Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Neoteric Direct Physical Approaches in TDDS: A Boon for Permeation Enhancement

Author(s): Pradnya Palekar Shanbhag* and Ronak Jain

Volume 17, Issue 2, 2022

Published on: 24 May, 2022

Page: [79 - 85] Pages: 7

DOI: 10.2174/1574885517666220225122158

Price: $65

Abstract

Human skin has been explored for decades as a potential route for the delivery of various substances. It has shown considerable promise for the delivery of medications into the systemic circulation. It is also beneficial to treat local skin symptoms through the skin itself. However, the rigid stratum corneum layer has served as the biggest barrier to transdermal drug delivery. Various methods have been designed to overcome the barrier of the stratum corneum layer to allow the molecule to pass through it. These methods have been broadly classified into chemical and physical approaches. This study is an overall review of the physical approaches being used in transdermal drug delivery for overcoming the stratum corneum layer. Physical approaches also include direct and indirect methods; we will be considering the direct approaches herein.

Keywords: Transdermal drug delivery, physical enhancement, microneedles, minimally invasive technique, transdermal technologies, targeted delivery, stratum corneum.

Graphical Abstract

[1]
Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur J Pharm Biopharm 2015; 89: 312-28.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.020] [PMID: 25541440]
[2]
Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015; 7(4): 438-70.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[3]
Tedesco A, Primo L, de Siqueira M, Marigilson P. Nanodrug delivery systems for dermal and transdermal photosensitizer drugs. Nano Microscale Drug Delivery Syst 2017; 267-80.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00014-5]
[4]
Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release 2017; 247: 86-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.022] [PMID: 28024914]
[5]
Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017; 9(4): 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[6]
Ita KB. Chemical penetration enhancers for transdermal drug delivery-success and challenges. Curr Drug Deliv 2015; 12(6): 645-51.
[http://dx.doi.org/10.2174/1567201812666150804104600] [PMID: 26239423]
[7]
Bhalla M, Thami GP. Microdermabrasion: Reappraisal and brief review of literature. Dermatol Surg 2006; 32(6): 809-14.
[http://dx.doi.org/10.1097/00042728-200606000-00009] [PMID: 16792646]
[8]
Rajan P, Grimes PE. Skin barrier changes induced by aluminum oxide and sodium chloride microdermabrasion. Dermatol Surg 2002; 28(5): 390-3.
[PMID: 12030870]
[9]
Freedman BM, Rueda-Pedraza E, Waddell SP. The epidermal and dermal changes associated with microdermabrasion. Dermatol Surg 2001; 27(12): 1031-3.
[PMID: 11849265]
[10]
Andrews SN, Zarnitsyn V, Bondy B, Prausnitz MR. Optimization of microdermabrasion for controlled removal of stratum corneum. Int J Pharm 2011; 407(1-2): 95-104.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.034] [PMID: 21272628]
[11]
Lee JW, Gadiraju P, Park JH, Allen MG, Prausnitz MR. Microsecond thermal ablation of skin for transdermal drug delivery. J Control Release 2011; 154(1): 58-68.
[http://dx.doi.org/10.1016/j.jconrel.2011.05.003] [PMID: 21596072]
[12]
Park JH, Lee JW, Kim YC, Prausnitz MR. The effect of heat on skin permeability. Int J Pharm 2008; 359(1-2): 94-103.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.032] [PMID: 18455889]
[13]
Paranjape M, Garra J, Brida S, Schneider T, White R, Currie J. A PDMS dermal patch for no-intrusive transdermal glucose sensing. Sens Actuators A Phys 2003; 104(3): 195-204.
[http://dx.doi.org/10.1016/S0924-4247(03)00049-9]
[14]
Anhalt H, Bohannon NJ. Insulin patch pumps: Their development and future in closed-loop systems. Diabetes Technol Ther 2010; 12(1)(Suppl. 1): S51-8.
[http://dx.doi.org/10.1089/dia.2010.0016] [PMID: 20515308]
[15]
Liu Y, Kendall MA. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine. Biotechnol Bioeng 2007; 97(5): 1300-8.
[http://dx.doi.org/10.1002/bit.21324] [PMID: 17216659]
[16]
Waghule T, Singhvi G, Dubey SK, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother 2019; 109: 1249-58.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[17]
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64(14): 1547-68.
[http://dx.doi.org/10.1016/j.addr.2012.04.005] [PMID: 22575858]
[18]
Jang HJ, Hur E, Kim Y, Lee SH, Kang NG, Yoh JJ. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery. J Biomed Opt 2014; 19(11): 118002.
[http://dx.doi.org/10.1117/1.JBO.19.11.118002] [PMID: 25408959]
[19]
Jang HJ, Yeo S, Yoh JJ. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration. Lasers Surg Med 2017; 49(4): 387-94.
[http://dx.doi.org/10.1002/lsm.22608] [PMID: 27778355]
[20]
Prow T, Mohammed Y. Topical microneedle drug delivery enhanced with magnetophoresis Advances in Dermatological Sciences. RSC Publishing 2013; pp. 169-77.
[21]
Donnelly RF, Garland MJ, Alkilani AZ. Microneedle-iontophoresis combinations for enhanced transdermal drug delivery. Methods Mol Biol 2014; 1141: 121-32.
[http://dx.doi.org/10.1007/978-1-4939-0363-4_7] [PMID: 24567135]
[22]
Dragicevic N, Maibach H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev 2018; 127: 58-84.
[http://dx.doi.org/10.1016/j.addr.2018.02.003] [PMID: 29425769]
[23]
Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: Mechanisms and clinical consequences. Nat Rev Immunol 2004; 4(3): 211-22.
[http://dx.doi.org/10.1038/nri1310] [PMID: 15039758]
[24]
Levin C, Perrin H, Combadiere B. Tailored immunity by skin antigen-presenting cells. Hum Vaccin Immunother 2015; 11(1): 27-36.
[http://dx.doi.org/10.4161/hv.34299] [PMID: 25483512]
[25]
McNeilly CL, Crichton ML, Primiero CA, Frazer IH, Roberts MS, Kendall MA. Microprojection arrays to immunise at mucosal surfaces. J Control Release 2014; 196: 252-60.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.028] [PMID: 25285611]
[26]
Yousafzai MT, Saleem AF, Mach O, Baig A, Sutter RW, Zaidi AKM. Feasibility of conducting intradermal vaccination campaign with inactivated poliovirus vaccine using Tropis intradermal needle free injection system, Karachi, Pakistan. Heliyon 2017; 3(8): e00395.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00395] [PMID: 29333501]
[27]
Baleeiro RB, Wiesmüller KH, Reiter Y, et al. Topical vaccination with functionalized particles targeting dendritic cells. J Invest Dermatol 2013; 133(8): 1933-41.
[http://dx.doi.org/10.1038/jid.2013.79] [PMID: 23426134]
[28]
Yu J, Zhang Y, Ye Y, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA 2015; 112(27): 8260-5.
[http://dx.doi.org/10.1073/pnas.1505405112] [PMID: 26100900]
[29]
Lee H, Song C, Hong YS, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 2017; 3(3): e1601314.
[http://dx.doi.org/10.1126/sciadv.1601314] [PMID: 28345030]
[30]
Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 2016; 11(6): 566-72.
[http://dx.doi.org/10.1038/nnano.2016.38] [PMID: 26999482]
[31]
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and transdermal drug delivery: From simple potions to smart technologies. Curr Drug Deliv 2019; 16(5): 444-60.
[http://dx.doi.org/10.2174/1567201816666190201143457] [PMID: 30714524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy