Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Novel S-Mercaptotriazolebenzothiazole-Based Derivatives as Antimicrobial Agents: Design, Synthesis, and In Vitro Evaluation

Author(s): Alaa M. Alqahtani*, Asmaa G. Safi El-Din, Randa Abdou, Ali H. Amin, Hany H. Arab and Ahmed H. Abdelazeem*

Volume 19, Issue 10, 2022

Published on: 05 April, 2022

Page: [925 - 937] Pages: 13

DOI: 10.2174/1570180819666220301154851

Price: $65

conference banner
Abstract

Background: The search for novel antimicrobial agents effective against the emerging resistant pathogenic microorganisms to the currently used drugs is a substantial need. Herein, a novel series of compounds bearing a benzothiazolotriazole scaffold was synthesized and evaluated as potential antimicrobial agents against a panel of gram +ve, gram -ve bacteria, and fungi species.

Methods: The new compounds were synthesized via hybridization between the benzothiazolotriazole scaffold and thiadiazole ring or various substituted aromatic moieties using the tethering technique in drug discovery.

Results: The in vitro results revealed that these compounds have significant antifungal activity rather than antibacterial potential due to their high similarity with tricyclazole. Compound 7b bearing bromo-phenyl moiety was the most potent derivative with an MIC value of 8 μg/mL against Candida albicans and Penicillium chrysogenum.

Conclusion: Collectively, benzothiazolotriazole-based derivatives are good antifungal leads and should be further actively pursued to expand treatment options for systemic and topical fungal infections.

Keywords: Mercaptotriazolebenzothiazole, benzothiazolotriazole, antimicrobial, antibacterial, antifungal, resistance.

Graphical Abstract

[1]
Patini, R.; Mangino, G.; Martellacci, L.; Quaranta, G.; Masucci, L.; Gallenzi, P. The effect of different antibiotic regimens on bacterial re-sistance: A systematic review. Antibiotics (Basel), 2020, 9(1), 1-15.
[http://dx.doi.org/10.3390/antibiotics9010022] [PMID: 31936186]
[2]
Amin, N.H.; El-Saadi, M.T.; Ibrahim, A.A.; Abdel-Rahman, H.M. Design, synthesis and mechanistic study of new 1,2,4-triazole deriva-tives as antimicrobial agents. Bioorg. Chem., 2021, 111, 104841.
[http://dx.doi.org/10.1016/j.bioorg.2021.104841] [PMID: 33798851]
[3]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: causes, consequences, and management. Front. Public Health, 2014, 2, 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[4]
Haroun, M.; Tratrat, C.; Kositsi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[5]
Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem., 2020, 101, 103922.
[http://dx.doi.org/10.1016/j.bioorg.2020.103922] [PMID: 32559577]
[6]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat eskape pathogens in the era of anti-microbial resistance: A review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[7]
Marty, F.; Mylonakis, E. Antifungal use in HIV infection. Expert Opin. Pharmacother., 2002, 3(2), 91-102.
[http://dx.doi.org/10.1517/14656566.3.2.91] [PMID: 11829723]
[8]
Ruhnke, M.; Cornely, O.A.; Schmidt-Hieber, M.; Alakel, N.; Boell, B.; Buchheidt, D.; Christopeit, M.; Hasenkamp, J.; Heinz, W.J.; Hentrich, M.; Karthaus, M.; Koldehoff, M.; Maschmeyer, G.; Panse, J.; Penack, O.; Schleicher, J.; Teschner, D.; Ullmann, A.J.; Vehreschild, M.; von Lilienfeld-Toal, M.; Weissinger, F.; Schwartz, S. Treatment of invasive fungal diseases in cancer patients-Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Mycoses, 2020, 63(7), 653-682.
[http://dx.doi.org/10.1111/myc.13082] [PMID: 32236989]
[9]
Kauffman, C.A.; Vazquez, J.A.; Sobel, J.D.; Gallis, H.A.; McKinsey, D.S.; Karchmer, A.W.; Sugar, A.M.; Sharkey, P.K.; Wise, G.J.; Mangi, R.; Mosher, A.; Lee, J.Y.; Dismukes, W.E. Prospective multicenter surveillance study of funguria in hospitalized patients. Clin. Infect. Dis., 2000, 30(1), 14-18.
[http://dx.doi.org/10.1086/313583] [PMID: 10619726]
[10]
Tzanopoulou, S.; Sagnou, M.; Paravatou-Petsotas, M.; Gourni, E.; Loudos, G.; Xanthopoulos, S.; Lafkas, D.; Kiaris, H.; Varvarigou, A.; Pirmettis, I.C.; Papadopoulos, M.; Pelecanou, M. Evaluation of Re and (99m)Tc complexes of 2-(4′-aminophenyl)benzothiazole as poten-tial breast cancer radiopharmaceuticals. J. Med. Chem., 2010, 53(12), 4633-4641.
[http://dx.doi.org/10.1021/jm1001293] [PMID: 20518489]
[11]
El-Damasy, A.K.; Lee, J.H.; Seo, S.H.; Cho, N.C.; Pae, A.N.; Keum, G. Design and synthesis of new potent anticancer benzothiazole am-ides and ureas featuring pyridylamide moiety and possessing dual B-Raf(V600E) and C-Raf kinase inhibitory activities. Eur. J. Med. Chem., 2016, 115, 201-216.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.039] [PMID: 27017549]
[12]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of ben-zo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[13]
Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H.; Lam, K.H.; Cheng, C.H.; Lai, P.B.S.; Yu, M.W.Y.; Cheung, F.; Tang, J.C.O.; Chan, A.S.C. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[http://dx.doi.org/10.1016/j.bmc.2008.02.005] [PMID: 18295491]
[14]
Yu, K.L.; Zhang, Y.; Civiello, R.L.; Kadow, K.F.; Cianci, C.; Krystal, M.; Meanwell, N.A. Fundamental structure-activity relationships associated with a new structural class of respiratory syncytial virus inhibitor. Bioorg. Med. Chem. Lett., 2003, 13(13), 2141-2144.
[http://dx.doi.org/10.1016/S0960-894X(03)00383-4] [PMID: 12798322]
[15]
Dawood, K.M.; Abdel-Gawad, H.; Rageb, E.A.; Ellithey, M.; Mohamed, H.A. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorg. Med. Chem., 2006, 14(11), 3672-3680.
[http://dx.doi.org/10.1016/j.bmc.2006.01.033] [PMID: 16464601]
[16]
Kumar, G.; Singh, N.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg. Chem., 2021, 107, 104608.
[http://dx.doi.org/10.1016/j.bioorg.2020.104608] [PMID: 33465668]
[17]
Abdelazeem, A.H.; Salama, S.A.; Maghrabi, I.A. Design, synthesis, and anti-inflammatory evaluation of novel diphenylthiazole-thiazolidinone hybrids. Arch. Pharm. (Weinheim), 2015, 348(7), 518-530.
[http://dx.doi.org/10.1002/ardp.201500104] [PMID: 25989149]
[18]
Hameed, S. Kanwal; Seraj, F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K.M. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity rela-tionship, molecular docking, and kinetic studies. Eur. J. Med. Chem., 2019, 183, 1-24.
[http://dx.doi.org/10.1016/j.ejmech.2019.111677]
[19]
Moreno-Díaz, H.; Villalobos-Molina, R.; Ortiz-Andrade, R.; Díaz-Coutiño, D.; Medina-Franco, J.L.; Webster, S.P.; Binnie, M.; Estrada-Soto, S.; Ibarra-Barajas, M.; León-Rivera, I.; Navarrete-Vázquez, G. Antidiabetic activity of N-(6-substituted-1,3-benzothiazol-2-yl)benzenesulfonamides. Bioorg. Med. Chem. Lett., 2008, 18(9), 2871-2877.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.086] [PMID: 18424136]
[20]
Kumar, M.V.; Revanasiddappa, B.C. Synthesis and antidiabetic evaluation of novel pyrazolone derivatives. Indian J. Heterocycl. Chem., 2015, 25, 169-172.
[21]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and com-putational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[22]
Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(20), 5396-5406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[23]
Das, J.; Rao, C.V.L.; Sastry, T.V.R.S.; Roshaiah, M.; Sankar, P.G.; Khadeer, A.; Kumar, M.S.; Mallik, A.; Selvakumar, N.; Iqbal, J.; Trehan, S. Effects of positional and geometrical isomerism on the biological activity of some novel oxazolidinones. Bioorg. Med. Chem. Lett., 2005, 15(2), 337-343.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.073] [PMID: 15603950]
[24]
Al-Omran, F.; Elassar, A.Z.A.; El-Khair, A.A. Synthesis and biological effects of new derivatives of azines incorporating coumarin. J. Heterocycl. Chem., 2003, 40, 249-254.
[http://dx.doi.org/10.1002/jhet.5570400208]
[25]
Gilandoust, M.; Harsha, K.B.; Mohan, C.D.; Raquib, A.R.; Rangappa, S.; Pandey, V.; Lobie, P.E. Basappa; Rangappa, K.S. Synthesis, characterization and cytotoxicity studies of 1,2,3-triazoles and 1,2,4-triazolo [1,5-a] pyrimidines in human breast cancer cells. Bioorg. Med. Chem. Lett., 2018, 28(13), 2314-2319.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.020] [PMID: 29789259]
[26]
Zimmermann, L.A.; de Moraes, M.H.; da Rosa, R.; de Melo, E.B.; Paula, F.R.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity. Bioorg. Med. Chem., 2018, 26(17), 4850-4862.
[http://dx.doi.org/10.1016/j.bmc.2018.08.025] [PMID: 30173929]
[27]
Zhou, J.; Stapleton, P.; Haider, S.; Healy, J. Boronic acid inhibitors of the class A β-lactamase KPC-2. Bioorg. Med. Chem., 2018, 26(11), 2921-2927.
[http://dx.doi.org/10.1016/j.bmc.2018.04.055] [PMID: 29784271]
[28]
Hashemi, S.M.; Badali, H.; Irannejad, H.; Shokrzadeh, M.; Emami, S. Synthesis and biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal agents. Bioorg. Med. Chem., 2015, 23(7), 1481-1491.
[http://dx.doi.org/10.1016/j.bmc.2015.02.011] [PMID: 25740636]
[29]
Morcoss, M.M.; Abdelhafez, E.S.M.N.; Ibrahem, R.A.; Abdel-Rahman, H.M.; Abdel-Aziz, M.; Abou El-Ella, D.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem., 2020, 101, 103956.
[http://dx.doi.org/10.1016/j.bioorg.2020.103956] [PMID: 32512267]
[30]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[31]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[32]
Mishra, R.K.; Catanante, G.; Hayat, A.; Marty, J.L. Evaluation of extraction methods for ochratoxin A detection in cocoa beans employing HPLC. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2016, 33(3), 500-508.
[http://dx.doi.org/10.1080/19440049.2015.1133933] [PMID: 26829387]
[33]
Mares, D.; Romagnoli, C.; Andreotti, E.; Manfrini, M.; Vicentini, C.B. Synthesis and antifungal action of new tricyclazole analogues. J. Agric. Food Chem., 2004, 52(7), 2003-2009.
[http://dx.doi.org/10.1021/jf030695y] [PMID: 15053543]
[34]
Gao, C.; Chang, L.; Xu, Z.; Yan, X.F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[35]
Al-khuzaie, M.G.A.; Al-majidi, S.M.H. Synthesis, Characterization and Evaluation Antimicrobial Activity of Some New Substituted 2-Mercapto-3-Phenyl-4 (3H) -. Quinazolinone. Iraqi J. Sci., 2014, 55, 582-593.
[36]
Muğlu, H.; Yakan, H.; Shouaib, H.A. New 1,3,4-Thiadiazoles based on Thiophene-2-Carboxylic ACID: Synthesis, characterization, and antimicrobial activities. J. Mol. Struct., 2020, 1203, 1-10.
[http://dx.doi.org/10.1016/j.molstruc.2019.127470]
[37]
Panneerselvam, T.; Mandhadi, J.R. Microwave assisted synthesis and antimicrobial evaluation of novel substituted Thiosemicarbazide derivatives of Pyrimidine. J. Heterocycl. Chem., 2020, 57, 3082-3088.
[http://dx.doi.org/10.1002/jhet.4013]
[38]
Jin, R.Y.; Zeng, C.Y.; Liang, X.H.; Sun, X.H.; Liu, Y.F.; Wang, Y.Y.; Zhou, S. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorg. Chem., 2018, 80, 253-260.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.030] [PMID: 29966871]
[39]
Bowe, J.D.; Doyle, F.P. The preparatiort of fused triazole systems. J. Chem. Soc., 1957, 727-732.
[40]
Abdelazeem, A.H.; Alqahtani, A.M.; Omar, H.A.; Bukhari, S.N.A.; Gouda, A.M. Synthesis, biological evaluation and kinase profiling of novel S-benzo[4,5]thiazolo[2,3-c][1,2,4]triazole derivatives as cytotoxic agents with apoptosis-inducing activity. J. Mol. Struct., 2020, 1219, 128567.
[http://dx.doi.org/10.1016/j.molstruc.2020.128567]
[41]
Aboelmagd, A.; Ali, I.A.I.; Salem, E.M.S.; Abdel-Razik, M. Synthesis and antifungal activity of some s-mercaptotriazolobenzothiazolyl amino acid derivatives. Eur. J. Med. Chem., 2013, 60, 503-511.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.033] [PMID: 23376218]
[42]
Abdelazeem, A.H.; Gouda, A.M.; Omar, H.A.; Alrobaian, M. Design, synthesis and biological evaluation of novel ben-zo[4,5]Thiazolo[2,3-c][1,2,4]triazole derivatives as potential anticancer agents. Acta Pol. Pharm. -. Drug Res., 2018, 75, 625-636.
[43]
Vandepitte, J. Engbaek, Kraesten, Rohner.; Piot, Peter; Heuck; C.C. Basic Laboratory Procedures in Clinical Bacteriology, 2003.
[44]
Qaiyumi, S. Macro- and Microdilution Methods of Antimicrobial Susceptibility Testing. In: Antimicrobial Susceptibility Testing Protocols; Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C., Eds.; CRC Press: Boca Raton, London, New York, 2007, pp. 75-79.
[http://dx.doi.org/10.1201/9781420014495.ch4]
[45]
Cockerill, F.R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J.; Hardy, M.D.J.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; Powell, M.; Swenson, J.M.; Richard, B. Thomson, Jr., M.M.T.; Turnidge, J.D.; Weinstein, M.P.; Zimmer, B.L. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed; Clinical and Laboratort Standard Insti-tute: USA, 2012, p. 32.
[46]
Molinspiration Cheminformatics. Available from: www.molinspiration.com/services/properties.html
[47]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[http://dx.doi.org/10.1023/A:1020444330011] [PMID: 12425461]
[48]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permea-bility in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy