Abstract
Background: The monotropic membrane protein monoamine oxidase B (MAO-B) has been shown to be a crucial drug target for the treatment of neurodegenerative diseases. The design of recent inhibitor therapeutic agents of MAO-B involves conjugation and modification of a chalcone scaffold comprising two aryl or heteroaryl rings connected via a short spacer unit with rotatable bonds. Supported by experimental data, these modifications often result in high potent inhibitor compounds.
Methods: In this study, we employ molecular dynamics simulations to unravel the impact of extended double bond conjugation in two novel compounds, F1 and MO10, toward the inhibition of the MAO-B protein. It was revealed that extended double bond conjugation induced a unidirectional orientation and motion of F1 and MO10, suggesting a stable binding pocket anchorage favouring high-affinity pocket interactions.
Results: Conformational analyses also revealed that the incorporated double bond extension impeded the motion of individual binding pocket residues, which subsequently disrupted the functionality of MAO-B.
Discussion: Real-time structural dynamics also revealed that the extended double bond conjugation mediated peculiar interactions with MAO-B binding pocket residues characterized by π-alkyl, π-π stacking, and π-sulphur interactions which buried both compounds into the hydrophobic core of MAO-B and ultimately induced higher binding affinities of both F1 and MO10.
Conclusion: These insights present useful structural perspectives of the extended double bond conjugation associated with the experimentally reported enhanced inhibitory activity of F1 and MO10 against MAO-B.
Keywords: Monoamine oxidase B, chalcone, molecular dynamics, neurodegenerative diseases, real-time structural dynamics, conformational analyses.
Graphical Abstract
[http://dx.doi.org/10.1007/s00702-018-1881-5] [PMID: 29637260]
[http://dx.doi.org/10.2174/1381612811319140004] [PMID: 23116392]
[http://dx.doi.org/10.2174/1573408012666160402001715]
[http://dx.doi.org/10.1039/C6RA00302H]
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[http://dx.doi.org/10.1002/med.21561] [PMID: 30604512]
[http://dx.doi.org/10.1080/17460441.2019.1637415] [PMID: 31268358]
[http://dx.doi.org/10.1021/jm501690r] [PMID: 25915162]
[http://dx.doi.org/10.1002/ardp.201900177] [PMID: 31478569]
[http://dx.doi.org/10.1055/s-2006-962604] [PMID: 3575512]
[http://dx.doi.org/10.1021/jm801590u] [PMID: 19378991]
[http://dx.doi.org/10.1016/j.ejmech.2020.112650] [PMID: 32920430]
[http://dx.doi.org/10.1016/j.ejmech.2012.11.006] [PMID: 23207410]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.159] [PMID: 29195801]
[http://dx.doi.org/10.1002/cmdc.202000305] [PMID: 32583952]
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[http://dx.doi.org/10.2147/AABC.S70333] [PMID: 26604800]
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[http://dx.doi.org/10.1186/1758-2946-4-17]
[PMID: 19499576]
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[http://dx.doi.org/10.1063/1.2464095] [PMID: 17362055]
[http://dx.doi.org/10.1016/j.jcp.2006.05.032]
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[http://dx.doi.org/10.1021/jm049081q] [PMID: 15943477]
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[http://dx.doi.org/10.1039/C8OB02811G] [PMID: 30644960]
[http://dx.doi.org/10.1016/S1574-1400(05)01009-1]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.050] [PMID: 30031079]
[http://dx.doi.org/10.1007/s10529-018-2617-1] [PMID: 30377869]
[http://dx.doi.org/10.1111/cbdd.13573] [PMID: 31148409]
[http://dx.doi.org/10.1007/s10822-016-0005-2] [PMID: 28074360]
[http://dx.doi.org/10.1021/acs.accounts.5b00516] [PMID: 27110726]
[http://dx.doi.org/10.1002/prot.22922] [PMID: 21287616]
[http://dx.doi.org/10.1021/jp412776d] [PMID: 24655018]
[http://dx.doi.org/10.1007/s12013-019-00896-z] [PMID: 31834576]