; Jiang, L.; Jia, R.; Huang, H. Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method. Ind. Eng. Chem. Res., 2013, 52(8), 2844-2851.
[http://dx.doi.org/10.1021/ie303363p]
[175]
Nakashima, K.; Kamiya, N.; Koda, D.; Maruyama, T.; Goto, M. Enzyme encapsulation in microparticles composed of polymerized ionic liquids for highly active and reusable biocatalysts. Org. Biomol. Chem., 2009, 7(11), 2353-2358.
[http://dx.doi.org/10.1039/b823064a] [PMID: 19462045]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy