Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

癌症疫苗在冷性肿瘤中的应用:临床前景、挑战和机遇

卷 22, 期 6, 2022

发表于: 27 April, 2022

页: [437 - 453] 页: 17

弟呕挨: 10.2174/1568009622666220214103533

价格: $65

摘要

癌症免疫疗法的理念是刺激免疫系统对抗肿瘤,而不破坏正常细胞。在许多抗癌治疗方法中,一种是基于使用含有肿瘤抗原的癌症疫苗,以诱导对肿瘤的免疫反应。然而,临床试验表明,使用这种疫苗作为单一疗法在许多情况下是无效的,因为它们不会引起强烈的免疫反应。由于肿瘤中CD8+ T细胞的浸润不足或缺乏,某些肿瘤对免疫治疗具有抵抗性,因此被称为冷性或非炎症性肿瘤。冷肿瘤的特点是缺乏CD8+ T细胞浸润,存在抗炎髓系细胞、肿瘤相关的M2巨噬细胞和调节性T细胞。为了使用正确的策略,确定抗肿瘤反应中未正常工作的阶段是非常重要的。对于不会强烈刺激免疫系统的冷性肿瘤,除了癌症疫苗外,应用其他治疗方法可能更合理。在此,我们指出了一些与疫苗一起用于冷性肿瘤治疗或正在进行中的联合疗法。

关键词: 癌症疫苗,冷性肿瘤,免疫原性细胞死亡,佐剂,免疫检查点抑制剂,联合疗法。

Next »
图形摘要

[1]
Finn, O.J.; Khleif, S.N.; Herberman, R.B. The FDA guidance on therapeutic cancer vaccines: The need for revision to include preventive cancer vaccines or for a new guidance dedicated to them. Cancer Prev. Res. (Phila.), 2015, 8(11), 1011-1016.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0234] [PMID: 26353948]
[2]
Bryan, J.T. Developing an HPV vaccine to prevent cervical cancer and genital warts. Vaccine, 2007, 25(16), 3001-3006.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.013] [PMID: 17289220]
[3]
Vockerodt, M.; Yap, L-F.; Shannon-Lowe, C.; Curley, H.; Wei, W.; Vrzalikova, K.; Murray, P.G. The Epstein-Barr virus and the pathogenesis of lymphoma. J. Pathol., 2015, 235(2), 312-322.
[http://dx.doi.org/10.1002/path.4459] [PMID: 25294567]
[4]
Plosker, G.L. Sipuleucel-T: In metastatic castration-resistant prostate cancer. Drugs, 2011, 71(1), 101-108.
[http://dx.doi.org/10.2165/11206840-000000000-00000] [PMID: 21175243]
[5]
Hewitt, D.B.; Nissen, N.; Hatoum, H.; Musher, B.; Seng, J.; Coveler, A.L.; Al-Rajabi, R.; Yeo, C.J.; Leiby, B.; Banks, J. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-l (hyperacute-pancreas) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer. Ann. Surg., 2020, 275(1), 45-53.
[http://dx.doi.org/10.1097/SLA.0000000000004669] [PMID: 33630475]
[6]
Angell, H.; Galon, J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol., 2013, 25(2), 261-267.
[http://dx.doi.org/10.1016/j.coi.2013.03.004] [PMID: 23579076]
[7]
Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662), 217-221.
[http://dx.doi.org/10.1038/nature22991] [PMID: 28678778]
[8]
Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Höller, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662), 222-226.
[http://dx.doi.org/10.1038/nature23003] [PMID: 28678784]
[9]
Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V. Stevanović, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; Thor Straten, P.; Martínez-Ricarte, F.; Ponsati, B.; Okada, H.; Lassen, U.; Admon, A.; Ottensmeier, C.H.; Ulges, A.; Kreiter, S.; von Deimling, A.; Skardelly, M.; Migliorini, D.; Kroep, J.R.; Idorn, M.; Rodon, J.; Piró, J.; Poulsen, H.S.; Shraibman, B.; McCann, K.; Mendrzyk, R.; Löwer, M.; Stieglbauer, M.; Britten, C.M.; Capper, D.; Welters, M.J.P.; Sahuquillo, J.; Kiesel, K.; Derhovanessian, E.; Rusch, E.; Bunse, L.; Song, C.; Heesch, S.; Wagner, C.; Kemmer-Brück, A.; Ludwig, J.; Castle, J.C.; Schoor, O.; Tadmor, A.D.; Green, E.; Fritsche, J.; Meyer, M.; Pawlowski, N.; Dorner, S.; Hoffgaard, F.; Rössler, B.; Maurer, D.; Weinschenk, T.; Reinhardt, C.; Huber, C.; Rammensee, H.G.; Singh-Jasuja, H.; Sahin, U.; Dietrich, P.Y.; Wick, W. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565(7738), 240-245.
[http://dx.doi.org/10.1038/s41586-018-0810-y] [PMID: 30568303]
[10]
Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S.A.; Hu, Z.; Li, L.; Le, P.M.; Allesøe, R.L.; Richman, A.R.; Kowalczyk, M.S.; Abdelrahman, S.; Geduldig, J.E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J.B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L.R.; Stevens, J.; Lane, W.J.; Salazar, A.M.; Daley, H.; Wen, P.Y.; Chiocca, E.A.; Harden, M.; Lennon, N.J.; Gabriel, S.; Getz, G.; Lander, E.S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S.J.; Ligon, K.L.; Suvà, M.L.; Wucherpfennig, K.W.; Hacohen, N.; Fritsch, E.F.; Livak, K.J.; Ott, P.A.; Wu, C.J.; Reardon, D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738), 234-239.
[http://dx.doi.org/10.1038/s41586-018-0792-9] [PMID: 30568305]
[11]
Subudhi, S.K.; Vence, L.; Zhao, H.; Blando, J.; Yadav, S.S.; Xiong, Q.; Reuben, A.; Aparicio, A.; Corn, P.G.; Chapin, B.F.; Pisters, L.L.; Troncoso, P.; Tidwell, R.S.; Thall, P.; Wu, C.J.; Zhang, J.; Logothetis, C.L.; Futreal, A.; Allison, J.P.; Sharma, P. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci. Transl. Med., 2020, 12(537), eaaz3577.
[http://dx.doi.org/10.1126/scitranslmed.aaz3577] [PMID: 32238575]
[12]
Nemunaitis, J. Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev. Vaccines, 2005, 4(3), 259-274.
[http://dx.doi.org/10.1586/14760584.4.3.259] [PMID: 16026242]
[13]
Roy, S.; Sethi, T.K.; Taylor, D.; Kim, Y.J.; Johnson, D.B. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J. Leukoc. Biol., 2020, 108(4), 1455-1489.
[http://dx.doi.org/10.1002/JLB.5BT0420-585RR] [PMID: 32557857]
[14]
Chiang, C.L.; Kandalaft, L.E.; Tanyi, J.; Hagemann, A.R.; Motz, G.T.; Svoronos, N.; Montone, K.; Mantia-Smaldone, G.M.; Smith, L.; Nisenbaum, H.L.; Levine, B.L.; Kalos, M.; Czerniecki, B.J.; Torigian, D.A.; Powell, D.J., Jr; Mick, R.; Coukos, G. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: From bench to bedside. Clin. Cancer Res., 2013, 19(17), 4801-4815.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1185] [PMID: 23838316]
[15]
Jinushi, M.; Hodi, F.S.; Dranoff, G. Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol. Rev., 2008, 222, 287-298.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00618.x] [PMID: 18364009]
[16]
Sauter, B.; Albert, M.L.; Francisco, L.; Larsson, M.; Somersan, S.; Bhardwaj, N. Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med., 2000, 191(3), 423-434.
[http://dx.doi.org/10.1084/jem.191.3.423] [PMID: 10662788]
[17]
Thomas, A.M.; Santarsiero, L.M.; Lutz, E.R.; Armstrong, T.D.; Chen, Y-C.; Huang, L-Q.; Laheru, D.A.; Goggins, M.; Hruban, R.H.; Jaffee, E.M. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med., 2004, 200(3), 297-306.
[http://dx.doi.org/10.1084/jem.20031435] [PMID: 15289501]
[18]
Soiffer, R.; Hodi, F.S.; Haluska, F.; Jung, K.; Gillessen, S.; Singer, S.; Tanabe, K.; Duda, R.; Mentzer, S.; Jaklitsch, M.; Bueno, R.; Clift, S.; Hardy, S.; Neuberg, D.; Mulligan, R.; Webb, I.; Mihm, M.; Dranoff, G. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol., 2003, 21(17), 3343-3350.
[http://dx.doi.org/10.1200/JCO.2003.07.005] [PMID: 12947071]
[19]
Hege, K.M.; Jooss, K.; Pardoll, D. GM-CSF gene-modifed cancer cell immunotherapies: of mice and men. Int. Rev. Immunol., 2006, 25(5-6), 321-352.
[http://dx.doi.org/10.1080/08830180600992498] [PMID: 17169779]
[20]
Le, D.T.; Picozzi, V.J.; Ko, A.H.; Wainberg, Z.A.; Kindler, H.; Wang-Gillam, A.; Oberstein, P.; Morse, M.A.; Zeh, H.J., III; Weekes, C.; Reid, T.; Borazanci, E.; Crocenzi, T.; LoConte, N.K.; Musher, B.; Laheru, D.; Murphy, A.; Whiting, C.; Nair, N.; Enstrom, A.; Ferber, S.; Brockstedt, D.G.; Jaffee, E.M. Results from a Phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). Clin. Cancer Res., 2019, 25(18), 5493-5502.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2992] [PMID: 31126960]
[21]
Lipson, E.J.; Sharfman, W.H.; Chen, S.; McMiller, T.L.; Pritchard, T.S.; Salas, J.T.; Sartorius-Mergenthaler, S.; Freed, I.; Ravi, S.; Wang, H.; Luber, B.; Sproul, J.D.; Taube, J.M.; Pardoll, D.M.; Topalian, S.L. Safety and immunologic correlates of melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. J. Transl. Med., 2015, 13, 214.
[http://dx.doi.org/10.1186/s12967-015-0572-3] [PMID: 26143264]
[22]
Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature, 1998, 392(6673), 245-252.
[http://dx.doi.org/10.1038/32588] [PMID: 9521319]
[23]
Kyte, J.A.; Kvalheim, G.; Aamdal, S.; Saebøe-Larssen, S.; Gaudernack, G. Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther., 2005, 12(6), 579-591.
[http://dx.doi.org/10.1038/sj.cgt.7700837] [PMID: 15818380]
[24]
McGovern, N.; Schlitzer, A.; Gunawan, M.; Jardine, L.; Shin, A.; Poyner, E.; Green, K.; Dickinson, R.; Wang, X.N.; Low, D.; Best, K.; Covins, S.; Milne, P.; Pagan, S.; Aljefri, K.; Windebank, M.; Miranda-Saavedra, D.; Larbi, A.; Wasan, P.S.; Duan, K.; Poidinger, M.; Bigley, V.; Ginhoux, F.; Collin, M.; Haniffa, M. Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity, 2014, 41(3), 465-477.
[http://dx.doi.org/10.1016/j.immuni.2014.08.006] [PMID: 25200712]
[25]
Jonuleit, H.; Kühn, U.; Müller, G.; Steinbrink, K.; Paragnik, L.; Schmitt, E.; Knop, J.; Enk, A.H. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol., 1997, 27(12), 3135-3142.
[http://dx.doi.org/10.1002/eji.1830271209] [PMID: 9464798]
[26]
Schadendorf, D.; Ugurel, S.; Schuler-Thurner, B.; Nestle, F.O.; Enk, A.; Bröcker, E.B.; Grabbe, S.; Rittgen, W.; Edler, L.; Sucker, A.; Zimpfer-Rechner, C.; Berger, T.; Kamarashev, J.; Burg, G.; Jonuleit, H.; Tüttenberg, A.; Becker, J.C.; Keikavoussi, P.; Kämpgen, E.; Schuler, G. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed Dendritic Cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann. Oncol., 2006, 17(4), 563-570.
[http://dx.doi.org/10.1093/annonc/mdj138] [PMID: 16418308]
[27]
Beer, T.M.; Bernstein, G.T.; Corman, J.M.; Glode, L.M.; Hall, S.J.; Poll, W.L.; Schellhammer, P.F.; Jones, L.A.; Xu, Y.; Kylstra, J.W.; Frohlich, M.W. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin. Cancer Res., 2011, 17(13), 4558-4567.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3223] [PMID: 21558406]
[28]
Small, E.J.; Schellhammer, P.F.; Higano, C.S.; Redfern, C.H.; Nemunaitis, J.J.; Valone, F.H.; Verjee, S.S.; Jones, L.A.; Hershberg, R.M. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol., 2006, 24(19), 3089-3094.
[http://dx.doi.org/10.1200/JCO.2005.04.5252] [PMID: 16809734]
[29]
Higano, C.S.; Schellhammer, P.F.; Small, E.J.; Burch, P.A.; Nemunaitis, J.; Yuh, L.; Provost, N.; Frohlich, M.W. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer, 2009, 115(16), 3670-3679.
[http://dx.doi.org/10.1002/cncr.24429] [PMID: 19536890]
[30]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[31]
Bais, P.; Namburi, S.; Gatti, D.M.; Zhang, X.; Chuang, J.H. CloudNeo: A cloud pipeline for identifying patient-specific tumor neoantigens. Bioinformatics, 2017, 33(19), 3110-3112.
[http://dx.doi.org/10.1093/bioinformatics/btx375] [PMID: 28605406]
[32]
Finn, O.J.; Edwards, R.P. Human papillomavirus vaccine for cancer prevention. N. Engl. J. Med., 2009, 361(19), 1899-1901.
[http://dx.doi.org/10.1056/NEJMe0907480] [PMID: 19890134]
[33]
Pleasance, E.D.; Cheetham, R.K.; Stephens, P.J.; McBride, D.J.; Humphray, S.J.; Greenman, C.D.; Varela, I.; Lin, M-L.; Ordóñez, G.R.; Bignell, G.R.; Ye, K.; Alipaz, J.; Bauer, M.J.; Beare, D.; Butler, A.; Carter, R.J.; Chen, L.; Cox, A.J.; Edkins, S.; Kokko-Gonzales, P.I.; Gormley, N.A.; Grocock, R.J.; Haudenschild, C.D.; Hims, M.M.; James, T.; Jia, M.; Kingsbury, Z.; Leroy, C.; Marshall, J.; Menzies, A.; Mudie, L.J.; Ning, Z.; Royce, T.; Schulz-Trieglaff, O.B.; Spiridou, A.; Stebbings, L.A.; Szajkowski, L.; Teague, J.; Williamson, D.; Chin, L.; Ross, M.T.; Campbell, P.J.; Bentley, D.R.; Futreal, P.A.; Stratton, M.R. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 2010, 463(7278), 191-196.
[http://dx.doi.org/10.1038/nature08658] [PMID: 20016485]
[34]
Kreiter, S.; Vormehr, M.; van de Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J.C.; Tadmor, A.D.; Schoenberger, S.P.; Huber, C.; Türeci, Ö.; Sahin, U. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520(7549), 692-696.
[http://dx.doi.org/10.1038/nature14426] [PMID: 25901682]
[35]
Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230), 69-74.
[http://dx.doi.org/10.1126/science.aaa4971] [PMID: 25838375]
[36]
Tay, B.Q.; Wright, Q.; Ladwa, R.; Perry, C.; Leggatt, G.; Simpson, F.; Wells, J.W.; Panizza, B.J.; Frazer, I.H.; Cruz, J.L.G. Evolution of cancer vaccines-challenges, achievements, and future directions. Vaccines (Basel), 2021, 9(5), 535.
[http://dx.doi.org/10.3390/vaccines9050535] [PMID: 34065557]
[37]
Schuster, H.; Peper, J.K.; Bösmüller, H-C.; Röhle, K.; Backert, L.; Bilich, T.; Ney, B.; Löffler, M.W.; Kowalewski, D.J.; Trautwein, N.; Rabsteyn, A.; Engler, T.; Braun, S.; Haen, S.P.; Walz, J.S.; Schmid-Horch, B.; Brucker, S.Y.; Wallwiener, D.; Kohlbacher, O.; Fend, F.; Rammensee, H.G. Stevanović, S.; Staebler, A.; Wagner, P. The immunopeptidomic landscape of ovarian carcinomas. Proc. Natl. Acad. Sci. USA, 2017, 114(46), E9942-E9951.
[http://dx.doi.org/10.1073/pnas.1707658114] [PMID: 29093164]
[38]
Corman, J.M.; Sercarz, E.E.; Nanda, N.K. Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells. Clin. Exp. Immunol., 1998, 114(2), 166-172.
[http://dx.doi.org/10.1046/j.1365-2249.1998.00678.x] [PMID: 9822272]
[39]
Klapper, L.N.; Kirschbaum, M.H.; Sela, M.; Yarden, Y. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res., 2000, 77, 25-79.
[http://dx.doi.org/10.1016/S0065-230X(08)60784-8] [PMID: 10549355]
[40]
Cheever, M.A.; Allison, J.P.; Ferris, A.S.; Finn, O.J.; Hastings, B.M.; Hecht, T.T.; Mellman, I.; Prindiville, S.A.; Viner, J.L.; Weiner, L.M.; Matrisian, L.M. The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res., 2009, 15(17), 5323-5337.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0737] [PMID: 19723653]
[41]
Rugo, H.S. Im, S.A.; Cardoso, F.; Cortés, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Wright, G.S.; Saura, C.; Escrivá-de-Romaní, S.; De Laurentiis, M.; Levy, C.; Brown-Glaberman, U.; Ferrero, J.M.; de Boer, M.; Kim, S.B.; Petráková, K.; Yardley, D.A.; Freedman, O.; Jakobsen, E.H.; Kaufman, B.; Yerushalmi, R.; Fasching, P.A.; Nordstrom, J.L.; Bonvini, E.; Koenig, S.; Edlich, S.; Hong, S.; Rock, E.P.; Gradishar, W.J. Efficacy of margetuximab vs. trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol., 2021, 7(4), 573-584.
[http://dx.doi.org/10.1001/jamaoncol.2020.7932] [PMID: 33480963]
[42]
Upton, R.; Banuelos, A.; Feng, D.; Biswas, T.; Kao, K.; McKenna, K.; Willingham, S.; Ho, P.Y.; Rosental, B.; Tal, M.C.; Raveh, T.; Volkmer, J.P.; Pegram, M.D.; Weissman, I.L. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl. Acad. Sci. USA, 2021, 118(29), e2026849118.
[http://dx.doi.org/10.1073/pnas.2026849118] [PMID: 34257155]
[43]
Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; Mellstedt, H. Therapeutic vaccines for cancer: An overview of clinical trials. Nat. Rev. Clin. Oncol., 2014, 11(9), 509-524.
[http://dx.doi.org/10.1038/nrclinonc.2014.111] [PMID: 25001465]
[44]
Chamani, R.; Ranji, P.; Hadji, M.; Nahvijou, A.; Esmati, E.; Alizadeh, A.M. Application of E75 peptide vaccine in breast cancer patients: A systematic review and meta-analysis. Eur. J. Pharmacol., 2018, 831, 87-93.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.010] [PMID: 29753042]
[45]
Rodríguez-Ruiz, M.E.; Perez-Gracia, J.L.; Rodríguez, I.; Alfaro, C.; Oñate, C.; Pérez, G.; Gil-Bazo, I.; Benito, A.; Inogés, S.; López-Diaz de Cerio, A.; Ponz-Sarvise, M.; Resano, L.; Berraondo, P.; Barbés, B.; Martin-Algarra, S.; Gúrpide, A.; Sanmamed, M.F.; de Andrea, C.; Salazar, A.M.; Melero, I. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol., 2018, 29(5), 1312-1319.
[http://dx.doi.org/10.1093/annonc/mdy089] [PMID: 29554212]
[46]
Thomas, S.; Prendergast, G.C. Cancer vaccines: A brief overview. Methods Mol. Biol., 2016, 1403, 755-761.
[http://dx.doi.org/10.1007/978-1-4939-3387-7_43] [PMID: 27076165]
[47]
De Keersmaecker, B.; Claerhout, S.; Carrasco, J.; Bar, I.; Corthals, J.; Wilgenhof, S.; Neyns, B.; Thielemans, K. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: Link between T-cell activation and clinical responses in advanced melanoma. J. Immunother. Cancer, 2020, 8(1), e000329.
[http://dx.doi.org/10.1136/jitc-2019-000329] [PMID: 32114500]
[48]
Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res., 2019, 38(1), 146.
[http://dx.doi.org/10.1186/s13046-019-1154-7] [PMID: 30953535]
[49]
Pardi, N.; Muramatsu, H.; Weissman, D.; Karikó, K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol., 2013, 969, 29-42.
[http://dx.doi.org/10.1007/978-1-62703-260-5_2] [PMID: 23296925]
[50]
Papachristofilou, A.; Hipp, M.M.; Klinkhardt, U.; Früh, M.; Sebastian, M.; Weiss, C.; Pless, M.; Cathomas, R.; Hilbe, W.; Pall, G.; Wehler, T.; Alt, J.; Bischoff, H.; Geißler, M.; Griesinger, F.; Kallen, K.J.; Fotin-Mleczek, M.; Schröder, A.; Scheel, B.; Muth, A.; Seibel, T.; Stosnach, C.; Doener, F.; Hong, H.S.; Koch, S.D.; Gnad-Vogt, U.; Zippelius, A. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer, 2019, 7(1), 38.
[http://dx.doi.org/10.1186/s40425-019-0520-5] [PMID: 30736848]
[51]
Conry, R.M.; LoBuglio, A.F.; Wright, M.; Sumerel, L.; Pike, M.J.; Johanning, F.; Benjamin, R.; Lu, D.; Curiel, D.T. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res., 1995, 55(7), 1397-1400.
[PMID: 7882341]
[52]
Bonehill, A.; Van Nuffel, A.M.T.; Corthals, J.; Tuyaerts, S.; Heirman, C.; François, V.; Colau, D.; van der Bruggen, P.; Neyns, B.; Thielemans, K. Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin. Cancer Res., 2009, 15(10), 3366-3375.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2982] [PMID: 19417017]
[53]
Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10, 168.
[http://dx.doi.org/10.3389/fimmu.2019.00168] [PMID: 30800125]
[54]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[55]
Hegde, P.S.; Karanikas, V.; Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res., 2016, 22(8), 1865-1874.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1507] [PMID: 27084740]
[56]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[57]
Liu, Y-T.; Sun, Z-J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics, 2021, 11(11), 5365-5386.
[http://dx.doi.org/10.7150/thno.58390] [PMID: 33859752]
[58]
Mortezaee, K. Immune escape: A critical hallmark in solid tumors. Life Sci., 2020, 258, 118110.
[http://dx.doi.org/10.1016/j.lfs.2020.118110] [PMID: 32698074]
[59]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[60]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; Braiteh, F.; Waterkamp, D.; He, P.; Zou, W.; Chen, D.S.; Yi, J.; Sandler, A.; Rittmeyer, A. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030), 1837-1846.
[http://dx.doi.org/10.1016/S0140-6736(16)00587-0] [PMID: 26970723]
[61]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[62]
Tekpli, X.; Lien, T.; Røssevold, A.H.; Nebdal, D.; Borgen, E.; Ohnstad, H.O.; Kyte, J.A.; Vallon-Christersson, J.; Fongaard, M.; Due, E.U.; Svartdal, L.G.; Sveli, M.A.T.; Garred, Ø.; Frigessi, A.; Sahlberg, K.K.; Sørlie, T.; Russnes, H.G.; Naume, B.; Kristensen, V.N. An independent poor-prognosis subtype of breast cancer defined by a distinct tumor immune microenvironment. Nat. Commun., 2019, 10(1), 5499.
[http://dx.doi.org/10.1038/s41467-019-13329-5] [PMID: 31796750]
[63]
Nishide, S.; Matsunaga, S.; Shiota, M.; Yamaguchi, T.; Kitajima, S.; Maekawa, Y.; Takeda, N.; Tomura, M.; Uchida, J.; Miura, K.; Nakatani, T.; Tomita, S. Controlling the phenotype of tumor-infiltrating macrophages via the PHD-HIF axis inhibits tumor growth in a mouse model. iScience, 2019, 19, 940-954.
[http://dx.doi.org/10.1016/j.isci.2019.08.033] [PMID: 31518902]
[64]
Singh, A.K.; McGuirk, J.P. CAR T cells: Continuation in a revolution of immunotherapy. Lancet Oncol., 2020, 21(3), e168-e178.
[http://dx.doi.org/10.1016/S1470-2045(19)30823-X] [PMID: 32135120]
[65]
Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res., 2017, 27(1), 109-118.
[http://dx.doi.org/10.1038/cr.2016.151] [PMID: 27995907]
[66]
Müller, P.; Kreuzaler, M.; Khan, T.; Thommen, D.S.; Martin, K.; Glatz, K.; Savic, S.; Harbeck, N.; Nitz, U.; Gluz, O.; von Bergwelt-Baildon, M.; Kreipe, H.; Reddy, S.; Christgen, M.; Zippelius, A. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med., 2015, 7(315), 315ra188.
[http://dx.doi.org/10.1126/scitranslmed.aac4925] [PMID: 26606967]
[67]
Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; Kohrt, H.E.; Horn, L.; Lawrence, D.P.; Rost, S.; Leabman, M.; Xiao, Y.; Mokatrin, A.; Koeppen, H.; Hegde, P.S.; Mellman, I.; Chen, D.S.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567.
[http://dx.doi.org/10.1038/nature14011] [PMID: 25428504]
[68]
Germano, G.; Lamba, S.; Rospo, G.; Barault, L.; Magrì, A.; Maione, F.; Russo, M.; Crisafulli, G.; Bartolini, A.; Lerda, G.; Siravegna, G.; Mussolin, B.; Frapolli, R.; Montone, M.; Morano, F.; de Braud, F.; Amirouchene-Angelozzi, N.; Marsoni, S.; D’Incalci, M.; Orlandi, A.; Giraudo, E.; Sartore-Bianchi, A.; Siena, S.; Pietrantonio, F.; Di Nicolantonio, F.; Bardelli, A. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature, 2017, 552(7683), 116-120.
[http://dx.doi.org/10.1038/nature24673] [PMID: 29186113]
[69]
Spranger, S.; Luke, J.J.; Bao, R.; Zha, Y.; Hernandez, K.M.; Li, Y.; Gajewski, A.P.; Andrade, J.; Gajewski, T.F. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl. Acad. Sci. USA, 2016, 113(48), E7759-E7768.
[http://dx.doi.org/10.1073/pnas.1609376113] [PMID: 27837020]
[70]
Luther, S.A.; Cyster, J.G. Chemokines as regulators of T cell differentiation. Nat. Immunol., 2001, 2(2), 102-107.
[http://dx.doi.org/10.1038/84205] [PMID: 11175801]
[71]
Montoya, M.; Schiavoni, G.; Mattei, F.; Gresser, I.; Belardelli, F.; Borrow, P.; Tough, D.F. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99(9), 3263-3271.
[http://dx.doi.org/10.1182/blood.V99.9.3263] [PMID: 11964292]
[72]
Harlin, H.; Meng, Y.; Peterson, A.C.; Zha, Y.; Tretiakova, M.; Slingluff, C.; McKee, M.; Gajewski, T.F. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res., 2009, 69(7), 3077-3085.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2281] [PMID: 19293190]
[73]
Spranger, S.; Dai, D.; Horton, B.; Gajewski, T.F. Tumor-residing batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 2017, 31(5), 711-723.e4.
[http://dx.doi.org/10.1016/j.ccell.2017.04.003] [PMID: 28486109]
[74]
Peng, D.; Kryczek, I.; Nagarsheth, N.; Zhao, L.; Wei, S.; Wang, W.; Sun, Y.; Zhao, E.; Vatan, L.; Szeliga, W.; Kotarski, J.; Tarkowski, R.; Dou, Y.; Cho, K.; Hensley-Alford, S.; Munkarah, A.; Liu, R.; Zou, W. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 2015, 527(7577), 249-253.
[http://dx.doi.org/10.1038/nature15520] [PMID: 26503055]
[75]
Molon, B.; Ugel, S.; Del Pozzo, F.; Soldani, C.; Zilio, S.; Avella, D.; De Palma, A.; Mauri, P.; Monegal, A.; Rescigno, M.; Savino, B.; Colombo, P.; Jonjic, N.; Pecanic, S.; Lazzarato, L.; Fruttero, R.; Gasco, A.; Bronte, V.; Viola, A. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med., 2011, 208(10), 1949-1962.
[http://dx.doi.org/10.1084/jem.20101956] [PMID: 21930770]
[76]
Serra, S.; Vaisitti, T.; Audrito, V.; Bologna, C.; Buonincontri, R.; Chen, S-S.; Arruga, F.; Brusa, D.; Coscia, M.; Jaksic, O.; Inghirami, G.; Rossi, D.; Furman, R.R.; Robson, S.C.; Gaidano, G.; Chiorazzi, N.; Deaglio, S. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv., 2016, 1(1), 47-61.
[http://dx.doi.org/10.1182/bloodadvances.2016000984] [PMID: 29296695]
[77]
Melief, C.J.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Invest., 2015, 125(9), 3401-3412.
[http://dx.doi.org/10.1172/JCI80009] [PMID: 26214521]
[78]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[79]
Kober, J.; Leitner, J.; Klauser, C.; Woitek, R.; Majdic, O.; Stöckl, J.; Herndler-Brandstetter, D.; Grubeck-Loebenstein, B.; Reipert, B.M.; Pickl, W.F.; Pfistershammer, K.; Steinberger, P. The capacity of the TNF family members 4-1BBL, OX40L, CD70, GITRL, CD30L and LIGHT to costimulate human T cells. Eur. J. Immunol., 2008, 38(10), 2678-2688.
[http://dx.doi.org/10.1002/eji.200838250] [PMID: 18825741]
[80]
Curtsinger, J.M.; Mescher, M.F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol., 2010, 22(3), 333-340.
[http://dx.doi.org/10.1016/j.coi.2010.02.013] [PMID: 20363604]
[81]
Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine, 2019, 37(24), 3167-3178.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.055] [PMID: 31047671]
[82]
Adamina, M.; Guller, U.; Bracci, L.; Heberer, M.; Spagnoli, G.C.; Schumacher, R. Clinical applications of virosomes in cancer immunotherapy. Expert Opin. Biol. Ther., 2006, 6(11), 1113-1121.
[http://dx.doi.org/10.1517/14712598.6.11.1113] [PMID: 17049010]
[83]
Banday, A.H.; Jeelani, S.; Hruby, V.J. Cancer vaccine adjuvants-recent clinical progress and future perspectives. Immunopharmacol. Immunotoxicol., 2015, 37(1), 1-11.
[http://dx.doi.org/10.3109/08923973.2014.971963] [PMID: 25318595]
[84]
Cusi, M.G. Applications of influenza virosomes as a delivery system. Hum. Vaccin., 2006, 2(1), 1-7.
[http://dx.doi.org/10.4161/hv.2.1.2494] [PMID: 17012895]
[85]
Wiedermann, U.; Wiltschke, C.; Jasinska, J.; Kundi, M.; Zurbriggen, R.; Garner-Spitzer, E.; Bartsch, R.; Steger, G.; Pehamberger, H.; Scheiner, O.; Zielinski, C.C. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: A phase I study. Breast Cancer Res. Treat., 2010, 119(3), 673-683.
[http://dx.doi.org/10.1007/s10549-009-0666-9] [PMID: 20092022]
[86]
Saupe, A.; McBurney, W.; Rades, T.; Hook, S. Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin. Drug Deliv., 2006, 3(3), 345-354.
[http://dx.doi.org/10.1517/17425247.3.3.345] [PMID: 16640495]
[87]
Nakamura, T.; Yamazaki, D.; Yamauchi, J.; Harashima, H. The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J. Control. Release, 2013, 171(2), 216-224.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.004] [PMID: 23860186]
[88]
Zhong, Z.; Wei, X.; Qi, B.; Xiao, W.; Yang, L.; Wei, Y.; Chen, L. A novel liposomal vaccine improves humoral immunity and prevents tumor pulmonary metastasis in mice. Int. J. Pharm., 2010, 399(1-2), 156-162.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.053] [PMID: 20692327]
[89]
Neelapu, S.S.; Baskar, S.; Gause, B.L.; Kobrin, C.B.; Watson, T.M.; Frye, A.R.; Pennington, R.; Harvey, L.; Jaffe, E.S.; Robb, R.J.; Popescu, M.C.; Kwak, L.W. Human autologous tumor-specific T-cell responses induced by liposomal delivery of a lymphoma antigen. Clin. Cancer Res., 2004, 10(24), 8309-8317.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1071] [PMID: 15623607]
[90]
Schnurr, M.; Orban, M.; Robson, N.C.; Shin, A.; Braley, H.; Airey, D.; Cebon, J.; Maraskovsky, E.; Endres, S. ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J. Immunol., 2009, 182(3), 1253-1259.
[http://dx.doi.org/10.4049/jimmunol.182.3.1253] [PMID: 19155470]
[91]
Chen, Q.; Jackson, H.; Parente, P.; Luke, T.; Rizkalla, M.; Tai, T.Y.; Zhu, H.C.; Mifsud, N.A.; Dimopoulos, N.; Masterman, K.A.; Hopkins, W.; Goldie, H.; Maraskovsky, E.; Green, S.; Miloradovic, L.; McCluskey, J.; Old, L.J.; Davis, I.D.; Cebon, J.; Chen, W. Immunodominant CD4+ responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant. Proc. Natl. Acad. Sci. USA, 2004, 101(25), 9363-9368.
[http://dx.doi.org/10.1073/pnas.0403271101] [PMID: 15197261]
[92]
Davis, I.D.; Chen, W.; Jackson, H.; Parente, P.; Shackleton, M.; Hopkins, W.; Chen, Q.; Dimopoulos, N.; Luke, T.; Murphy, R.; Scott, A.M.; Maraskovsky, E.; McArthur, G.; MacGregor, D.; Sturrock, S.; Tai, T.Y.; Green, S.; Cuthbertson, A.; Maher, D.; Miloradovic, L.; Mitchell, S.V.; Ritter, G.; Jungbluth, A.A.; Chen, Y.T.; Gnjatic, S.; Hoffman, E.W.; Old, L.J.; Cebon, J.S. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10697-10702.
[http://dx.doi.org/10.1073/pnas.0403572101] [PMID: 15252201]
[93]
Gin, D.Y.; Slovin, S.F. Enhancing immunogenicity of cancer vaccines: QS-21 as an immune adjuvant. Curr. Drug Ther., 2011, 6(3), 207-212.
[http://dx.doi.org/10.2174/157488511796391988] [PMID: 25473385]
[94]
Kim, S.K.; Ragupathi, G.; Cappello, S.; Kagan, E.; Livingston, P.O. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine, 2000, 19(4-5), 530-537.
[http://dx.doi.org/10.1016/S0264-410X(00)00195-X] [PMID: 11027818]
[95]
Slovin, S.F.; Ragupathi, G.; Musselli, C.; Fernandez, C.; Diani, M.; Verbel, D.; Danishefsky, S.; Livingston, P.; Scher, H.I. Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: Clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother., 2005, 54(7), 694-702.
[http://dx.doi.org/10.1007/s00262-004-0598-5] [PMID: 15726361]
[96]
HogenEsch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front. Immunol., 2012, 3, 406.
[http://dx.doi.org/10.3389/fimmu.2012.00406]
[97]
Marichal, T.; Ohata, K.; Bedoret, D.; Mesnil, C.; Sabatel, C.; Kobiyama, K.; Lekeux, P.; Coban, C.; Akira, S.; Ishii, K.J.; Bureau, F.; Desmet, C.J. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med., 2011, 17(8), 996-1002.
[http://dx.doi.org/10.1038/nm.2403] [PMID: 21765404]
[98]
Kennedy, R.; Celis, E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol. Rev., 2008, 222, 129-144.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00616.x] [PMID: 18363998]
[99]
Alfonso, S.; Valdés-Zayas, A.; Santiesteban, E.R.; Flores, Y.I.; Areces, F.; Hernández, M.; Viada, C.E.; Mendoza, I.C.; Guerra, P.P.; García, E.; Ortiz, R.A.; de la Torre, A.V.; Cepeda, M.; Pérez, K.; Chong, E.; Hernández, A.M.; Toledo, D.; González, Z.; Mazorra, Z.; Crombet, T.; Pérez, R.; Vázquez, A.M.; Macías, A.E. A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin. Cancer Res., 2014, 20(14), 3660-3671.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1674] [PMID: 24788102]
[100]
Aucouturier, J.; Dupuis, L.; Deville, S.; Ascarateil, S.; Ganne, V. Montanide ISA 720 and 51: A new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines, 2002, 1(1), 111-118.
[http://dx.doi.org/10.1586/14760584.1.1.111] [PMID: 12908518]
[101]
Hailemichael, Y.; Dai, Z.; Jaffarzad, N.; Ye, Y.; Medina, M.A.; Huang, X.F.; Dorta-Estremera, S.M.; Greeley, N.R.; Nitti, G.; Peng, W.; Liu, C.; Lou, Y.; Wang, Z.; Ma, W.; Rabinovich, B.; Sowell, R.T.; Schluns, K.S.; Davis, R.E.; Hwu, P.; Overwijk, W.W. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med., 2013, 19(4), 465-472.
[http://dx.doi.org/10.1038/nm.3105] [PMID: 23455713]
[102]
Chianese-Bullock, K.A.; Pressley, J.; Garbee, C.; Hibbitts, S.; Murphy, C.; Yamshchikov, G.; Petroni, G.R.; Bissonette, E.A.; Neese, P.Y.; Grosh, W.W.; Merrill, P.; Fink, R.; Woodson, E.M.; Wiernasz, C.J.; Patterson, J.W.; Slingluff, C.L., Jr MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J. Immunol., 2005, 174(5), 3080-3086.
[http://dx.doi.org/10.4049/jimmunol.174.5.3080] [PMID: 15728523]
[103]
Neninger Vinageras, E.; de la Torre, A.; Osorio Rodríguez, M.; Catalá Ferrer, M.; Bravo, I.; Mendoza del Pino, M.; Abreu Abreu, D.; Acosta Brooks, S.; Rives, R.; del Castillo Carrillo, C.; González Dueñas, M.; Viada, C.; García Verdecia, B.; Crombet Ramos, T.; González Marinello, G.; Lage Dávila, A. Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(9), 1452-1458.
[http://dx.doi.org/10.1200/JCO.2007.11.5980] [PMID: 18349395]
[104]
Vono, M.; Taccone, M.; Caccin, P.; Gallotta, M.; Donvito, G.; Falzoni, S.; Palmieri, E.; Pallaoro, M.; Rappuoli, R.; Di Virgilio, F.; De Gregorio, E.; Montecucco, C.; Seubert, A. The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proc. Natl. Acad. Sci. USA, 2013, 110(52), 21095-21100.
[http://dx.doi.org/10.1073/pnas.1319784110] [PMID: 24324152]
[105]
Podda, A.; Del Giudice, G. MF59-adjuvanted vaccines: Increased immunogenicity with an optimal safety profile. Expert Rev. Vaccines, 2003, 2(2), 197-203.
[http://dx.doi.org/10.1586/14760584.2.2.197] [PMID: 12899571]
[106]
Yang, M.; Yan, Y.; Fang, M.; Wan, M.; Wu, X.; Zhang, X.; Zhao, T.; Wei, H.; Song, D.; Wang, L.; Yu, Y. MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+ tumor immunity in mice. Int. Immunopharmacol., 2012, 13(4), 408-416.
[http://dx.doi.org/10.1016/j.intimp.2012.05.003] [PMID: 22595192]
[107]
Chan, G.C.F.; Chan, W.K.; Sze, D.M.Y. The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol., 2009, 2, 25.
[http://dx.doi.org/10.1186/1756-8722-2-25] [PMID: 19515245]
[108]
Kaczanowska, S.; Joseph, A.M.; Davila, E. TLR agonists: Our best frenemy in cancer immunotherapy. J. Leukoc. Biol., 2013, 93(6), 847-863.
[http://dx.doi.org/10.1189/jlb.1012501] [PMID: 23475577]
[109]
Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol., 2015, 15, 405-414.
[110]
Asprodites, N.; Zheng, L.; Geng, D.; Velasco-Gonzalez, C.; Sanchez-Perez, L.; Davila, E. Engagement of Toll-like receptor-2 on cytotoxic T-lymphocytes occurs in vivo and augments antitumor activity. FASEB J., 2008, 22(10), 3628-3637.
[http://dx.doi.org/10.1096/fj.08-108274] [PMID: 18587008]
[111]
Zhang, Y.; Luo, F.; Cai, Y.; Liu, N.; Wang, L.; Xu, D.; Chu, Y. TLR1/TLR2 agonist induces tumor regression by reciprocal modulation of effector and regulatory T cells. J. Immunol., 2011, 186(4), 1963-1969.
[http://dx.doi.org/10.4049/jimmunol.1002320] [PMID: 21217015]
[112]
Salem, M.L.; El-Naggar, S.A.; Kadima, A.; Gillanders, W.E.; Cole, D.J. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine, 2006, 24(24), 5119-5132.
[http://dx.doi.org/10.1016/j.vaccine.2006.04.010] [PMID: 16704888]
[113]
Kato, H.; Takeuchi, O.; Sato, S.; Yoneyama, M.; Yamamoto, M.; Matsui, K.; Uematsu, S.; Jung, A.; Kawai, T.; Ishii, K.J.; Yamaguchi, O.; Otsu, K.; Tsujimura, T.; Koh, C.S.; Reis e Sousa, C.; Matsuura, Y.; Fujita, T.; Akira, S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441(7089), 101-105.
[http://dx.doi.org/10.1038/nature04734] [PMID: 16625202]
[114]
Zhu, X.; Nishimura, F.; Sasaki, K.; Fujita, M.; Dusak, J.E.; Eguchi, J.; Fellows-Mayle, W.; Storkus, W.J.; Walker, P.R.; Salazar, A.M.; Okada, H. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J. Transl. Med., 2007, 5, 10.
[http://dx.doi.org/10.1186/1479-5876-5-10] [PMID: 17295916]
[115]
Chakravarty, J.; Kumar, S.; Trivedi, S.; Rai, V.K.; Singh, A.; Ashman, J.A.; Laughlin, E.M.; Coler, R.N.; Kahn, S.J.; Beckmann, A.M.; Cowgill, K.D.; Reed, S.G.; Sundar, S.; Piazza, F.M. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine, 2011, 29(19), 3531-3537.
[http://dx.doi.org/10.1016/j.vaccine.2011.02.096] [PMID: 21414377]
[116]
Fox, C.B.; Friede, M.; Reed, S.G.; Ireton, G.C. Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants. Subcell. Biochem., 2010, 53, 303-321.
[http://dx.doi.org/10.1007/978-90-481-9078-2_14] [PMID: 20593273]
[117]
Cluff, C.W. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: Clinical results. Adv. Exp. Med. Biol., 2010, 667, 111-123.
[http://dx.doi.org/10.1007/978-1-4419-1603-7_10] [PMID: 20665204]
[118]
Coler, R.N.; Bertholet, S.; Moutaftsi, M.; Guderian, J.A.; Windish, H.P.; Baldwin, S.L.; Laughlin, E.M.; Duthie, M.S.; Fox, C.B.; Carter, D.; Friede, M.; Vedvick, T.S.; Reed, S.G. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One, 2011, 6(1), e16333.
[http://dx.doi.org/10.1371/journal.pone.0016333] [PMID: 21298114]
[119]
Krieg, A.M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov., 2006, 5(6), 471-484.
[http://dx.doi.org/10.1038/nrd2059] [PMID: 16763660]
[120]
de Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; van der Vlies, A.J.; Swartz, M.A.; Hubbell, J.A. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci. USA, 2013, 110(49), 19902-19907.
[http://dx.doi.org/10.1073/pnas.1313152110] [PMID: 24248387]
[121]
Lin, A.Y.; Almeida, J.P.; Bear, A.; Liu, N.; Luo, L.; Foster, A.E.; Drezek, R.A. Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One, 2013, 8(5), e63550.
[http://dx.doi.org/10.1371/journal.pone.0063550] [PMID: 23691064]
[122]
Manegold, C.; Gravenor, D.; Woytowitz, D.; Mezger, J.; Hirsh, V.; Albert, G.; Al-Adhami, M.; Readett, D.; Krieg, A.M.; Leichman, C.G. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(24), 3979-3986.
[http://dx.doi.org/10.1200/JCO.2007.12.5807] [PMID: 18711188]
[123]
Pashenkov, M.; Goëss, G.; Wagner, C.; Hörmann, M.; Jandl, T.; Moser, A.; Britten, C.M.; Smolle, J.; Koller, S.; Mauch, C.; Tantcheva-Poor, I.; Grabbe, S.; Loquai, C.; Esser, S.; Franckson, T.; Schneeberger, A.; Haarmann, C.; Krieg, A.M.; Stingl, G.; Wagner, S.N. Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol., 2006, 24(36), 5716-5724.
[http://dx.doi.org/10.1200/JCO.2006.07.9129] [PMID: 17179105]
[124]
Gungor, B.; Yagci, F.C.; Tincer, G.; Bayyurt, B.; Alpdundar, E.; Yildiz, S.; Ozcan, M.; Gursel, I.; Gursel, M. CpG ODN nanorings induce IFNα from plasmacytoid dendritic cells and demonstrate potent vaccine adjuvant activity. Sci. Transl. Med., 2014, 6(235), 235ra61.
[http://dx.doi.org/10.1126/scitranslmed.3007909] [PMID: 24807558]
[125]
Morrow, M.P.; Yan, J.; Pankhong, P.; Ferraro, B.; Lewis, M.G.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. Unique Th1/Th2 phenotypes induced during priming and memory phases by use of interleukin-12 (IL-12) or IL-28B vaccine adjuvants in rhesus macaques. Clin. Vaccine Immunol., 2010, 17(10), 1493-1499.
[http://dx.doi.org/10.1128/CVI.00181-10] [PMID: 20685940]
[126]
Green, D.R.; Ferguson, T.; Zitvogel, L.; Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol., 2009, 9, 353-363.
[127]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[128]
Casares, N.; Pequignot, M.O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M.; Coutant, F.; Métivier, D.; Pichard, E.; Aucouturier, P.; Pierron, G.; Garrido, C.; Zitvogel, L.; Kroemer, G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med., 2005, 202(12), 1691-1701.
[http://dx.doi.org/10.1084/jem.20050915] [PMID: 16365148]
[129]
Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39, 1-10.
[130]
Yatim, N.; Albert, M.L. Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity. Immunity, 2011, 35(4), 478-490.
[http://dx.doi.org/10.1016/j.immuni.2011.10.010] [PMID: 22035840]
[131]
Sistigu, A.; Yamazaki, T.; Vacchelli, E.; Chaba, K.; Enot, D.P.; Adam, J.; Vitale, I.; Goubar, A.; Baracco, E.E.; Remédios, C.; Fend, L.; Hannani, D.; Aymeric, L.; Ma, Y.; Niso-Santano, M.; Kepp, O.; Schultze, J.L.; Tüting, T.; Belardelli, F.; Bracci, L.; La Sorsa, V.; Ziccheddu, G.; Sestili, P.; Urbani, F.; Delorenzi, M.; Lacroix-Triki, M.; Quidville, V.; Conforti, R.; Spano, J.P.; Pusztai, L.; Poirier-Colame, V.; Delaloge, S.; Penault-Llorca, F.; Ladoire, S.; Arnould, L.; Cyrta, J.; Dessoliers, M.C.; Eggermont, A.; Bianchi, M.E.; Pittet, M.; Engblom, C.; Pfirschke, C.; Préville, X.; Uzè, G.; Schreiber, R.D.; Chow, M.T.; Smyth, M.J.; Proietti, E.; André, F.; Kroemer, G.; Zitvogel, L. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med., 2014, 20(11), 1301-1309.
[http://dx.doi.org/10.1038/nm.3708] [PMID: 25344738]
[132]
Garg, A.D.; Vandenberk, L.; Fang, S.; Fasche, T.; Van Eygen, S.; Maes, J.; Van Woensel, M.; Koks, C.; Vanthillo, N.; Graf, N.; de Witte, P.; Van Gool, S.; Salven, P.; Agostinis, P. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ., 2017, 24(5), 832-843.
[http://dx.doi.org/10.1038/cdd.2017.15] [PMID: 28234357]
[133]
Vacchelli, E.; Ma, Y.; Baracco, E.E.; Sistigu, A.; Enot, D.P.; Pietrocola, F.; Yang, H.; Adjemian, S.; Chaba, K.; Semeraro, M.; Signore, M.; De Ninno, A.; Lucarini, V.; Peschiaroli, F.; Businaro, L.; Gerardino, A.; Manic, G.; Ulas, T.; Günther, P.; Schultze, J.L.; Kepp, O.; Stoll, G.; Lefebvre, C.; Mulot, C.; Castoldi, F.; Rusakiewicz, S.; Ladoire, S.; Apetoh, L.; Bravo-San Pedro, J.M.; Lucattelli, M.; Delarasse, C.; Boige, V.; Ducreux, M.; Delaloge, S.; Borg, C.; André, F.; Schiavoni, G.; Vitale, I.; Laurent-Puig, P.; Mattei, F.; Zitvogel, L.; Kroemer, G. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350(6263), 972-978.
[http://dx.doi.org/10.1126/science.aad0779] [PMID: 26516201]
[134]
Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; Métivier, D.; Larochette, N.; van Endert, P.; Ciccosanti, F.; Piacentini, M.; Zitvogel, L.; Kroemer, G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med., 2007, 13(1), 54-61.
[http://dx.doi.org/10.1038/nm1523] [PMID: 17187072]
[135]
Panaretakis, T.; Joza, N.; Modjtahedi, N.; Tesniere, A.; Vitale, I.; Durchschlag, M.; Fimia, G.M.; Kepp, O.; Piacentini, M.; Froehlich, K.U.; van Endert, P.; Zitvogel, L.; Madeo, F.; Kroemer, G. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ., 2008, 15(9), 1499-1509.
[http://dx.doi.org/10.1038/cdd.2008.67] [PMID: 18464797]
[136]
Fucikova, J.; Becht, E.; Iribarren, K.; Goc, J.; Remark, R.; Damotte, D.; Alifano, M.; Devi, P.; Biton, J.; Germain, C.; Lupo, A.; Fridman, W.H.; Dieu-Nosjean, M.C.; Kroemer, G.; Sautès-Fridman, C.; Cremer, I. Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res., 2016, 76(7), 1746-1756.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1142] [PMID: 26842877]
[137]
Stoll, G.; Iribarren, K.; Michels, J.; Leary, A.; Zitvogel, L.; Cremer, I.; Kroemer, G. Calreticulin expression: Interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer. OncoImmunology, 2016, 5(7), e1177692.
[http://dx.doi.org/10.1080/2162402X.2016.1177692] [PMID: 27622029]
[138]
Bell, C.W.; Jiang, W.; Reich, C.F., III; Pisetsky, D.S. The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol., 2006, 291(6), C1318-C1325.
[http://dx.doi.org/10.1152/ajpcell.00616.2005] [PMID: 16855214]
[139]
Faè, D.A.; Martorelli, D.; Mastorci, K.; Muraro, E.; Dal Col, J.; Franchin, G.; Barzan, L.; Comaro, E.; Vaccher, E.; Rosato, A.; Dolcetti, R. Broadening specificity and enhancing cytotoxicity of adoptive T cells for nasopharyngeal carcinoma immunotherapy. Cancer Immunol. Res., 2016, 4(5), 431-440.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0108] [PMID: 27009165]
[140]
Fucikova, J.; Kralikova, P.; Fialova, A.; Brtnicky, T.; Rob, L.; Bartunkova, J.; Spísek, R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res., 2011, 71(14), 4821-4833.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0950] [PMID: 21602432]
[141]
Martins, I.; Kepp, O.; Schlemmer, F.; Adjemian, S.; Tailler, M.; Shen, S.; Michaud, M.; Menger, L.; Gdoura, A.; Tajeddine, N.; Tesniere, A.; Zitvogel, L.; Kroemer, G. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene, 2011, 30(10), 1147-1158.
[http://dx.doi.org/10.1038/onc.2010.500] [PMID: 21151176]
[142]
Yamano, T.; Kubo, S.; Fukumoto, M.; Yano, A.; Mawatari-Furukawa, Y.; Okamura, H.; Tomita, N. Whole cell vaccination using immunogenic cell death by an oncolytic adenovirus is effective against a colorectal cancer model. Mol. Ther. Oncolytics, 2016, 3, 16031.
[http://dx.doi.org/10.1038/mto.2016.31] [PMID: 28035331]
[143]
Wen, C.C.; Chen, H.M.; Chen, S.S.; Huang, L.T.; Chang, W.T.; Wei, W.C.; Chou, L.C.; Arulselvan, P.; Wu, J.B.; Kuo, S.C.; Yang, N.S. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines. J. Biomed. Sci., 2011, 18, 44.
[http://dx.doi.org/10.1186/1423-0127-18-44] [PMID: 21689407]
[144]
Mizumoto, N.; Tanaka, H.; Matsushima, H.; Vishwanath, M.; Takashima, A. Colchicine promotes antigen cross-presentation by murine dendritic cells. J. Invest. Dermatol., 2007, 127(6), 1543-1546.
[http://dx.doi.org/10.1038/sj.jid.5700699] [PMID: 17301837]
[145]
Woller, N.; Knocke, S.; Mundt, B.; Gürlevik, E.; Strüver, N.; Kloos, A.; Boozari, B.; Schache, P.; Manns, M.P.; Malek, N.P.; Sparwasser, T.; Zender, L.; Wirth, T.C.; Kubicka, S.; Kühnel, F. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J. Clin. Invest., 2011, 121(7), 2570-2582.
[http://dx.doi.org/10.1172/JCI45585] [PMID: 21646722]
[146]
Chen, H.M.; Wang, P.H.; Chen, S.S.; Wen, C.C.; Chen, Y.H.; Yang, W.C.; Yang, N.S. Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol. Immunother., 2012, 61(11), 1989-2002.
[http://dx.doi.org/10.1007/s00262-012-1258-9] [PMID: 22527248]
[147]
Lin, T.J.; Lin, H.T.; Chang, W.T.; Mitapalli, S.P.; Hsiao, P.W.; Yin, S.Y.; Yang, N.S. Shikonin-enhanced cell immunogenicity of tumor vaccine is mediated by the differential effects of DAMP components. Mol. Cancer, 2015, 14, 174.
[http://dx.doi.org/10.1186/s12943-015-0435-9] [PMID: 26403780]
[148]
Montico, B.; Lapenta, C.; Ravo, M.; Martorelli, D.; Muraro, E.; Zeng, B.; Comaro, E.; Spada, M.; Donati, S.; Santini, S.M.; Tarallo, R.; Giurato, G.; Rizzo, F.; Weisz, A.; Belardelli, F.; Dolcetti, R.; Dal Col, J. Exploiting a new strategy to induce immunogenic cell death to improve dendritic cell-based vaccines for lymphoma immunotherapy. OncoImmunology, 2017, 6(11), e1356964.
[http://dx.doi.org/10.1080/2162402X.2017.1356964] [PMID: 29147614]
[149]
Gatti-Mays, M.E.; Redman, J.M.; Collins, J.M.; Bilusic, M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccin. Immunother., 2017, 13(11), 2561-2574.
[http://dx.doi.org/10.1080/21645515.2017.1364322] [PMID: 28857666]
[150]
Finke, L.H.; Wentworth, K.; Blumenstein, B.; Rudolph, N.S.; Levitsky, H.; Hoos, A. Lessons from randomized phase III studies with active cancer immunotherapies-outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine, 2007, 25(Suppl. 2), B97-B109.
[http://dx.doi.org/10.1016/j.vaccine.2007.06.067] [PMID: 17916465]
[151]
van der Burg, S.H.; Arens, R.; Ossendorp, F.; van Hall, T.; Melief, C.J. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer, 2016, 16(4), 219-233.
[http://dx.doi.org/10.1038/nrc.2016.16] [PMID: 26965076]
[152]
Hodge, J.W.; Garnett, C.T.; Farsaci, B.; Palena, C.; Tsang, K.Y.; Ferrone, S.; Gameiro, S.R. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer, 2013, 133(3), 624-636.
[http://dx.doi.org/10.1002/ijc.28070] [PMID: 23364915]
[153]
Zitvogel, L.; Kroemer, G. Anticancer immunochemotherapy using adjuvants with direct cytotoxic effects. J. Clin. Invest., 2009, 119(8), 2127-2130.
[http://dx.doi.org/10.1172/JCI39991] [PMID: 19620780]
[154]
Emens, L.A.; Middleton, G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol. Res., 2015, 3(5), 436-443.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0064] [PMID: 25941355]
[155]
Rettig, L.; Seidenberg, S.; Parvanova, I.; Samaras, P.; Curioni, A.; Knuth, A.; Pascolo, S. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int. J. Cancer, 2011, 129(4), 832-838.
[http://dx.doi.org/10.1002/ijc.25756] [PMID: 21710545]
[156]
Garnett, C.T.; Schlom, J.; Hodge, J.W. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: Effects of docetaxel on immune enhancement. Clin. Cancer Res., 2008, 14(11), 3536-3544.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4025] [PMID: 18519787]
[157]
Chen, G.; Gupta, R.; Petrik, S.; Laiko, M.; Leatherman, J.M.; Asquith, J.M.; Daphtary, M.M.; Garrett-Mayer, E.; Davidson, N.E.; Hirt, K.; Berg, M.; Uram, J.N.; Dauses, T.; Fetting, J.; Duus, E.M.; Atay-Rosenthal, S.; Ye, X.; Wolff, A.C.; Stearns, V.; Jaffee, E.M.; Emens, L.A. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol. Res., 2014, 2(10), 949-961.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0058] [PMID: 25116755]
[158]
Harrop, R.; Chu, F.; Gabrail, N.; Srinivas, S.; Blount, D.; Ferrari, A. Vaccination of castration-resistant prostate cancer patients with TroVax (MVA-5T4) in combination with docetaxel: A randomized phase II trial. Cancer Immunol. Immunother., 2013, 62(9), 1511-1520.
[http://dx.doi.org/10.1007/s00262-013-1457-z] [PMID: 23877659]
[159]
Dijkgraaf, E.M.; Santegoets, S.J.; Reyners, A.K.; Goedemans, R.; Nijman, H.W.; van Poelgeest, M.I.; van Erkel, A.R.; Smit, V.T.; Daemen, T.A.; van der Hoeven, J.J.; Melief, C.J.; Welters, M.J.; Kroep, J.R.; van der Burg, S.H. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget, 2015, 6(31), 32228-32243.
[http://dx.doi.org/10.18632/oncotarget.4772] [PMID: 26334096]
[160]
Middleton, G.; Silcocks, P.; Cox, T.; Valle, J.; Wadsley, J.; Propper, D.; Coxon, F.; Ross, P.; Madhusudan, S.; Roques, T.; Cunningham, D.; Falk, S.; Wadd, N.; Harrison, M.; Corrie, P.; Iveson, T.; Robinson, A.; McAdam, K.; Eatock, M.; Evans, J.; Archer, C.; Hickish, T.; Garcia-Alonso, A.; Nicolson, M.; Steward, W.; Anthoney, A.; Greenhalf, W.; Shaw, V.; Costello, E.; Naisbitt, D.; Rawcliffe, C.; Nanson, G.; Neoptolemos, J. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol., 2014, 15(8), 829-840.
[http://dx.doi.org/10.1016/S1470-2045(14)70236-0] [PMID: 24954781]
[161]
Gameiro, S.R.; Jammeh, M.L.; Wattenberg, M.M.; Tsang, K.Y.; Ferrone, S.; Hodge, J.W. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget, 2014, 5(2), 403-416.
[http://dx.doi.org/10.18632/oncotarget.1719] [PMID: 24480782]
[162]
Chakraborty, M.; Abrams, S.I.; Camphausen, K.; Liu, K.; Scott, T.; Coleman, C.N.; Hodge, J.W. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol., 2003, 170(12), 6338-6347.
[http://dx.doi.org/10.4049/jimmunol.170.12.6338] [PMID: 12794167]
[163]
Ferrara, T.A.; Hodge, J.W.; Gulley, J.L. Combining radiation and immunotherapy for synergistic antitumor therapy. Curr. Opin. Mol. Ther., 2009, 11(1), 37-42.
[PMID: 19169958]
[164]
Mineta, T.; Rabkin, S.D.; Yazaki, T.; Hunter, W.D.; Martuza, R.L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat. Med., 1995, 1(9), 938-943.
[http://dx.doi.org/10.1038/nm0995-938] [PMID: 7585221]
[165]
Mesnil, M.; Yamasaki, H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: Role of gap-junctional intercellular communication. Cancer Res., 2000, 60(15), 3989-3999.
[PMID: 10945596]
[166]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[167]
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol., 2002, 3(11), 991-998.
[http://dx.doi.org/10.1038/ni1102-991] [PMID: 12407406]
[168]
Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol., 2018, 62, 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[169]
Dillman, R.O. Is there a role for therapeutic cancer vaccines in the age of checkpoint inhibitors? Hum. Vaccin. Immunother., 2017, 13(3), 528-532.
[http://dx.doi.org/10.1080/21645515.2016.1244149] [PMID: 27808593]
[170]
Hurwitz, A.A.; Foster, B.A.; Kwon, E.D.; Truong, T.; Choi, E.M.; Greenberg, N.M.; Burg, M.B.; Allison, J.P. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res., 2000, 60(9), 2444-2448.
[PMID: 10811122]
[171]
Duraiswamy, J.; Kaluza, K.M.; Freeman, G.J.; Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res., 2013, 73(12), 3591-3603.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4100] [PMID: 23633484]
[172]
Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T cell infiltration into pancreatic tumors. J. Immunother. (Hagerstown, Md.: 1997), 2015, 38, 1.
[173]
Dranoff, G. GM-CSF-based cancer vaccines. Immunol. Rev., 2002, 188, 147-154.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18813.x] [PMID: 12445288]
[174]
Gomez-Cambronero, J.; Horn, J.; Paul, C.C.; Baumann, M.A. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: Involvement of the ribosomal p70 S6 kinase signaling pathway. J. Immunol., 2003, 171(12), 6846-6855.
[http://dx.doi.org/10.4049/jimmunol.171.12.6846] [PMID: 14662891]
[175]
Shi, Y.; Liu, C.H.; Roberts, A.I.; Das, J.; Xu, G.; Ren, G.; Zhang, Y.; Zhang, L.; Yuan, Z.R.; Tan, H.S.W.; Das, G.; Devadas, S. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: What we do and don’t know. Cell Res., 2006, 16(2), 126-133.
[http://dx.doi.org/10.1038/sj.cr.7310017] [PMID: 16474424]
[176]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[177]
Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; Leblanc, P.; Munn, L.L.; Huang, P.; Duda, D.G.; Fukumura, D.; Jain, R.K.; Poznansky, M.C. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17561-17566.
[http://dx.doi.org/10.1073/pnas.1215397109] [PMID: 23045683]
[178]
Bakos, O.; Lawson, C.; Rouleau, S.; Tai, L-H. Combining surgery and immunotherapy: Turning an immunosuppressive effect into a therapeutic opportunity. J. Immunother. Cancer, 2018, 6(1), 86.
[http://dx.doi.org/10.1186/s40425-018-0398-7] [PMID: 30176921]
[179]
Schirrmacher, V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory. Cancer Immunol. Immunother., 2005, 54(6), 587-598.
[http://dx.doi.org/10.1007/s00262-004-0602-0] [PMID: 15838708]
[180]
Bohle, W.; Schlag, P.; Liebrich, W.; Hohenberger, P.; Manasterski, M.; Möller, P.; Schirrmacher, V. Postoperative active specific immunization in colorectal cancer patients with virus-modified autologous tumor-cell vaccine. First clinical results with tumor-cell vaccines modified with live but avirulent Newcastle disease virus. Cancer, 1990, 66(7), 1517-1523.
[http://dx.doi.org/10.1002/1097-0142(19901001)66:7<1517:AID-CNCR2820660714>3.0.CO;2-I] [PMID: 2208003]
[181]
Pan, K.; Guan, X-X.; Li, Y-Q.; Zhao, J-J.; Li, J-J.; Qiu, H-J.; Weng, D-S.; Wang, Q-J.; Liu, Q.; Huang, L-X.; He, J.; Chen, S.P.; Ke, M.L.; Zeng, Y.X.; Xia, J.C. Clinical activity of adjuvant cytokine-induced killer cell immunotherapy in patients with postmastectomy triple-negative breast cancer. Clin. Cancer Res., 2014, 20(11), 3003-3011.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0082] [PMID: 24668644]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy