Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

The Current and Evolving Role of Immunotherapy in Metastatic Colorectal Cancer

Author(s): Virgilio S. Silva, Rachel P. Riechelmann*, Celso A. Mello, Tiago Felismino and Rodrigo Taboada

Volume 22, Issue 8, 2022

Published on: 09 June, 2022

Page: [617 - 628] Pages: 12

DOI: 10.2174/1568009622666220224110912

Price: $65

conference banner
Abstract

Immunotherapy can be considered a therapeutic revolution in oncology, with great impact on many tumor types, such as melanoma and non-small cell lung cancer. However, in metastatic colorectal cancer, the benefits in terms of prolonged tumor control and high response rate are limited to the rare subgroup of tumors with high mutation burden - mostly tumors that harbor microsatellite instability (MSI) or a deficient mismatch repair system (dMMR), or tumor microsatellite stability and damaging mutations in the exonuclease domains of POLE or POLD. The KEYNOTE-028 uncontrolled phase II trial demonstrated an impressive antitumor activity of pembrolizumab in patients with treatmentrefractory Lynch-associated tumors, including colorectal cancer. Nivolumab with or without ipilimumab confirmed the efficacy of immune checkpoint inhibitors in patients with previously treated dMMR / MSI metastatic colorectal cancer. The recent KEYNOTE-177 phase III trial demonstrated that pembrolizumab significantly reduced the relative risk of disease progression or death and improved progression-free survival in patients with treatment-naive dMMR / MSI metastatic colorectal cancer in comparison with first-line chemotherapy with or without biologics. Unfortunately, current pharmacological strategies with immunotherapy have not been successful for most patients with microsatellite stable metastatic colorectal cancer. In this review, we critically appraise the applicability of immune checkpoint inhibitors in dMMR/MSI metastatic colorectal cancer. We also discuss the recent negative trials of immunotherapy combinations in microsatellite stable tumors and more mature immunotherapy ongoing studies in the field of advanced colorectal cancer.

Keywords: Colorectal cancer, immune checkpoint inhibitors, immunotherapy, microsatellite stability, microsatellite instability, monoclonal antibody.

Next »
[1]
Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel), 2020, 12(3), 738.
[http://dx.doi.org/10.3390/cancers12030738] [PMID: 32245016]
[2]
Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[3]
Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr; Italiano, A.; Kao, S.; Piha-Paul, S.A.; Delord, J.P.; McWilliams, R.R.; Fabrizio, D.A.; Aurora-Garg, D.; Xu, L.; Jin, F.; Norwood, K.; Bang, Y.J. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol., 2020, 21(10), 1353-1365.
[http://dx.doi.org/10.1016/S1470-2045(20)30445-9] [PMID: 32919526]
[4]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa, E. Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[5]
André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; de la Fouchardiere, C.; Rivera, F.; Elez, E.; Bendell, J.; Le, D.T.; Yoshino, T.; Van Cutsem, E.; Yang, P.; Farooqui, M.Z.H.; Marinello, P.; Diaz, L.A., Jr Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med., 2020, 383(23), 2207-2218.
[http://dx.doi.org/10.1056/NEJMoa2017699] [PMID: 33264544]
[6]
Silberman, R.; Steiner, D.F.; Lo, A.A.; Gomez, A.; Zehnder, J.L. Complete and prolonged response to immune checkpoint blockade in pole -mutated colorectal cancer. JCO Precis. Oncol., 2019, 3, 1-5.
[http://dx.doi.org/10.1200/PO.18.00214]
[7]
Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature, 1998, 396(6712), 643-649.
[http://dx.doi.org/10.1038/25292] [PMID: 9872311]
[8]
Alex, A.K.; Siqueira, S.; Coudry, R.; Santos, J.; Alves, M.; Hoff, P.M.; Riechelmann, R.P. Response to chemotherapy and prognosis in metastatic colorectal cancer with DNA deficient mismatch repair. Clin. Colorectal Cancer, 2017, 16(3), 228-239.
[http://dx.doi.org/10.1016/j.clcc.2016.11.001] [PMID: 28063788]
[9]
Koopman, M.; Kortman, G.A.M.; Mekenkamp, L.; Ligtenberg, M.J.L.; Hoogerbrugge, N.; Antonini, N.F.; Punt, C.J.A.; van Krieken, J.H.J.M. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer, 2009, 100(2), 266-273.
[http://dx.doi.org/10.1038/sj.bjc.6604867] [PMID: 19165197]
[10]
Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; Tu, D.; Redston, M.; Gallinger, S. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med., 2003, 349(3), 247-257.
[http://dx.doi.org/10.1056/NEJMoa022289] [PMID: 12867608]
[11]
Taieb, J.; Shi, Q.; Pederson, L.; Alberts, S.; Wolmark, N.; Van Cutsem, E.; de Gramont, A.; Kerr, R.; Grothey, A.; Lonardi, S.; Yoshino, T.; Yothers, G.; Sinicrope, F.A.; Zaanan, A.; André, T. Prognosis of microsatellite instability and/or mismatch repair deficiency stage III colon cancer patients after disease recurrence following adjuvant treatment: results of an ACCENT pooled analysis of seven studies. Ann. Oncol., 2019, 30(9), 1466-1471.
[http://dx.doi.org/10.1093/annonc/mdz208] [PMID: 31268130]
[12]
Efremova, M.; Finotello, F.; Rieder, D.; Trajanoski, Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front. Immunol., 2017, 8(8), 1679.
[http://dx.doi.org/10.3389/fimmu.2017.01679] [PMID: 29234329]
[13]
Nosho, K.; Baba, Y.; Tanaka, N.; Shima, K.; Hayashi, M.; Meyerhardt, J.A.; Giovannucci, E.; Dranoff, G.; Fuchs, C.S.; Ogino, S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J. Pathol., 2010, 222(4), 350-366.
[http://dx.doi.org/10.1002/path.2774] [PMID: 20927778]
[14]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[15]
Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; Gilson, M.M.; Wang, C.; Selby, M.; Taube, J.M.; Anders, R.; Chen, L.; Korman, A.J.; Pardoll, D.M.; Lowy, I.; Topalian, S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, 28(19), 3167-3175.
[http://dx.doi.org/10.1200/JCO.2009.26.7609] [PMID: 20516446]
[16]
Lipson, E.J.; Sharfman, W.H.; Drake, C.G.; Wollner, I.; Taube, J.M.; Anders, R.A.; Xu, H.; Yao, S.; Pons, A.; Chen, L.; Pardoll, D.M.; Brahmer, J.R.; Topalian, S.L. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res., 2013, 19(2), 462-468.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2625] [PMID: 23169436]
[17]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[18]
Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; Guimbaud, R.; Taniguchi, H.; Elez, E.; Al-Batran, S.E.; Boland, P.M.; Crocenzi, T.; Atreya, C.E.; Cui, Y.; Dai, T.; Marinello, P.; Diaz, L.A., Jr; André, T.; Phase, I.I. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol., 2020, 38(1), 11-19.
[http://dx.doi.org/10.1200/JCO.19.02107] [PMID: 31725351]
[19]
André, T; Amonkar, M 396O Health-related quality of life (HRQoL) in patients (pts) treated with pembrolizu- mab (pembro) vs chemotherapy as first-line treatment in micro-satellite instability-high (MSI-H) and/or deficient mismatch re- pair (dMMR) metastatic colorectal cancer (mCRC): Phase III KEYNOTE-177 study. Ann Oncol, 2020, 31(Suppl 4S409)
[20]
Shiu, K.K.; Andre, T.; Kim, T.W.; Jensen, B.V.; Jensen, L.H. KEYNOTE-177: Phase III randomized study of pembrolizumab versus chemotherapy for microsatellite instability-high advanced colorectal cancer. J. Clin. Oncol., 2021, 39(3)(Suppl.), 6-6.
[21]
Colle, R.; Radzik, A.; Cohen, R.; Pellat, A.; Lopez-Tabada, D.; Cachanado, M.; Duval, A.; Svrcek, M.; Menu, Y.; André, T. Pseudoprogression in patients treated with immune checkpoint inhibitors for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer. Eur. J. Cancer, 2021, 144, 9-16.
[http://dx.doi.org/10.1016/j.ejca.2020.11.009] [PMID: 33316636]
[22]
Liao, W.; Overman, M.J.; Boutin, A.T.; Shang, X.; Zhao, D.; Dey, P.; Li, J.; Wang, G.; Lan, Z.; Li, J.; Tang, M.; Jiang, S.; Ma, X.; Chen, P.; Katkhuda, R.; Korphaisarn, K.; Chakravarti, D.; Chang, A.; Spring, D.J.; Chang, Q.; Zhang, J.; Maru, D.M.; Maeda, D.Y.; Zebala, J.A.; Kopetz, S.; Wang, Y.A.; DePinho, R.A. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell, 2019, 35(4), 559-572.e7.
[http://dx.doi.org/10.1016/j.ccell.2019.02.008] [PMID: 30905761]
[23]
Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; Goldberg, M.V.; Cao, Z.A.; Ledeine, J.M.; Maglinte, G.A.; Kopetz, S.; André, T. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol., 2017, 18(9), 1182-1191.
[http://dx.doi.org/10.1016/S1470-2045(17)30422-9] [PMID: 28734759]
[24]
Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; Sawyer, M.B.; Hendlisz, A.; Neyns, B.; Svrcek, M.; Moss, R.A.; Ledeine, J.M.; Cao, Z.A.; Kamble, S.; Kopetz, S.; André, T. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol., 2018, 36(8), 773-779.
[http://dx.doi.org/10.1200/JCO.2017.76.9901] [PMID: 29355075]
[25]
Silva, V.S.E.; De Brot, L.; Riechelmann, R.P. Testing microsatellite instability in solid tumors: the ideal versus what is real. Ann. Transl. Med., 2019, 7(21), 600.
[http://dx.doi.org/10.21037/atm.2019.09.124] [PMID: 32047761]
[26]
Fabrizio, D.A.; George, T.J., Jr; Dunne, R.F.; Frampton, G.; Sun, J.; Gowen, K.; Kennedy, M.; Greenbowe, J.; Schrock, A.B.; Hezel, A.F.; Ross, J.S.; Stephens, P.J.; Ali, S.M.; Miller, V.A.; Fakih, M.; Klempner, S.J. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J. Gastrointest. Oncol., 2018, 9(4), 610-617.
[http://dx.doi.org/10.21037/jgo.2018.05.06] [PMID: 30151257]
[27]
Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov., 2020, 10(12), 1808-1825.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0522] [PMID: 33139244]
[28]
Schrock, A.B.; Ouyang, C.; Sandhu, J.; Sokol, E.; Jin, D.; Ross, J.S.; Miller, V.A.; Lim, D.; Amanam, I.; Chao, J.; Catenacci, D.; Cho, M.; Braiteh, F.; Klempner, S.J.; Ali, S.M.; Fakih, M. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol., 2019, 30(7), 1096-1103.
[http://dx.doi.org/10.1093/annonc/mdz134] [PMID: 31038663]
[29]
Meiri, E.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; Shrestha, S.; Ahn, E.R.; Osayameh, O.; Perla, V.; Schilsky, R.L. Pembrolizumab (P) in patients (Pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): Results from the targeted agent and profiling utilization registry (TAPUR) Study. J. Clin. Oncol., 2020, 38(4)(Suppl.), 133-133.
[30]
Mur, P.; García-Mulero, S.; Del Valle, J.; Magraner-Pardo, L.; Vidal, A.; Pineda, M.; Cinnirella, G.; Martín-Ramos, E.; Pons, T.; López-Doriga, A.; Belhadj, S.; Feliubadaló, L.; Munoz-Torres, P.M.; Navarro, M.; Grau, E.; Darder, E.; Llort, G.; Sanz, J.; Ramón, Y. Cajal, T.; Balmana, J.; Brunet, J.; Moreno, V.; Piulats, J.M.; Matías-Guiu, X.; Sanz-Pamplona, R.; Aligué, R.; Capellá, G.; Lázaro, C.; Valle, L.; Valle, L. Role of POLE and POLD1 in familial cancer. Genet. Med., 2020, 22(12), 2089-2100.
[http://dx.doi.org/10.1038/s41436-020-0922-2] [PMID: 32792570]
[31]
Sinicrope, F.A.; Rego, R.L.; Ansell, S.M.; Knutson, K.L.; Foster, N.R.; Sargent, D.J. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology, 2009, 137(4), 1270-1279.
[http://dx.doi.org/10.1053/j.gastro.2009.06.053] [PMID: 19577568]
[32]
Limagne, E.; Euvrard, R.; Thibaudin, M.; Rébé, C.; Derangère, V.; Chevriaux, A.; Boidot, R.; Végran, F.; Bonnefoy, N.; Vincent, J.; Bengrine-Lefevre, L.; Ladoire, S.; Delmas, D.; Apetoh, L.; Ghiringhelli, F. Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX-Bevacizumab Drug Treatment Regimen. Cancer Res., 2016, 76(18), 5241-5252.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3164] [PMID: 27496709]
[33]
Ledys, F.; Klopfenstein, Q.; Truntzer, C.; Arnould, L.; Vincent, J.; Bengrine, L.; Remark, R.; Boidot, R.; Ladoire, S.; Ghiringhelli, F.; Derangere, V. RAS status and neoadjuvant chemotherapy impact CD8+ cells and tumor HLA class I expression in liver metastatic colorectal cancer. J. Immunother. Cancer, 2018, 6(1), 123.
[http://dx.doi.org/10.1186/s40425-018-0438-3] [PMID: 30454021]
[34]
Choudhry, H. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules, 2021, 26(1), 206.
[http://dx.doi.org/10.3390/molecules26010206] [PMID: 33401586]
[35]
Franke, A.J.; Skelton, W.P.; Starr, J.S.; Parekh, H.; Lee, J.J.; Overman, M.J.; Allegra, C.; George, T.J. Immunotherapy for colorectal cancer: A review of current and novel therapeutic approaches. J. Natl. Cancer Inst., 2019, 111(11), 1131-1141.
[http://dx.doi.org/10.1093/jnci/djz093] [PMID: 31322663]
[36]
Grothey, A.; Tabernero, J.; Arnold, D. LBA19 Fluoropyrimidine (FP). bevacizumab(BEV). atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer(mCRC): findings from Cohort 2 of MODUL–a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy. Ann Oncol., 2018, 29(suppl 8)
[37]
Mettu, N.B.; Niedzwiecki, D.; Boland, P.M. BACCI: A phase II randomized, double-blind, placebo-controlled study of capecitabine bevacizumab plus atezolizumab versus capecitabine bevacizumab plus placebo in patients with refractory metastatic colorectal cancer. Ann. Oncol., 2019, 30(Suppl. 5), v198-v252.
[http://dx.doi.org/10.1093/annonc/mdz246.011]
[38]
Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; Hirano, N.; Wakabayashi, M.; Nomura, S.; Sato, A.; Kuwata, T.; Togashi, Y.; Nishikawa, H.; Shitara, K. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol., 2020, 38(18), 2053-2061.
[http://dx.doi.org/10.1200/JCO.19.03296] [PMID: 32343640]
[39]
Cousin, S.; Carine, A.; Guégan, J.; Gomez-Roca, C. REGOMUNE: A phase II study of regorafenib plus avelumab in solid tumors Results of the non-MSI-H metastatic colorectal cancer (mCRC) cohort. J. Clin. Oncol., 2020, 38(15), 4019.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4019]
[40]
Wang, C.; Chevalier, D.; Saluja, J.; Sandhu, J.; Lau, C.; Fakih, M. Regorafenib and nivolumab or pembrolizumab combination and circulating tumor DNA response assessment in refractory microsatellite stable colorectal cancer. Oncologist, 2020, 25(8), e1188-e1194.
[http://dx.doi.org/10.1634/theoncologist.2020-0161] [PMID: 32406541]
[41]
Fountzilas, C.; Mukherjee, S.; Saltzman, J. P-156 A phase Ib/II study of cetuximab and pembrolizumab in metastatic colorectal cancer. Ann. Oncol., 2020, 31, 140.
[http://dx.doi.org/10.1016/j.annonc.2020.04.238]
[42]
Chen, E.X.; Jonker, D.J.; Kennecke, H.F. CCTG CO.26 trial: A phase II randomized study of durvalumab(D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with advanced refractory colorectal carcinoma (rCRC). J. Clin. Oncol., 2019, 37, 48.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.481]
[43]
Sun, X.; Suo, J.; Yan, J. Immunotherapy in human colorectal cancer: Challenges and prospective. World J. Gastroenterol., 2016, 22(28), 6362-6372.
[http://dx.doi.org/10.3748/wjg.v22.i28.6362] [PMID: 27605872]
[44]
Østrup, O.; Dagenborg, V.J.; Rødland, E.A.; Skarpeteig, V.; Silwal-Pandit, L.; Grzyb, K.; Berstad, A.E.; Fretland, Å.A.; Mælandsmo, G.M.; Børresen-Dale, A.L.; Ree, A.H.; Edwin, B.; Nygaard, V.; Flatmark, K. Molecular signatures reflecting microenvironmental metabolism and chemotherapy-induced immunogenic cell death in colorectal liver metastases. Oncotarget, 2017, 8(44), 76290-76304.
[http://dx.doi.org/10.18632/oncotarget.19350] [PMID: 29100312]
[45]
Noonan, A.; Bekaii-Saab, T.S.; O’Neil, B.H.; Sehdev, A.; Shaib, W.L.; Paul, R.; Helft, P.R.; Loehrer, P.J.; Tong, Y.; Liu, Z.; El-Rayes, B.F. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer. J. Clin. Oncol., 2017, 35(15), 3541.
[46]
Lee, J.J.; Yothers, G.; Jacobs, S.A.; Sanoff, H.K. Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) study (NRG- GI004/SWOG-S1610): A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients (pts) with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer (mCRC). J. Clin. Oncol., 2019, 37(4)(_Suppl.), TPS728-TPS728.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.TPS728]
[47]
Taïeb, J.; André, T.; El Hajbi, F.; Barbier, E.; Toullec, C.; Kim, S.; Bouche, O.; Di Fiore, F.; Chauvenet, M.; Perrier, H.; Evesque, L.; Laurent-Puig, P.; Emile, J.F.; Bez, J.; Lepage, C.; Tougeron, D. Avelumab versus standard second line treatment chemotherapy in metastatic colorectal cancer patients with microsatellite instability: The SAMCO-PRODIGE 54 randomised phase II trial. Dig Liver Dis, 2020, S1590-8658(20), 31052-31055.
[48]
Vikas, P.; Borcherding, N.; Chennamadhavuni, A.; Garje, R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front. Oncol., 2020, 10, 570.
[http://dx.doi.org/10.3389/fonc.2020.00570] [PMID: 32457830]
[49]
Rouleau, M.; Patel, A.; Hendzel, M.J.; Kaufmann, S.H.; Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer, 2010, 10(4), 293-301.
[http://dx.doi.org/10.1038/nrc2812] [PMID: 20200537]
[50]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[51]
Dias Carvalho, P.; Machado, A.L.; Martins, F.; Seruca, R.; Velho, S. Targeting the tumor microenvironment: An unexplored strategy for mutant KRAS tumors. Cancers (Basel), 2019, 11(12), 2010.
[http://dx.doi.org/10.3390/cancers11122010] [PMID: 31847096]
[52]
Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; Lanman, B.A.; Werner, J.; Rapaport, A.S.; San Miguel, T.; Ortiz, R.; Osgood, T.; Sun, J.R.; Zhu, X.; McCarter, J.D.; Volak, L.P.; Houk, B.E.; Fakih, M.G.; O’Neil, B.H.; Price, T.J.; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Hong, D.S.; Ouyang, W.; Henary, H.; Arvedson, T.; Cee, V.J.; Lipford, J.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575(7781), 217-223.
[http://dx.doi.org/10.1038/s41586-019-1694-1] [PMID: 31666701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy