Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Nanoparticles as Powerful Tools for Crossing the Blood-brain Barrier

Author(s): Behnam Hasannejad-Asl, Farkhondeh Pooresmaeil, Edris Choupani, Mehran Dabiri, Abtin Behmardi, Mahmood Fadaie, Majid Fathi, Seyed Akbar Moosavi, Shahla Takamoli, Ehsan Hemati, Vahid Yaghoubi Naei and Fatemeh Kazemi-Lomedasht*

Volume 22, Issue 1, 2023

Published on: 31 March, 2022

Page: [18 - 26] Pages: 9

DOI: 10.2174/1871527321666220222092655

open access plus

Abstract

The blood-brain barrier (BBB) is considered an important protective barrier in the central nervous system (CNS). The barrier is mainly formed by endothelial cells (ECs) interconnected by various junctions such as tight junctions (TJs), gap junctions, and adherent junctions. They collectively constitute an intensive barrier to the transit of different substances into the brain, selectively permitting small molecules to pass through by passive movement but holding off large ones such as peptides and proteins to cross the brain. Hence some molecules selectively transfer across the BBB by active routes via transcytosis. The BBB also forms a barrier against neurotoxins as well as pathogenic agents. Although various CNS disorders like Alzheimer's disease (AD) and Parkinson's disease (PD) could hamper the integrity of the border. Nevertheless, the BBB acts as a barrier for CNS disorders treatment because it prevents the drugs from reaching their target in the CNS. In recent years, different strategies, including osmotic disruption of BBB or chemical modification of drugs, have been used to transfer the chemotherapeutic agents into brain substances. Nowadays, nanoparticles (NPs) have been used as an effective and non-invasive tool for drug delivery and diagnosis of CNS disorders. In this review, we discuss the structural characteristic of BBB, safe passageways to cross the BBB, and the relation of barrier lesions with different CNS disorders. In the end, we explore the progress in drug delivery, diagnosis, imaging, and treatment of CNS disorders using nanoparticles.

Keywords: Blood-brain barrier, CNS, nanoparticles, nanodelivery, drug targets, drug delivery.

Graphical Abstract

[1]
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12(12): 723-38.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[2]
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14(11): 1398-405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[3]
Neuwelt EA, Bauer B, Fahlke C, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12(3): 169-82.
[http://dx.doi.org/10.1038/nrn2995] [PMID: 21331083]
[4]
Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OPJG. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia 2010; 58(9): 1094-103.
[http://dx.doi.org/10.1002/glia.20990] [PMID: 20468051]
[5]
Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 2005; 7(4): 452-64.
[http://dx.doi.org/10.1215/S1152851705000232] [PMID: 16212810]
[6]
Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 2013; 62(5): 556-65.
[http://dx.doi.org/10.1016/j.neuint.2012.08.017] [PMID: 22982300]
[7]
Abbott NJ. Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[8]
Smolders SM-T, Kessels S, Vangansewinkel T, Rigo J-M, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178: 101612.
[http://dx.doi.org/10.1016/j.pneurobio.2019.04.001] [PMID: 30954517]
[9]
Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002; 296(5575): 1991-5.
[http://dx.doi.org/10.1126/science.1067122] [PMID: 12065827]
[10]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[11]
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62(11): 1052-63.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[12]
Jamieson JJ, Searson PC, Gerecht S. Engineering the human blood-brain barrier in vitro. J Biol Eng 2017; 11(1): 37.
[http://dx.doi.org/10.1186/s13036-017-0076-1] [PMID: 29213304]
[13]
Schneeberger EE, Lynch RD. Structure, function, and regulation of cellular tight junctions. Am J Physiol 1992; 262(6 Pt 1): L647-61.
[PMID: 1616050]
[14]
Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22(1): 11-28.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.11] [PMID: 10202530]
[15]
Piontek J, Winkler L, Wolburg H, et al. Formation of tight junction: Determinants of homophilic interaction between classic claudins. FASEB J 2008; 22(1): 146-58.
[http://dx.doi.org/10.1096/fj.07-8319com] [PMID: 17761522]
[16]
Lu W. Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol 2012; 13(12): 2340-8.
[http://dx.doi.org/10.2174/138920112803341851] [PMID: 23016640]
[17]
Stewart PA. Endothelial vesicles in the blood-brain barrier: Are they related to permeability? Cell Mol Neurobiol 2000; 20(2): 149-63.
[http://dx.doi.org/10.1023/A:1007026504843] [PMID: 10696507]
[18]
Pardridge WM, Eisenberg J, Cefalu WT. Absence of albumin receptor on brain capillaries in vivo or in vitro. Am J Physiol 1985; 249(3 Pt 1): E264-7.
[PMID: 2994489]
[19]
Ramalho MJ, Sevin E, Gosselet F, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm 2018; 545(1-2): 84-92.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.062] [PMID: 29715532]
[20]
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 2016; 145: 8-13.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.041] [PMID: 27131092]
[21]
Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014; 81(1): 49-60.
[http://dx.doi.org/10.1016/j.neuron.2013.10.061] [PMID: 24411731]
[22]
Zhang Y, Wang Y, Boado RJ, Pardridge WM. Lysosomal enzyme replacement of the brain with intravenous non-viral gene transfer. Pharm Res 2008; 25(2): 400-6.
[http://dx.doi.org/10.1007/s11095-007-9357-6] [PMID: 17602284]
[23]
Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci 2019; 12: 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[24]
Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng 2007; 96(2): 381-91.
[http://dx.doi.org/10.1002/bit.21120] [PMID: 16937408]
[25]
Candela P, Gosselet F, Miller F, et al. Physiological pathway for low-density lipoproteins across the blood-brain barrier: Transcytosis through brain capillary endothelial cells in vitro. Endothelium 2008; 15(5-6): 254-64.
[http://dx.doi.org/10.1080/10623320802487759] [PMID: 19065317]
[26]
Molino Y, David M, Varini K, et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J 2017; 31(5): 1807-27.
[http://dx.doi.org/10.1096/fj.201600827R] [PMID: 28108572]
[27]
Demeule M, Poirier J, Jodoin J, et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J Neurochem 2002; 83(4): 924-33.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01201.x] [PMID: 12421365]
[28]
Tang Y, Han T, Everts M, et al. Directing adenovirus across the blood-brain barrier via melanotransferrin (P97) transcytosis pathway in an in vitro model. Gene Ther 2007; 14(6): 523-32.
[http://dx.doi.org/10.1038/sj.gt.3302888] [PMID: 17167498]
[29]
Nguyen LN, Ma D, Shui G, et al. Mfsd-2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014; 509(7501): 503-6.
[http://dx.doi.org/10.1038/nature13241] [PMID: 24828044]
[30]
Quek DQ, Nguyen LN, Fan H, Silver DL. Structural insights into the transport mechanism of the human sodium-dependent lysophosphatidylcholine transporter MFSD-2A. J Biol Chem 2016; 291(18): 9383-94.
[http://dx.doi.org/10.1074/jbc.M116.721035] [PMID: 26945070]
[31]
Alakbarzade V, Hameed A, Quek DQ, et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD-2A causes a non-lethal microcephaly syndrome. Nat Genet 2015; 47(7): 814-7.
[http://dx.doi.org/10.1038/ng.3313] [PMID: 26005865]
[32]
Guemez-Gamboa A, Nguyen LN, Yang H, et al. Inactivating mutations in MFSD-2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet 2015; 47(7): 809-13.
[http://dx.doi.org/10.1038/ng.3311] [PMID: 26005868]
[33]
Kou L, Hou Y, Yao Q, et al. L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artif Cells Nanomed Biotechnol 2018; 46(8): 1605-16.
[PMID: 28974108]
[34]
Pandit R, Chen L. Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2020; 165-166: 1-14.
[http://dx.doi.org/10.1016/j.addr.2019.11.009] [PMID: 31790711]
[35]
Yang YR, Xiong XY, Liu J, et al. Mfsd-2a (Major facilitator superfamily domain containing 2a) attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by inhibiting vesicular transcytosis. J Am Heart Assoc 2017; 6(7): e005811.
[http://dx.doi.org/10.1161/JAHA.117.005811] [PMID: 28724654]
[36]
Ben-Zvi A, Lacoste B, Kur E, et al. Mfsd-2a is critical for the formation and function of the blood-brain barrier. Nature 2014; 509(7501): 507-11.
[http://dx.doi.org/10.1038/nature13324] [PMID: 24828040]
[37]
Wang J-Z, Xiao N, Zhang Y-Z, Zhao C-X, Guo X-H, Lu L-M. Mfsd-2a-based pharmacological strategies for drug delivery across the blood-brain barrier. Pharmacol Res 2016; 104: 124-31.
[http://dx.doi.org/10.1016/j.phrs.2015.12.024] [PMID: 26747400]
[38]
Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res 2011; 44(10): 1050-60.
[http://dx.doi.org/10.1021/ar200106e] [PMID: 21919457]
[39]
Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 2016; 120(9): 4691-716.
[http://dx.doi.org/10.1021/acs.jpcc.5b11232]
[40]
Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008; 41(12): 1721-30.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[41]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[42]
Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[43]
Alric C, Taleb J, Le Duc G, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 2008; 130(18): 5908-15.
[http://dx.doi.org/10.1021/ja078176p] [PMID: 18407638]
[44]
Uehara N, Nagaoka T. Gold-polymer nanocomposites for bioimaging and biosensing. Nanotechnol Life Sci 2010.
[45]
Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 2012; 18(5): 829-34.
[http://dx.doi.org/10.1038/nm.2721] [PMID: 22504484]
[46]
De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008; 29(12): 1912-9.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[47]
Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale 2014; 6(4): 2146-52.
[http://dx.doi.org/10.1039/C3NR04878K] [PMID: 24362586]
[48]
Li C-H, Shyu M-K, Jhan C, et al. Gold nanoparticles increase endothelial paracellular permeability by altering components of endothelial tight junctions, and increase blood-brain barrier permeability in mice. Toxicol Sci 2015; 148(1): 192-203.
[http://dx.doi.org/10.1093/toxsci/kfv176] [PMID: 26272951]
[49]
Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009; 38(6): 1759-82.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[50]
Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005; 23(12): 1517-26.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[51]
Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11(11): 2319-31.
[http://dx.doi.org/10.1007/s003300100908] [PMID: 11702180]
[52]
Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58(14): 1471-504.
[http://dx.doi.org/10.1016/j.addr.2006.09.013] [PMID: 17116343]
[53]
Weinstein JS, Varallyay CG, Dosa E, et al. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 2010; 30(1): 15-35.
[http://dx.doi.org/10.1038/jcbfm.2009.192] [PMID: 19756021]
[54]
Neuwelt EA, Várallyay CG, Manninger S, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: A pilot study. Neurosurgery 2007; 60(4): 601-11.
[http://dx.doi.org/10.1227/01.NEU.0000255350.71700.37] [PMID: 17415196]
[55]
Qiao R, Jia Q, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 2012; 6(4): 3304-10.
[http://dx.doi.org/10.1021/nn300240p] [PMID: 22443607]
[56]
Rosen JE, Chan L, Shieh D-B, Gu FX. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 2012; 8(3): 275-90.
[http://dx.doi.org/10.1016/j.nano.2011.08.017] [PMID: 21930108]
[57]
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2012; 112(4): 2373-433.
[http://dx.doi.org/10.1021/cr100449n] [PMID: 22204603]
[58]
Sounderya N, Zhang Y. Use of core/shell structured nanoparticles for biomedical applications. Recent Pat Biomed Eng 2008; 1(1): 34-42.
[http://dx.doi.org/10.2174/1874764710801010034]
[59]
Perez RA, Kim H-W. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 2015; 21: 2-19.
[http://dx.doi.org/10.1016/j.actbio.2015.03.013] [PMID: 25792279]
[60]
Varga N, Csapó E, Majláth E, et al. Targeting of the kynurenic acid across the blood-brain barrier by core-shell nanoparticles. Eur J Pharm Sci 2016; 86: 67-74.
[http://dx.doi.org/10.1016/j.ejps.2016.02.012] [PMID: 26924227]
[61]
Vogt C, Toprak MS, Muhammed M, Laurent S, Bridot J-L, Müller RN. High quality and tuneable silica shell–magnetic core nanoparticles. J Nanopart Res 2016; 12(4): 1137-47.
[http://dx.doi.org/10.1007/s11051-009-9661-7]
[62]
Campbell JL, Arora J, Cowell SF, et al. Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS One 2011; 6(7): e21857.
[http://dx.doi.org/10.1371/journal.pone.0021857] [PMID: 21747962]
[63]
Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003; 63(23): 8122-5.
[PMID: 14678964]
[64]
Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[65]
Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010; 39(11): 4326-54.
[http://dx.doi.org/10.1039/b915139g] [PMID: 20697629]
[66]
Li J, Zhu J-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst (Lond) 2013; 138(9): 2506-15.
[http://dx.doi.org/10.1039/c3an36705c] [PMID: 23518695]
[67]
Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004; 126(40): 12736-7.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[68]
Wang Y, Hu A. Carbon quantum dots: Synthesis, properties and applications. J Mater Chem C Mater Opt Electron Devices 2017; 2(34): 6921-39.
[http://dx.doi.org/10.1039/C4TC00988F]
[69]
Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed Pharmacother 2017; 87: 209-22.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108] [PMID: 28061404]
[70]
Li S, Peng Z, Dallman J, et al. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: A zebrafish model study. Colloids Surf B Biointerfaces 2016; 145: 251-6.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.007] [PMID: 27187189]
[71]
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2018; 270: 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015]
[72]
Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon Dot-TPEA hybridized surface. Anal Chem 2013; 85(1): 418-25.
[http://dx.doi.org/10.1021/ac303113n] [PMID: 23214718]
[73]
Huang P, Lin J, Wang X, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 2012; 24(37): 5104-10.
[http://dx.doi.org/10.1002/adma.201200650] [PMID: 22718562]
[74]
Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015; 11(14): 1620-36.
[http://dx.doi.org/10.1002/smll.201402648] [PMID: 25521301]
[75]
Bourlinos AB, Bakandritsos A, Kouloumpis A, et al. Gd (III)-doped carbon dots as a dual fluorescent-MRI probe. J Mater Chem 2012; 22(44): 23327-30.
[http://dx.doi.org/10.1039/c2jm35592b]
[76]
Chen Y. Assessment on pile effective lengths and their effects on design-I. Assessment. Comput Struc 1997; 62(2): 265-86.
[http://dx.doi.org/10.1016/S0045-7949(96)00201-5]
[77]
Halliwell B, Gutteridge JM. Free radicals in biology and medicine. USA: Oxford University Press 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[78]
Gorin D, Shchukin D, Mikhailov A, et al. Effect of microwave radiation on polymer microcapsules containing inorganic nanoparticles. Tech Phys Lett 2006; 32(1): 70-2.
[http://dx.doi.org/10.1134/S1063785006010238]
[79]
Bao L, Liu C, Zhang ZL, Pang DW. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv Mater 2015; 27(10): 1663-7.
[http://dx.doi.org/10.1002/adma.201405070] [PMID: 25589141]
[80]
Shen L, Zhang L, Chen M, Chen X, Wang J. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 2013; 55: 343-9.
[http://dx.doi.org/10.1016/j.carbon.2012.12.074]
[81]
Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed Engl 2009; 48(25): 4598-601.
[http://dx.doi.org/10.1002/anie.200900652] [PMID: 19388019]

© 2024 Bentham Science Publishers | Privacy Policy