Abstract
Onconase, a member of the pancreatic ribonuclease A superfamily, is currently in Phase III clinical trials for treatment of unresectable malignant mesothelioma. The anticancer effect of onconase may relate to its intracellular target, a non-coding RNA. Some non- coding RNAs are aberrantly expressed in cancer cells. This discovery is creating new interest in drugs that target RNA. Conjugating onconase to agents that recognize tumor associated molecules further increases its potency and specificity. Analysis of onconase activity when directed to two different internalizing and one noninternalizing receptor reveals that the ideal targeting agents would rapidly enter lysosomal compartments before onconase escaped to the cytosol. Antibody-onconase conjugates are effective in preclinical models, cause little non-specific toxicities in mice and have favorable formulation properties. Understanding the reason for their potency coupled with understanding novel RNA-based mechanisms of tumor cell death will lead to improved variations of targeted onconase.
Keywords: Ribonuclease, RNase A, Onconase, Antibody, Immunotoxin, Internalization
Current Pharmaceutical Biotechnology
Title: Antibody-Onconase Conjugates: Cytotoxicity and Intracellular Routing
Volume: 9 Issue: 3
Author(s): S. M. Rybak
Affiliation:
Keywords: Ribonuclease, RNase A, Onconase, Antibody, Immunotoxin, Internalization
Abstract: Onconase, a member of the pancreatic ribonuclease A superfamily, is currently in Phase III clinical trials for treatment of unresectable malignant mesothelioma. The anticancer effect of onconase may relate to its intracellular target, a non-coding RNA. Some non- coding RNAs are aberrantly expressed in cancer cells. This discovery is creating new interest in drugs that target RNA. Conjugating onconase to agents that recognize tumor associated molecules further increases its potency and specificity. Analysis of onconase activity when directed to two different internalizing and one noninternalizing receptor reveals that the ideal targeting agents would rapidly enter lysosomal compartments before onconase escaped to the cytosol. Antibody-onconase conjugates are effective in preclinical models, cause little non-specific toxicities in mice and have favorable formulation properties. Understanding the reason for their potency coupled with understanding novel RNA-based mechanisms of tumor cell death will lead to improved variations of targeted onconase.
Export Options
About this article
Cite this article as:
Rybak M. S., Antibody-Onconase Conjugates: Cytotoxicity and Intracellular Routing, Current Pharmaceutical Biotechnology 2008; 9 (3) . https://dx.doi.org/10.2174/138920108784567272
DOI https://dx.doi.org/10.2174/138920108784567272 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Merlin, a “Magic” Linker Between the Extracellular Cues and Intracellular Signaling Pathways that Regulate Cell Motility, Proliferation, and Survival
Current Protein & Peptide Science Farnesylated Proteins as Anticancer Drug Targets: From Laboratory to the Clinic
Current Medicinal Chemistry - Anti-Cancer Agents State of Research Tracks and Property Protection of Photodynamic Sensitizers and Delivery Methodologies
Recent Patents on Chemical Engineering An <i>In vivo</i> Immunohistochemical Study on MacroH2A.1 in Lung and Lymph-Node Tissues Exposed to an Asbestiform Fiber
Current Molecular Medicine The Potential for Targeting Oncogenic WNT/β -Catenin Signaling in Therapy
Current Drug Targets Novel Marine-Derived Anti-Cancer Agents
Current Pharmaceutical Design Revisiting Non-Cancer Drugs for Cancer Therapy
Current Topics in Medicinal Chemistry Imaging Methods in Gene Therapy of Cancer
Current Gene Therapy Epigenetic Targets and their Inhibitors in Cancer Therapy
Current Topics in Medicinal Chemistry Angiogenesis Inhibition: State of the Art, Forgotten Strategies and New Perspectives in Cancer Therapy
Current Cancer Therapy Reviews Importance of Wnt Signaling in the Tumor Stroma Microenvironment
Current Cancer Drug Targets A Combination of Two Antioxidants (An SOD Mimic and Ascorbate) Produces a Pro-Oxidative Effect Forcing Escherichia coli to Adapt Via Induction of oxyR Regulon
Anti-Cancer Agents in Medicinal Chemistry Analytical Methods for Metallothionein Detection
Current Analytical Chemistry The Ubiquitin-Proteasome System as a Prospective Molecular Target for Cancer Treatment and Prevention
Current Protein & Peptide Science Combined Anticancer Therapies: An Overview of the Latest Applications
Anti-Cancer Agents in Medicinal Chemistry Arginine Deprivation, Autophagy, Apoptosis (AAA) for the Treatment of Melanoma
Current Molecular Medicine C-KIT Signaling in Cancer Treatment
Current Pharmaceutical Design Progress in the Preclinical Discovery and Clinical Development of Class I and Dual Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors
Current Medicinal Chemistry The Pharmacological Treatment of Cachexia
Current Drug Targets SCF E3 Ubiquitin Ligases as Anticancer Targets
Current Cancer Drug Targets