Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Extended Double Bond Conjugation in the Chalcone Framework Favours MAO-B Inhibition: A Structural Perspective on Molecular Dynamics

Author(s): Clement Agoni, Abdul Rashid Issahaku, Mohamed A. Abdelgawad*, Ahmed Khames, Mahmoud E.S. Soliman* and Bijo Mathew*

Volume 25, Issue 12, 2022

Published on: 11 April, 2022

Page: [2059 - 2069] Pages: 11

DOI: 10.2174/1386207325666220214110717

Price: $65

Abstract

Background: The monotropic membrane protein monoamine oxidase B (MAO-B) has been shown to be a crucial drug target for the treatment of neurodegenerative diseases. The design of recent inhibitor therapeutic agents of MAO-B involves conjugation and modification of a chalcone scaffold comprising two aryl or heteroaryl rings connected via a short spacer unit with rotatable bonds. Supported by experimental data, these modifications often result in high potent inhibitor compounds.

Methods: In this study, we employ molecular dynamics simulations to unravel the impact of extended double bond conjugation in two novel compounds, F1 and MO10, toward the inhibition of the MAO-B protein. It was revealed that extended double bond conjugation induced a unidirectional orientation and motion of F1 and MO10, suggesting a stable binding pocket anchorage favouring high-affinity pocket interactions.

Results: Conformational analyses also revealed that the incorporated double bond extension impeded the motion of individual binding pocket residues, which subsequently disrupted the functionality of MAO-B.

Discussion: Real-time structural dynamics also revealed that the extended double bond conjugation mediated peculiar interactions with MAO-B binding pocket residues characterized by π-alkyl, π-π stacking, and π-sulphur interactions which buried both compounds into the hydrophobic core of MAO-B and ultimately induced higher binding affinities of both F1 and MO10.

Conclusion: These insights present useful structural perspectives of the extended double bond conjugation associated with the experimentally reported enhanced inhibitory activity of F1 and MO10 against MAO-B.

Keywords: Monoamine oxidase B, chalcone, molecular dynamics, neurodegenerative diseases, real-time structural dynamics, conformational analyses.

Graphical Abstract

[1]
Tipton, K.F. 90 years of monoamine oxidase: Some progress and some confusion. J. Neural Transm. (Vienna), 2018, 125(11), 1519-1551.
[http://dx.doi.org/10.1007/s00702-018-1881-5] [PMID: 29637260]
[2]
Ramsay, R.R. Inhibitor design for monoamine oxidases. Curr. Pharm. Des., 2013, 19(14), 2529-2539.
[http://dx.doi.org/10.2174/1381612811319140004] [PMID: 23116392]
[3]
Mathew, B.; Mathew, E.G.; Suresh, J.; Ucar, G.; Sasidharan, R.; Anbazhagan, S.; Vilapurathu, K.J.; Jayaprakash, V. Monoamine oxidase inhibitors: Perspective design for the treatment of depression and neurological disorders. Curr. Enzym. Inhib., 2016, 12, 115-122.
[http://dx.doi.org/10.2174/1573408012666160402001715]
[4]
Kumar, B.; Sheetal, A.K.; Mantha, V. Kumar. Recent developments on the structure-activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances, 2016, 6, 42660-42683.
[http://dx.doi.org/10.1039/C6RA00302H]
[5]
Kumar, B.; Gupta, V.P.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target: Challenges and opportunities. Curr. Drug Targets, 2017, 18(1), 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[6]
Tripathi, R.K.P.; Ayyannan, S.R. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev., 2019, 39(5), 1603-1706.
[http://dx.doi.org/10.1002/med.21561] [PMID: 30604512]
[7]
Guglielmi, P.; Carradori, S.; Ammazzalorso, A.; Secci, D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: Is there room for improvement? Expert Opin. Drug Discov., 2019, 14(10), 995-1035.
[http://dx.doi.org/10.1080/17460441.2019.1637415] [PMID: 31268358]
[8]
Carradori, S.; Silvestri, R. New frontiers in selective human MAO-B inhibitors. J. Med. Chem., 2015, 58(17), 6717-6732.
[http://dx.doi.org/10.1021/jm501690r] [PMID: 25915162]
[9]
Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer’s and parkinson’s diseases. Arch. Pharm. (Weinheim), 2019, 352(11), e1900177.
[http://dx.doi.org/10.1002/ardp.201900177] [PMID: 31478569]
[10]
Tanaka, S.; Kuwai, Y.; Tabata, M. Isolation of monoamine oxidase inhibitors from Glycyrrhiza uralensis roots and the structure-activity relationship. Planta Med., 1987, 53(1), 5-8.
[http://dx.doi.org/10.1055/s-2006-962604] [PMID: 3575512]
[11]
Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J. Med. Chem., 2009, 52(9), 2818-2824.
[http://dx.doi.org/10.1021/jm801590u] [PMID: 19378991]
[12]
Guglielmi, P.; Mathew, B.; Secci, D.; Carradori, S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur. J. Med. Chem., 2020, 205, 112650.
[http://dx.doi.org/10.1016/j.ejmech.2020.112650] [PMID: 32920430]
[13]
Desideri, N.; Fioravanti, R.; Proietti Monaco, L.; Biava, M.; Yáñez, M.; Ortuso, F.; Alcaro, S. 1,5-Diphenylpenta-2,4-dien-1-ones as potent and selective monoamine oxidase-B inhibitors. Eur. J. Med. Chem., 2013, 59, 91-100.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.006] [PMID: 23207410]
[14]
Suresh, J.; Baek, S.C.; Ramakrishnan, S.P.; Kim, H.; Mathew, B. Discovery of potent and reversible MAO-B inhibitors as furanochalcon-es. Int. J. Biol. Macromol., 2018, 108, 660-664.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.159] [PMID: 29195801]
[15]
Maliyakkal, N.; Eom, B.H.; Heo, J.H.; Abdullah Almoyad, M.A.; Thomas Parambi, D.G.; Gambacorta, N.; Nicolotti, O.; Beeran, A.A.; Kim, H.; Mathew, B. A new potent and selective monoamine oxidase-b inhibitor with extended conjugation in a chalcone framework: 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. ChemMedChem, 2020, 15(17), 1629-1633.
[http://dx.doi.org/10.1002/cmdc.202000305] [PMID: 32583952]
[16]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[17]
Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front. Pharmacol., 2018, 9, 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[18]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[http://dx.doi.org/10.2147/AABC.S70333] [PMID: 26604800]
[19]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank Nucl. Ac. Res., 2000, 28, 235.
[20]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF chimera--a visualization sys-tem for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[21]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical edi-tor, visualization, and analysis platform J. Cheminformatics, 2012, 4-17.
[http://dx.doi.org/10.1186/1758-2946-4-17]
[22]
Trott, O.; Olson, A.J. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Kusumaningrum, S.; Budianto, E.; Kosela, S.; Sumaryono, W.; Juniarti, F. The molecular docking of 1,4-naphthoquinone derivatives as inhibitors of Polo-like kinase 1 using molegro virtual docker. J. Appl. Pharm. Sci., 2014, 4, 47-53.
[25]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[26]
Amber, C. Amber 2018 reference manual. , 2018. Available from: https://ambermd.org/doc12/Amber18.pdf
[27]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[28]
Larini, L.; Mannella, R.; Leporini, D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J. Chem. Phys., 2007, 126(10), 104101.
[http://dx.doi.org/10.1063/1.2464095] [PMID: 17362055]
[29]
Gonnet, P. P-SHAKE: A quadratically convergent SHAKE in O (n2). J. Comput. Phys., 2007, 220, 740-750.
[http://dx.doi.org/10.1016/j.jcp.2006.05.032]
[30]
Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552-1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[31]
Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem., 2005, 48(12), 4040-4048.
[http://dx.doi.org/10.1021/jm049081q] [PMID: 15943477]
[32]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srini-vasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[33]
Wang, C.; Greene, D.; Xiao, L.; Qi, R.; Luo, R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci., 2018, 4, 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[34]
Badichi Akher, F.; Farrokhzadeh, A.; Olotu, F.A.; Agoni, C.; Soliman, M.E.S. The irony of chirality - unveiling the distinct mechanistic binding and activities of 1-(3-(4-amino-5-(7-methoxy-5-methylbenzo[b]thiophen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)pyrrolidin-1-yl)prop-2-en-1-one enantiomers as irreversible covalent FGFR4 inhibitors. Org. Biomol. Chem., 2019, 17(5), 1176-1190.
[http://dx.doi.org/10.1039/C8OB02811G] [PMID: 30644960]
[35]
Raha, K.; Merz, K.M. Calculating binding free energy in protein-ligand interaction. Annu. Rep. Comput. Chem., 2005, 1, 113-130.
[http://dx.doi.org/10.1016/S1574-1400(05)01009-1]
[36]
Gupta, A.; Chaudhary, N.; Aparoy, P. MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. Int. J. Biol. Macromol., 2018, 119, 352-359.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.050] [PMID: 30031079]
[37]
Rabbad, A.H.; Agoni, C.; Olotu, F.A.; Soliman, M.E. Microbes, not humans: Exploring the molecular basis of Pseudouridimycin selectivi-ty towards bacterial and not human RNA polymerase. Biotechnol. Lett., 2019, 41(1), 115-128.
[http://dx.doi.org/10.1007/s10529-018-2617-1] [PMID: 30377869]
[38]
Salifu, E.Y.; Agoni, C.; Olotu, F.A.; Dokurugu, Y.M.; Soliman, M.E.S. Deciphering the canonical blockade of activated Hageman factor (FXIIa) by benzamidine in the coagulation cascade: A thorough dynamical perspective. Chem. Biol. Drug Des., 2019, 94(5), 1905-1918.
[http://dx.doi.org/10.1111/cbdd.13573] [PMID: 31148409]
[39]
Liu, K.; Watanabe, E.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des., 2017, 31(2), 201-211.
[http://dx.doi.org/10.1007/s10822-016-0005-2] [PMID: 28074360]
[40]
Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein binding pocket dynamics. Acc. Chem. Res., 2016, 49(5), 809-815.
[http://dx.doi.org/10.1021/acs.accounts.5b00516] [PMID: 27110726]
[41]
Bornot, A.; Etchebest, C.; de Brevern, A.G. Predicting protein flexibility through the prediction of local structures. Proteins, 2011, 79(3), 839-852.
[http://dx.doi.org/10.1002/prot.22922] [PMID: 21287616]
[42]
Pitera, J.W. Expected distributions of root-mean-square positional deviations in proteins. J. Phys. Chem. B, 2014, 118(24), 6526-6530.
[http://dx.doi.org/10.1021/jp412776d] [PMID: 24655018]
[43]
Sneha, P.; George, C.; Doss, P. Molecular Dynamics: New Frontier in Personalized Medicine. In: Advances in Protein Chemistry and Structural Biology; Academic Press: Cambridge, 2016; Vol. 102, pp. 181-224.
[44]
Agoni, C.; Ramharack, P.; Munsamy, G.; Soliman, M.E.S. Human rhinovirus inhibition through capsid “canyon” perturbation: Structural insights into the role of a novel benzothiophene derivative. Cell Biochem. Biophys., 2020, 78(1), 3-13.
[http://dx.doi.org/10.1007/s12013-019-00896-z] [PMID: 31834576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy