Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Increase in Cisplatin Resistance by MeCP2 in Human Gastric Cancer through the Activation of the AKT Pathway by Facilitating PDK-1 Transcription

Author(s): Bo Guo, Shuang Cai, Wen Li, Chen Guo, Yijie Liu, Xiaoping Ma, Hailin Ma and Lingyu Zhao*

Volume 22, Issue 5, 2022

Published on: 22 April, 2022

Page: [414 - 425] Pages: 12

DOI: 10.2174/1568009622666220223115216

Price: $65

Abstract

Background: Increasing evidence indicates that an imbalance in oncogenes is implicated in cancer chemotherapy resistance. Methyl-CpG binding protein 2 (MeCP2), which acts as a major epigenetic regulator of the expression of various genes, is involved in the carcinogenesis and progression of gastric cancer. However, is it not known whether the role of MeCP2 is vital in acquired cisplatin resistance in gastric cancer.

Objective: This study aimed to determine whether inhibition of MeCP2 expression could sensitize DDP-resistant GC cells to DDP and elucidate the underlying molecular mechanism.

Methods: qRT-PCR and western blotting were used to evaluate MeCP2 expression in DDP-resistant GC cells. Subsequently, cell viability, colony formation, cell cycle, apoptosis, and tumorigenicity assays were performed to explore the in vitro and in vivo roles of MeCP2. Chromatin immunoprecipitation- qPCR and luciferase reporter assays were used to identify whether 3-phosphoinositide-dependent protein kinase 1 (PDK-1) was a direct target gene of MeCP2.

Results: MeCP2 was upregulated in malignant DDP-resistant cells compared to non-DDP-resistant GC cells or normal gastric epithelial cells. MeCP2 knockdown increased the sensitivity of DDP-resistant GC cells to DDP, resulting in reduced cell growth, G0/G1 phase arrest, and increased apoptosis, whereas MeCP2 overexpression attenuated DDP sensitivity of DDP-resistant GC cells. In addition, MeCP2 knockdown enhanced DDP sensitivity in vivo. MeCP2 elevated PDK-1 expression by binding to CpG sites in promoter regions, and inhibition of PDK-1 reversed the inductive effect of MeCP2 overexpression on DDP resistance in GC cells.

Conclusion: These findings indicate that silencing of MeCP2 may potentiate DDP-induced cell death, thereby providing a promising therapeutic strategy for GC.

Keywords: Chemotherapy resistance, cisplatin, MeCP2, PDK-1, gastric cancer, DDP sensitivity.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Tan, P.; Yeoh, K.G. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology, 2015, 149(5), 1153-1162.e3.
[http://dx.doi.org/10.1053/j.gastro.2015.05.059] [PMID: 26073375]
[3]
Sakuramoto, S.; Sasako, M.; Yamaguchi, T.; Kinoshita, T.; Fujii, M.; Nashimoto, A.; Furukawa, H.; Nakajima, T.; Ohashi, Y.; Imamura, H.; Higashino, M.; Yamamura, Y.; Kurita, A.; Arai, K. ACTS-GC Group. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med., 2007, 357(18), 1810-1820.
[http://dx.doi.org/10.1056/NEJMoa072252] [PMID: 17978289]
[4]
Verstraelen, J.; Reichl, S. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue. Mol. Pharm., 2014, 11(7), 2160-2171.
[http://dx.doi.org/10.1021/mp400625z] [PMID: 24456047]
[5]
Greger, J.G.; Eastman, S.D.; Zhang, V.; Bleam, M.R.; Hughes, A.M.; Smitheman, K.N.; Dickerson, S.H.; Laquerre, S.G.; Liu, L.; Gilmer, T.M. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol. Cancer Ther., 2012, 11(4), 909-920.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0989] [PMID: 22389471]
[6]
Bachleitner-Hofmann, T.; Sun, M.Y.; Chen, C.T.; Tang, L.; Song, L.; Zeng, Z.; Shah, M.; Christensen, J.G.; Rosen, N.; Solit, D.B.; Weiser, M.R. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol. Cancer Ther., 2008, 7(11), 3499-3508.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0374] [PMID: 18974395]
[7]
Chen, C.T.; Kim, H.; Liska, D.; Gao, S.; Christensen, J.G.; Weiser, M.R. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol. Cancer Ther., 2012, 11(3), 660-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0754] [PMID: 22238368]
[8]
Hite, K.C.; Adams, V.H. Hansen, JC Recent advances in MeCP2 structure and function. Biochem. Cell Biol., 2009, 87(1), 219-227.
[9]
Yasui, D.H.; Peddada, S.; Bieda, M.C.; Vallero, R.O.; Hogart, A.; Nagarajan, R.P.; Thatcher, K.N.; Farnham, P.J.; Lasalle, J.M. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19416-19421.
[http://dx.doi.org/10.1073/pnas.0707442104] [PMID: 18042715]
[10]
Chahrour, M.; Jung, S.Y.; Shaw, C.; Zhou, X.; Wong, S.T.C.; Qin, J.; Zoghbi, H.Y. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 2008, 320(5880), 1224-1229.
[http://dx.doi.org/10.1126/science.1153252] [PMID: 18511691]
[11]
Mellén, M.; Ayata, P.; Dewell, S.; Kriaucionis, S.; Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 2012, 151(7), 1417-1430.
[http://dx.doi.org/10.1016/j.cell.2012.11.022] [PMID: 23260135]
[12]
Darwanto, A.; Kitazawa, R.; Maeda, S.; Kitazawa, S. MeCP2 and promoter methylation cooperatively regulate E-cadherin gene expression in colorectal carcinoma. Cancer Sci., 2003, 94(5), 442-447.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01462.x] [PMID: 12824891]
[13]
Joss-Moore, L.A.; Wang, Y.; Ogata, E.M.; Sainz, A.J.; Yu, X.; Callaway, C.W.; McKnight, R.A.; Albertine, K.H.; Lane, R.H. IUGR differentially alters MeCP2 expression and H3K9Me3 of the PPARγ gene in male and female rat lungs during alveolarization. Birth Defects Res. A Clin. Mol. Teratol., 2011, 91(8), 672-681.
[http://dx.doi.org/10.1002/bdra.20783] [PMID: 21425435]
[14]
Bernard, D.; Gil, J.; Dumont, P.; Rizzo, S.; Monté, D.; Quatannens, B.; Hudson, D.; Visakorpi, T.; Fuks, F.; de Launoit, Y. The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene, 2006, 25(9), 1358-1366.
[http://dx.doi.org/10.1038/sj.onc.1209179] [PMID: 16331274]
[15]
Tong, D.; Zhang, J.; Wang, X.; Li, Q.; Liu, L.Y.; Yang, J.; Guo, B.; Ni, L.; Zhao, L.; Huang, C. MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated P53 degradation by inhibiting RPL5/RPL11 transcription. Oncogenesis, 2020, 9(5), 56.
[http://dx.doi.org/10.1038/s41389-020-0239-7] [PMID: 32483207]
[16]
Danam, R.P.; Howell, S.R.; Brent, T.P.; Harris, L.C. Epigenetic regulation of O6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol. Cancer Ther., 2005, 4(1), 61-69.
[PMID: 15657354]
[17]
Zhao, L.; Liu, Y.; Tong, D.; Qin, Y.; Yang, J.; Xue, M.; Du, N.; Liu, L.; Guo, B.; Hou, N.; Han, J.; Liu, S.; Liu, N.; Zhao, X.; Wang, L.; Chen, Y.; Huang, C. MeCP2 promotes gastric cancer progression through regulating foxf1/wnt5a/β-catenin and myod1/caspase-3 signaling pathways. EBioMedicine, 2017, 16, 87-100.
[http://dx.doi.org/10.1016/j.ebiom.2017.01.021] [PMID: 28131747]
[18]
Cavazzuti, M.; Duffy, T.E. C-JUN regulates PDK1 transcription: Implication for AKT and PKC activities and melanoma tumorigenesis. J. Biol. Chem., 2009, 285(2), 903.
[PMID: 19910471]
[19]
Iorns, E.; Lord, C.J.; Ashworth, A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem. J., 2009, 417(1), 361-370.
[http://dx.doi.org/10.1042/BJ20081682] [PMID: 18976239]
[20]
Kasowski, M.; Grubert, F.; Heffelfinger, C.; Hariharan, M.; Asabere, A.; Waszak, S.M.; Habegger, L.; Rozowsky, J.; Shi, M.; Urban, A.E.; Hong, M.Y.; Karczewski, K.J.; Huber, W.; Weissman, S.M.; Gerstein, M.B.; Korbel, J.O.; Snyder, M. Variation in transcription factor binding among humans. Science, 2010, 328(5975), 232-235.
[http://dx.doi.org/10.1126/science.1183621] [PMID: 20299548]
[21]
Zhao, L.Y.; Tong, D.D.; Xue, M.; Ma, H.L.; Liu, S.Y.; Yang, J.; Liu, Y.X.; Guo, B.; Ni, L.; Liu, L.Y.; Qin, Y.N.; Wang, L.M.; Zhao, X.G.; Huang, C. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis, 2017, 6(7), e368.
[http://dx.doi.org/10.1038/oncsis.2017.60] [PMID: 28759023]
[22]
Sun, X.P.; Dong, X.; Lin, L.; Jiang, X.; Wei, Z.; Zhai, B.; Sun, B.; Zhang, Q.; Wang, X.; Jiang, H.; Krissansen, G.W.; Qiao, H.; Sun, X. Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer. FEBS J., 2014, 281(1), 115-128.
[http://dx.doi.org/10.1111/febs.12577] [PMID: 24165223]
[23]
Du, Y.; Zhu, M.; Zhou, X.; Huang, Z.; Zhu, J.; Xu, J.; Cheng, G.; Shu, Y.; Liu, P.; Zhu, W.; Wang, T. miR-20a enhances cisplatin resistance of human gastric cancer cell line by targeting NFKBIB. Tumour Biol., 2016, 37(1), 1261-1269.
[http://dx.doi.org/10.1007/s13277-015-3921-1] [PMID: 26286834]
[24]
Zheng, P.; Chen, L.; Yuan, X.; Luo, Q.; Liu, Y.; Xie, G.; Ma, Y.; Shen, L. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 53.
[http://dx.doi.org/10.1186/s13046-017-0528-y] [PMID: 28407783]
[25]
Gadalla, K.K.E.; Bailey, M.E.S.; Cobb, S.R. MeCP2 and Rett syndrome: Reversibility and potential avenues for therapy. Biochem. J., 2011, 439(1), 1-14.
[http://dx.doi.org/10.1042/BJ20110648] [PMID: 21916843]
[26]
Neupane, M.; Clark, A.P.; Landini, S.; Birkbak, N.J.; Eklund, A.C.; Lim, E.; Culhane, A.C.; Barry, W.T.; Schumacher, S.E.; Beroukhim, R.; Szallasi, Z.; Vidal, M.; Hill, D.E.; Silver, D.P. MECP2 is a frequently amplified oncogene with a novel epigenetic mechanism that mimics the role of activated RAS in malignancy. Cancer Discov., 2016, 6(1), 45-58.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0341] [PMID: 26546296]
[27]
Müller, H.M.; Fiegl, H.; Goebel, G.; Hubalek, M.M.; Widschwendter, A.; Müller-Holzner, E.; Marth, C.; Widschwendter, M. MeCP2 and MBD2 expression in human neoplastic and non-neoplastic breast tissue and its association with oestrogen receptor status. Br. J. Cancer, 2003, 89(10), 1934-1939.
[http://dx.doi.org/10.1038/sj.bjc.6601392] [PMID: 14612906]
[28]
Franke, T.F.; Kaplan, D.R.; Cantley, L.C. PI3K: Downstream AKTion blocks apoptosis. Cell, 1997, 88(4), 435-437.
[http://dx.doi.org/10.1016/S0092-8674(00)81883-8] [PMID: 9038334]
[29]
Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004, 30(2), 193-204.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.007] [PMID: 15023437]
[30]
Mora, A.; Komander, D.; van Aalten, D.M.; Alessi, D.R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol., 2004, 15(2), 161-170.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.022] [PMID: 15209375]
[31]
Emmanouilidi, A.; Falasca, M. Targeting PDK1 for chemosensitization of cancer cells. Cancers (Basel), 2017, 9(10), 140.
[http://dx.doi.org/10.3390/cancers9100140] [PMID: 29064423]
[32]
Di Blasio, L.; Gagliardi, P.A.; Puliafito, A.; Primo, L. Serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDK1) as a key regulator of cell migration and cancer dissemination. Cancers (Basel), 2017, 9(3), 25.
[http://dx.doi.org/10.3390/cancers9030025] [PMID: 28287465]
[33]
Falasca, M.; Chiozzotto, D.; Godage, H.Y.; Mazzoletti, M.; Riley, A.M.; Previdi, S.; Potter, B.V.; Broggini, M.; Maffucci, T. A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. Br. J. Cancer, 2010, 102(1), 104-114.
[http://dx.doi.org/10.1038/sj.bjc.6605408] [PMID: 20051961]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy