Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Highly Reactive Heterogeneous Nanofibers Catalyst based on [Mo154] Clusters for Green Aerobic Oxidation of Sulfur Mustard Analogues under Ambient Conditions

Author(s): Reza Haddad*

Volume 19, Issue 7, 2022

Published on: 23 May, 2022

Page: [808 - 818] Pages: 11

DOI: 10.2174/1570179419666220301124655

Price: $65

Abstract

Background: Due to the increasing chemical and biological threats posed by terrorist attacks, there is a need to design and prepare nanofibers (NFs) with the ability to neutralize CWAs. For this purpose polyacrylonitrile NFs and polyoxomolybdate [Mo154] (abbreviated as PAN NFs/[Mo154]) as a heterogeneous catalyst was prepared by electrospinning method with a diameter of about 100nm.

Objective: The PAN NFs/[Mo154] catalyze the selective aerobic oxidation of sulfur mustard stimulants, such as 2-chloroethyl ethyl sulfide (2-CEES) and 2-chloroethyl phenyl sulfide (2-CEPS) under green and “ambient” conditions (25 °C, 1atm O2) in the presence of ethanol with high efficiency and selectivity. 2-CEES was selected as a model reaction to optimize the parameters of the reaction.

Methods: The progress of the reaction was evaluated after different times using GC-FID, GCMS and TLC. The reaction product was also confirmed by 1H-NMR spectroscopy.

Results: The aerobic oxidation results of 2-CEES showed that PAN NFs/[Mo154] have a conversion of 98% to produce only a nontoxic product, 2-CEESO with the selectivity of 100% after 45min. The results were performed using [Mo154] without any PAN NFs for comparison whereas [Mo154] converts only 52% of 2-CEES under identical conditions.

Conclusion: Heterogeneous PAN NFs/[Mo154] catalyst was reused after washing with solvent up to 5 steps without leaching of [Mo154] from PAN NFs and without any loss in efficiency due to the morphology of NFs. In addition to the recovery of PAN NFs/[Mo154] in different cycles, the use of FT-IR, UV-Vis and TEM techniques confirms the stability and morphology of PAN NFs/[Mo154] after the fifth cycle, 2-CEES oxidation. According to our information, this report is the first use of PAN NFs enriched with [Mo154] for aerobic oxidation of sulfur mustard simulants.

Keywords: Sulfur mustard simulants, aerobic oxidation, polyoxomolybdates, polyacrylonitrile nanofiber, sulfoxide, blister agents.

Graphical Abstract

[1]
Bobbitt, N.S.; Mendonca, M.L.; Howarth, A.J.; Islamoglu, T.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Metal-organic frameworks for the remov-al of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev., 2017, 46(11), 3357-3385.
[http://dx.doi.org/10.1039/C7CS00108H] [PMID: 28345694]
[2]
Wang, Q-Q.; Begum, R.A.; Day, V.W.; Bowman-James, K. Sulfur, oxygen, and nitrogen mustards: Stability and reactivity. Org. Biomol. Chem., 2012, 10(44), 8786-8793.
[http://dx.doi.org/10.1039/c2ob26482j] [PMID: 23070251]
[3]
Sadeghi, M.; Yekta, S.; Hosseini, M.; Taghizadeh, M.J. Study on the effective decontamination and hydrolysis of sulfur mustard agent simu-lant using tenorite (CuO) nanoparticles as a destructive catalyst. Iran. Chem. Commun, 2015, 3, 125-136.
[4]
Boring, E.; Geletii, Y.V.; Hill, C.L. A homogeneous catalyst for selective O(2) oxidation at ambient temperature. diversity-based discovery and mechanistic investigation of thioether oxidation by the Au(III)Cl(2)NO(3)(thioether)/O(2) system. J. Am. Chem. Soc., 2001, 123(8), 1625-1635.
[http://dx.doi.org/10.1021/ja0033133] [PMID: 11456761]
[5]
Ringenbach, C.R.; Livingston, S.R.; Kumar, D.; Landry, C.C. Vanadium-doped acid-prepared mesoporous silica: synthesis, characterization, and catalytic studies on the oxidation of a mustard gas analogue. Chem. Mater., 2005, 17(22), 5580-5586.
[http://dx.doi.org/10.1021/cm051372f]
[6]
Wagner, G.W.; Yang, Y-C. Rapid nucleophilic/oxidative decontamination of chemical warfare agents. Ind. Eng. Chem. Res., 2002, 41(8), 1925-1928.
[http://dx.doi.org/10.1021/ie010732f]
[7]
Wagner, G.W.; Koper, O.B.; Lucas, E.; Decker, S.; Klabunde, K.J. Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydro-halogenation of HD. J. Phys. Chem. B, 2000, 104(21), 5118-5123.
[http://dx.doi.org/10.1021/jp000101j]
[8]
Popiel, S.; Nawała, J. Detoxification of sulfur mustard by enzyme-catalyzed oxidation using chloroperoxidase. Enzyme Microb. Technol., 2013, 53(5), 295-301.
[http://dx.doi.org/10.1016/j.enzmictec.2013.06.002] [PMID: 24034427]
[9]
Wu, K.H.; Yu, P.Y.; Yang, C.C.; Wang, G.P.; Chao, C.M. Preparation and characterization of polyoxometalate-modified poly(vinyl alco-hol)/polyethyleneimine hybrids as a chemical and biological self-detoxifying material. Polym. Degrad. Stabil., 2009, 94(9), 1411-1418.
[http://dx.doi.org/10.1016/j.polymdegradstab.2009.05.009] [PMID: 32287516]
[10]
Gall, R.D.; Hill, C.L.; Walker, J.E. Carbon powder and fiber-supported polyoxometalate catalytic materials. Preparation, characterization, and catalytic oxidation of dialkyl sulfides as mustard (HD) analogues. Chem. Mater., 1996, 8(10), 2523-2527.
[http://dx.doi.org/10.1021/cm9602757]
[11]
Carniato, F.; Bisio, C.; Psaro, R.; Marchese, L.; Guidotti, M. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical war-fare agents. Angew. Chem. Int. Ed. Engl., 2014, 53(38), 10095-10098.
[http://dx.doi.org/10.1002/anie.201405134] [PMID: 25056451]
[12]
Dong, J.; Hu, J.; Chi, Y.; Lin, Z.; Zou, B.; Yang, S.; Hill, C.L.; Hu, C. A Polyoxoniobate-polyoxovanadate double-anion catalyst for simulta-neous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4473-4477.
[http://dx.doi.org/10.1002/anie.201700159] [PMID: 28322483]
[13]
Li, X.; Dong, J.; Liu, H.; Sun, X.; Chi, Y.; Hu, C. Recoverable amphiphilic polyoxoniobates catalyzing oxidative and hydrolytic decontami-nation of chemical warfare agent simulants in emulsion. J. Hazard. Mater., 2018, 344, 994-999.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.061] [PMID: 30216973]
[14]
Okun, N.M.; Tarr, J.C.; Hilleshiem, D.A.; Zhang, L.; Hardcastle, K.I.; Hill, C.L. Highly reactive catalysts for aerobic thioether oxidation: The Fe-substituted polyoxometalate/hydrogen dinitrate system. J. Mol. Catal. Chem., 2006, 246(1-2), 11-17.
[http://dx.doi.org/10.1016/j.molcata.2005.10.006]
[15]
Zhang, X.; Li, Y.; Li, Y.; Wang, S.; Wang, X. Polyoxometalate immobilized on graphene via click reaction for simultaneous dismutation of H2O2 and oxidation of sulfur mustard simulant. ACS Appl. Nano Mater., 2019, 11(11), 6971-6981.
[http://dx.doi.org/10.1021/acsanm.9b01438]
[16]
Sharma, A.; Saxena, A.; Singh, B.; Sharma, M.; Suryanarayana, M.V.S.; Semwal, R.P.; Ganeshan, K.; Sekhar, K. In-situ degradation of sul-phur mustard and its simulants on the surface of impregnated carbon systems. J. Hazard. Mater., 2006, 133(1-3), 106-112.
[http://dx.doi.org/10.1016/j.jhazmat.2005.09.053] [PMID: 16297541]
[17]
Okun, N.M.; Anderson, T.M.; Hill, C.L. Polyoxometalates on cationic silica: Highly selective and efficient O2/air-based oxidation of 2-chloroethyl ethyl sulfide at ambient temperature. J. Mol. Catal. Chem., 2003, 197(1-2), 283-290.
[http://dx.doi.org/10.1016/S1381-1169(02)00651-9]
[18]
Hou, Y.; An, H.; Zhang, Y.; Hu, T.; Yang, W.; Chang, S. Rapid destruction of two types of chemical warfare agent simulants by hybrid poly-oxomolybdates modified by carboxylic acid ligands. ACS Catal., 2018, 8(7), 6062-6069.
[http://dx.doi.org/10.1021/acscatal.8b00972]
[19]
Marques, A.; Marin, M.; Ruasse, M-F. Hydrogen peroxide oxidation of mustard-model sulfides catalyzed by iron and manganese tetraarylporphyrines. Oxygen transfer to sulfides versus H(2)O(2) dismutation and catalyst breakdown. J. Org. Chem., 2001, 66(23), 7588-7595.
[http://dx.doi.org/10.1021/jo010217r] [PMID: 11701009]
[20]
Buru, C.T.; Wasson, M.C.; Farha, O.K.H. 5PV2Mo10O40 Polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant. ACS Appl. Nano Mater., 2020, 3(1), 658-664.
[http://dx.doi.org/10.1021/acsanm.9b02176]
[21]
Livingston, S.R.; Landry, C.C. Oxidation of a mustard gas analogue using an aldehyde/O2 system catalyzed by V-doped mesoporous silica. J. Am. Chem. Soc., 2008, 130(40), 13214-13215.
[http://dx.doi.org/10.1021/ja8056166] [PMID: 18781745]
[22]
Boring, E.; Geletii, Y.V.; Hill, C.L. Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions: Effect of solvents, ligands, and transition metals on reactivity. J. Mol. Catal. Chem., 2001, 176(1-2), 49-63.
[http://dx.doi.org/10.1016/S1381-1169(01)00246-1]
[23]
Gall, R.D.; Faraj, M.; Hill, C.L. Role of water in polyoxometalate-catalyzed oxidations in nonaqueous media. Scope, kinetics, and mecha-nism of oxidation of thioether mustard (HD) analogs by tert-butyl hydroperoxide catalyzed by H5PV2Mo10O40. Inorg. Chem., 1994, 33(22), 5015-5021.
[http://dx.doi.org/10.1021/ic00100a028]
[24]
Gall, R.D.; Hill, C.L.; Walker, J.E. Selective oxidation of thioether mustard (HD) analogs by tert-butyl hydroperoxide catalyzed by H5PV2Mo10O40 supported on porous carbon materials. J. Catal., 1996, 159(2), 473-478.
[http://dx.doi.org/10.1006/jcat.1996.0111]
[25]
Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational forms of matter: An inorganic super fullerene and kep-lerate based on molybdenum oxide. Angew. Chem. Int. Ed. Engl., 1998, 37(24), 3359-3363.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3359:AID-ANIE3359>3.0.CO;2-J] [PMID: 29711296]
[26]
Muller, A.; Kogerler, P.; Dress, A.W.M. Giant metal-oxide-based spheres and their topology: From pentagonal building blocks to keplerates and unusual spin systems. Coord. Chem. Rev., 2001, 222(1), 193-218.
[http://dx.doi.org/10.1016/S0010-8545(01)00391-5]
[27]
Muller, A.; Das, S.K.; Fedin, V.P.; Krickemeyer, E.; Beugholt, C.; Bogge, H.; Schmidtmann, M.; Hauptfleisch, B. Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15[MoVI126MoV28O462H14 (H2O)70]0.5[MoVI124MoV28O457H14(H2O)68]0.5. ca. H2O and Na22 [MoVI118MoV28O442H14(H2O)58 Ca. 250 H2O. Z. Anorg. Allg. Chem., 1999, 625, 1187-1192.
[28]
Rezaeifard, A.; Haddad, R.; Jafarpour, M.; Hakimi, M. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aque-ous suspension of olefins under mild aerobic conditions. J. Am. Chem. Soc., 2013, 135(27), 10036-10039.
[http://dx.doi.org/10.1021/ja405852s] [PMID: 23799637]
[29]
Rezaeifard, A.; Haddad, R.; Jafarpour, M.; Hakimi, M. {Mo132} nanoball as an efficient and cost-effective catalyst for sustainable oxidation of sulfides and olefins with hydrogen peroxide. ACS Sustain. Chem.& Eng., 2014, 2(4), 942-950.
[http://dx.doi.org/10.1021/sc4005263]
[30]
Enferadi-Kerenkan, A.; Do, T.O.; Kaliaguine, S. Heterogeneous catalysis by tungsten-based heteropoly compounds. Catal. Sci. Technol., 2018, 8(9), 2257-2284.
[http://dx.doi.org/10.1039/C8CY00281A]
[31]
Long, D.L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. Engl., 2010, 49(10), 1736-1758.
[http://dx.doi.org/10.1002/anie.200902483] [PMID: 20131346]
[32]
Ramakrishnan, R.; Sundarrajan, S.; Liu, Y.; Barhate, R.S.; Lala, N.L.; Ramakrishna, S. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology, 2006, 17(12), 2947-2953.
[http://dx.doi.org/10.1088/0957-4484/17/12/021]
[33]
Sheikh, F.A.; Kanjwal, M.A.; Saran, S.; Chung, W.J.; Kim, H. Polyurethane nanofibers containing copper nanoparticles as future materials. Appl. Surf. Sci., 2011, 257(7), 3020-3026.
[http://dx.doi.org/10.1016/j.apsusc.2010.10.110]
[34]
Im, J.S.; Park, S.J.; Kim, T.; Lee, Y.S. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. Int. J. Hydrogen Energy, 2009, 34(8), 3382-3388.
[http://dx.doi.org/10.1016/j.ijhydene.2009.02.047]
[35]
Oh, G.Y.; Ju, Y.W.; Jung, H.R.; Lee, W.J. Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electro-spinning and their toluene adsorption. J. Anal. Appl. Pyrolysis, 2008, 81(2), 211-217.
[http://dx.doi.org/10.1016/j.jaap.2007.11.006]
[36]
Tekmen, C.; Tsunekawa, Y.; Nakanishi, H. Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles. J. Mater. Process. Technol., 2010, 210(3), 451-455.
[http://dx.doi.org/10.1016/j.jmatprotec.2009.10.006]
[37]
Selvam, A.K.; Nallathambi, G. Mesoporous MgAl2O4 and MgTiO3 nanoparticles modified polyacrylonitrile nanofibres for 2-Chloroethyl ethyl sulfide degradation. Fibers Polym., 2015, 16(10), 2121-2129.
[http://dx.doi.org/10.1007/s12221-015-5429-0]
[38]
Dadvar, S.; Tavanai, H.; Morshed, M.; Ghiaci, M. The removal of 2-Chloroethyl ethyl sulfide using activated carbon nanofibers embedded with MgO and Al2O3 nanoparticles. J. Chem. Eng. Data, 2012, 57(5), 1456-1462.
[http://dx.doi.org/10.1021/je201328s]
[39]
Qiu, F.; Xia, Y.; Wu, T.; Ye, P.; Jia, X.; Chen, D. Rationally designed high-performance Zr(OH)4 @PAN nanofibrous membrane for self-detoxification of mustard gas simulant under an ambient condition. Separ. Purif. Tech., 2020, 252, 117452.
[http://dx.doi.org/10.1016/j.seppur.2020.117452]
[40]
Sundarrajan, S.; Venkatesan, A.; Ramakrishna, S. Fabrication of nanostructured self‐detoxifying nanofiber membranes that contain active polymeric functional groups. Macromol. Rapid Commun., 2009, 30(20), 1769-1774.
[http://dx.doi.org/10.1002/marc.200900208] [PMID: 21638452]
[41]
Yang, Y.C.; Baker, J.A.; Ward, J.R. Decontamination of chemical warfare agents. Chem. Rev., 1992, 92(8), 1729-1743.
[http://dx.doi.org/10.1021/cr00016a003]
[42]
Selvam, A.K.; Nallathambi, G. Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration. Fibers Polym., 2015, 16(6), 1327-1335.
[http://dx.doi.org/10.1007/s12221-015-1327-8]
[43]
Noro, S.; Tsunashima, R.; Kamiya, Y.; Uemura, K.; Kita, H.; Cronin, L.; Akutagawa, T.; Nakamura, T. Adsorption and catalytic properties of the inner nanospace of a gigantic ring-shaped polyoxometalate cluster. Angew. Chem. Int. Ed. Engl., 2009, 48(46), 8703-8706.
[http://dx.doi.org/10.1002/anie.200903142] [PMID: 19824029]
[44]
Ostroushko, A.A.; Korotayev, V.Y.; Tonkushina, M.O.; Grzhegorzhevskii, K.V.; Vazhenin, V.A.; Kutyashev, I.B.; Martynova, N.A.; Men’shikov, S.Y.; Selezneva, N.V. Electrotransport, sorption, and photochemical properties of nanocluster polyoxomolybdates with a to-roidal structure. Russ. J. Phys. Chem. A. Focus Chem., 2012, 86(8), 1268-1273.
[http://dx.doi.org/10.1134/S0036024412080092]
[45]
Muller, A.; Meyer, J.; Krickmeyer, E.; Diemann, E. Molybdenum blue: A 200 year old mystery unveiled. Angew. Chem. Int. Ed. Engl., 1996, 35(11), 1206-1208.
[http://dx.doi.org/10.1002/anie.199612061]
[46]
Guzman, G.; Yebka, B.; Livage, J.; Julien, C. Lithium intercalation studies in hydrated molybdenum oxides. Solid State Ion., 1996, 86, 407-413.
[http://dx.doi.org/10.1016/0167-2738(96)00338-4]
[47]
Grzhegorzhevskii, K.V.; Zelenovsky, P.S.; Koryakova, O.V.; Ostroushko, A.A. Thermal destruction of giant polyoxometalate nanoclusters: A vibrational spectroscopy study. Inorg. Chim. Acta, 2019, 489, 287-300.
[http://dx.doi.org/10.1016/j.ica.2019.01.016]
[48]
Gavrilova, N.; Myachina, M.; Harlamova, D.; Nazarov, V. Synthesis of molybdenum blue dispersions using ascorbic acid as reducing agent. Colloids Interfaces, 2020, 4(2), 24.
[http://dx.doi.org/10.3390/colloids4020024]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy