Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Recent Advancements of Stimuli-Responsive Targeted Liposomal Formulations for Cancer Drug Delivery

Author(s): Hamad Alrbyawi, Ishwor Poudel, Manjusha Annaji, Robert D. Arnold, Amit K. Tiwari and R. Jayachandra Babu*

Volume 10, Issue 1, 2022

Published on: 25 March, 2022

Page: [3 - 23] Pages: 21

DOI: 10.2174/2211738510666220214102626

Price: $65

Abstract

Liposomes have gained attention as a well-accepted nanocarrier for several chemotherapeutic drugs and are considered a drug delivery system of choice for a wide range of products. These amphipathic spherical vesicles primarily consist of one or more phospholipid bilayers, showing promise for drug delivery of both hydrophilic and hydrophobic components in addition to unique properties, such as biocompatibility, biodegradability, low toxicity, and nonimmunogenicity. Recent advances in liposomes are mainly centered on chemical and structural modification with the multifunctional approach to target the cancer cells activating the offensive mechanisms within the proximity of the tumors. Stimuli-responsive liposomes are a precisive approach to deliver and release chemotherapeutic drugs in the tumor site in a controlled fashion, thus reducing damage to normal tissues and preventing the side effects of the conventional chemotherapy regimen. The unique characteristics of the tumor microenvironment facilitate applying an endogenous stimulus (pH, redox potential, or enzymatic activity) to trigger the release of the drug or the application of an external stimulus (heat or light) to tailor the drug release from liposomes. This review focuses on newer developments in stimuli-sensitive liposomal drug delivery systems designed to implement either exogenous (temperature, light, and magnetic field) or endogenous (pH changes, enzymatic triggers, or redox potential) approaches.

Keywords: Liposomes, cancer, stimuli-responsive, targeted drug delivery, pH-sensitive, nanovesicular.

Graphical Abstract

[1]
Kumar A, Chen F, Mozhi A, et al. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013; 5(18): 8307-25.
[http://dx.doi.org/10.1039/c3nr01525d] [PMID: 23860639]
[2]
Abri Aghdam M, Bagheri R, Mosafer J, et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315: 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.018] [PMID: 31647978]
[3]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[4]
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2016; 24(3): 179-91.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[5]
Raj R, Mongia P, Kumar Sahu S, Ram A. Nanocarriers based anticancer drugs: Current scenario and future perceptions. Curr Drug Targets 2016; 17(2): 206-28.
[http://dx.doi.org/10.2174/1389450116666150722141607] [PMID: 26201484]
[6]
Qin X, Zhang M, Hu X, et al. Nanoengineering of a newly designed chlorin e6 derivative for amplified photodynamic therapy via regulating lactate metabolism. Nanoscale 2021; 13(27): 11953-62.
[http://dx.doi.org/10.1039/D1NR01083B] [PMID: 34212166]
[7]
Li Q, Zhou Y, He W, et al. Platelet-armored nanoplatform to harmonize janus-faced IFN-γ against tumor recurrence and metastasis. J Control Release 2021; 338: 33-45.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.020] [PMID: 34391837]
[8]
Zhang M, Qin X, Xu W, et al. Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy. J Colloid Interface Sci 2021; 594: 493-501.
[http://dx.doi.org/10.1016/j.jcis.2021.03.050] [PMID: 33774405]
[9]
Al Saqr A, Aldawsari MF, Alrbyawi H, et al. Co-delivery of hispolon and doxorubicin liposomes improves efficacy against melanoma cells. AAPS PharmSciTech 2020; 21(8): 304.
[http://dx.doi.org/10.1208/s12249-020-01846-2] [PMID: 33150503]
[10]
Pawar A, Singh S, Rajalakshmi S, Shaikh K, Bothiraja C. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. Artif Cells Nanomed Biotechnol 2018; 46M(sup1): 347-61.
[http://dx.doi.org/10.1080/21691401.2018.1423991]
[11]
Banstola A, Poudel K, Pathak S, Shrestha P, Kim JO, Jeong J-H, et al. Hypoxia-mediated ROS amplification triggers mitochondria-mediated apoptotic cell death via PD-L1/ROS-responsive, dual-targeted, drug-laden thioketal nanoparticles. ACS Applied Materials & Interfaces 2021.
[12]
Wang D, Ren Y, Shao Y, Yu D, Meng L. Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@ poly (N-vinyl pyrrole) for targeted synergistic chemo–Photothermal Cancer treatment. Bioconjug Chem 2017; 28(11): 2815-22.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00515] [PMID: 28968063]
[13]
Bothiraja C, Rajput N, Poudel I, Rajalakshmi S, Panda B, Pawar A. Development of novel biofunctionalized chitosan decorated nanocochleates as a cancer targeted drug delivery platform. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 447-61.
[http://dx.doi.org/10.1080/21691401.2018.1430584]
[14]
Wang W, Chen T, Xu H, et al. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 2018; 23(7): 1578.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
[15]
Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release 2020; 318: 256-63.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.023] [PMID: 31846618]
[16]
Chen D-B, Yang TZ, Lu W-L, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull (Tokyo) 2001; 49(11): 1444-7.
[http://dx.doi.org/10.1248/cpb.49.1444] [PMID: 11724235]
[17]
Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med 2021; 11(8): 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[18]
Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601 ,120571
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[19]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[20]
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11(101) ,20140459
[http://dx.doi.org/10.1098/rsif.2014.0459] [PMID: 25401172]
[21]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[22]
Ong SGM, Ming LC, Lee KS, Yuen KH. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 2016; 8(3): 25.
[http://dx.doi.org/10.3390/pharmaceutics8030025] [PMID: 27571096]
[23]
Allen TM. Liposomes. Opportunities in drug delivery. Drugs 1997; 54(4)(Suppl. 4): 8-14.
[http://dx.doi.org/10.2165/00003495-199700544-00004] [PMID: 9361956]
[24]
Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066(1): 29-36.
[http://dx.doi.org/10.1016/0005-2736(91)90246-5] [PMID: 2065067]
[25]
Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin Pharmacokinet 2003; 42(5): 419-36.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[26]
Laginha KM, Verwoert S, Charrois GJR, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 2005; 11(19 Pt 1): 6944-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0343] [PMID: 16203786]
[27]
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013; 8(9): 1509-28.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[28]
Matsuo H, Wakasugi M, Takanaga H, et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J Control Release 2001; 77(1-2): 77-86.
[http://dx.doi.org/10.1016/S0168-3659(01)00460-6] [PMID: 11689261]
[29]
Zhao W, Zhuang S, Qi X-R. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomedicine 2011; 6: 3087-98.
[PMID: 22163162]
[30]
Lasic DD, Vallner JJ, Working PK. Sterically stabilized liposomes in cancer therapy and gene delivery. Curr Opin Mol Ther 1999; 1(2): 177-85.
[PMID: 11715941]
[31]
Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ. Co-delivery of doxorubicin and ceramide in a liposomal formulation enhances cytotoxicity in murine B16BL6 melanoma cell lines. AAPS PharmSciTech 2019; 20(3): 99.
[http://dx.doi.org/10.1208/s12249-019-1316-0] [PMID: 30719596]
[32]
Cullis PR, Chonn A, Semple SC. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev 1998; 32(1-2): 3-17.
[http://dx.doi.org/10.1016/S0169-409X(97)00128-2] [PMID: 10837632]
[33]
Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Res Int 2014 2014.
[34]
Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 1986; 857(1): 123-6.
[http://dx.doi.org/10.1016/0005-2736(86)90105-7] [PMID: 3964703]
[35]
Zhigaltsev IV, Winters G, Srinivasulu M, et al. Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. J Control Release 2010; 144(3): 332-40.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.029] [PMID: 20202473]
[36]
Allen TM, Hansen CB. de Menezes. Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 1995; 16(2-3): 267-84.
[http://dx.doi.org/10.1016/0169-409X(95)00029-7]
[37]
Zhang Y, Zhai M, Chen Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv 2017; 24(1): 1045-55.
[http://dx.doi.org/10.1080/10717544.2017.1344334] [PMID: 28687044]
[38]
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007; 9(2): E128-47.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[39]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[40]
Fouladi F, Steffen KJ, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem 2017; 28(4): 857-68.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00736] [PMID: 28201868]
[41]
Li L, Yang W-W, Xu D-G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target 2019; 27(4): 423-33.
[http://dx.doi.org/10.1080/1061186X.2018.1519029] [PMID: 30173577]
[42]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[43]
Torchilin VP, Klibanov AL, Huang L, O’Donnell S, Nossiff ND, Khaw BA. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992; 6(9): 2716-9.
[http://dx.doi.org/10.1096/fasebj.6.9.1612296] [PMID: 1612296]
[44]
Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J 2012; 14(2): 303-15.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[45]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[46]
Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem 2019; 164: 640-53.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[47]
Felber AE, Dufresne M-H, Leroux J-C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012; 64(11): 979-92.
[http://dx.doi.org/10.1016/j.addr.2011.09.006] [PMID: 21996056]
[48]
Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66(18): 8927-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1501] [PMID: 16982728]
[49]
Ferreira DS, Lopes SC, Franco MS, Oliveira MC. pH-sensitive liposomes for drug delivery in cancer treatment. Ther Deliv 2013; 4(9): 1099-123.
[http://dx.doi.org/10.4155/tde.13.80] [PMID: 24024511]
[50]
Khawar IA, Kim JH, Kuh H-J. Improving drug delivery to solid tumors: Priming the tumor microenvironment. J Control Release 2015; 201: 78-89.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.018] [PMID: 25526702]
[51]
Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 2015; 219: 205-14.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.050] [PMID: 26341694]
[52]
Ishida T, Okada Y, Kobayashi T, Kiwada H. Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood. Int J Pharm 2006; 309(1-2): 94-100.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.010] [PMID: 16364578]
[53]
Samoshina NM, Liu X, Brazdova B, Franz AH, Samoshin VV, Guo X. Fliposomes: pH-sensitive liposomes containing a trans-2-morpholinocyclohexanol-based lipid that performs a conformational flip and triggers an instant cargo release in acidic medium. Pharmaceutics 2011; 3(3): 379-405.
[http://dx.doi.org/10.3390/pharmaceutics3030379] [PMID: 24310586]
[54]
Chen D, Liu W, Shen Y, et al. Effects of a novel pH-sensitive liposome with cleavable esterase-catalyzed and pH-responsive double smart mPEG lipid derivative on ABC phenomenon. Int J Nanomedicine 2011; 6: 2053-61.
[http://dx.doi.org/10.2147/IJN.S24344] [PMID: 21976980]
[55]
Ishida T, Kirchmeier MJ, Moase EH, Zalipsky S, Allen TM. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta 2001; 1515(2): 144-58.
[http://dx.doi.org/10.1016/S0005-2736(01)00409-6] [PMID: 11718670]
[56]
Kim H-K, Van den Bossche J, Hyun S-H, Thompson DH. Acid-triggered release via dePEGylation of fusogenic liposomes mediated by heterobifunctional phenyl-substituted vinyl ethers with tunable pH-sensitivity. Bioconjug Chem 2012; 23(10): 2071-7.
[http://dx.doi.org/10.1021/bc300266y] [PMID: 22988941]
[57]
Lee S-M, Chen H, O’Halloran TV, Nguyen ST. “Clickable” polymer-caged nanobins as a modular drug delivery platform. J Am Chem Soc 2009; 131(26): 9311-20.
[http://dx.doi.org/10.1021/ja9017336] [PMID: 19527027]
[58]
Miyazaki M, Yuba E, Hayashi H, Harada A, Kono K. Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjug Chem 2018; 29(1): 44-55.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00551] [PMID: 29183110]
[59]
Zhang H, Li RY, Lu X, Mou ZZ, Lin GM. Docetaxel-loaded liposomes: Preparation, pH sensitivity, pharmacokinetics, and tissue distribution. J Zhejiang Univ Sci B 2012; 13(12): 981-9.
[http://dx.doi.org/10.1631/jzus.B1200098] [PMID: 23225853]
[60]
Seddon JM, Cevc G, Marsh D. Calorimetric studies of the gel-fluid (L beta-L alpha) and lamellar-inverted hexagonal (L alpha-HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines. Biochemistry 1983; 22(5): 1280-9.
[http://dx.doi.org/10.1021/bi00274a045] [PMID: 6838853]
[61]
Düzgüneş N, Straubinger RM, Baldwin PA, Friend DS, Papahadjopoulos D. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 1985; 24(13): 3091-8.
[http://dx.doi.org/10.1021/bi00334a004] [PMID: 4027231]
[62]
Ye P, Zhang W, Yang T, et al. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine 2014; 9: 2167-78.
[http://dx.doi.org/10.2147/IJN.S60178] [PMID: 24855354]
[63]
Kalia J, Raines RT. Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed Engl 2008; 47(39): 7523-6.
[http://dx.doi.org/10.1002/anie.200802651] [PMID: 18712739]
[64]
Chiang Y-T, Lyu S-Y, Wen Y-H, Lo C-L. Preparation and characterization of electrostatically crosslinked polymer-liposomes in anticancer therapy. Int J Mol Sci 2018; 19(6): 1615.
[http://dx.doi.org/10.3390/ijms19061615]
[65]
Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv Drug Deliv Rev 2012; 64(9): 866-84.
[http://dx.doi.org/10.1016/j.addr.2012.01.020] [PMID: 22349241]
[66]
Park J, Lee H, Youn YS, Oh KT, Lee ES. Tumor-homing pH-sensitive extracellular vesicles for targeting heterogeneous tumors. Pharmaceutics 2020; 12(4): 372.
[http://dx.doi.org/10.3390/pharmaceutics12040372] [PMID: 32316679]
[67]
Liu J, Ma H, Wei T, Liang X-J. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem Commun (Camb) 2012; 48(40): 4869-71.
[http://dx.doi.org/10.1039/c2cc31697h] [PMID: 22498879]
[68]
Bersani S, Vila-Caballer M, Brazzale C, Barattin M, Salmaso S. pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine) decorated liposomes for the delivery of gemcitabine to cancer cells. Eur J Pharm Biopharm 2014; 88(3): 670-82.
[http://dx.doi.org/10.1016/j.ejpb.2014.08.005] [PMID: 25157908]
[69]
Pacheco-Torres J, Mukherjee N, Walko M, et al. Image guided drug release from pH-sensitive Ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. Nanomedicine 2015; 11(6): 1345-54.
[http://dx.doi.org/10.1016/j.nano.2015.03.014] [PMID: 25888277]
[70]
Rayamajhi S, Marchitto J, Nguyen TDT, Marasini R, Celia C, Aryal S. pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids Surf B Biointerfaces 2020; 188 ,110804
[http://dx.doi.org/10.1016/j.colsurfb.2020.110804] [PMID: 31972443]
[71]
Liu X, Huang G. Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci 2013; 8(6): 319-28.
[72]
Moholkar DN, Sadalage PS, Havaldar DV, Pawar KD. Engineering the liposomal formulations from natural peanut phospholipids for pH and temperature sensitive release of folic acid, levodopa and camptothecin. Mater Sci Eng C 2021; 123 ,111979
[http://dx.doi.org/10.1016/j.msec.2021.111979] [PMID: 33812607]
[73]
Zhang X, Lei B, Wang Y, Xu S, Liu H. Dual-sensitive on–off switch in liposome bilayer for controllable drug release. Langmuir 2019; 35(15): 5213-20.
[http://dx.doi.org/10.1021/acs.langmuir.8b04094] [PMID: 30883134]
[74]
Poudel K, Gautam M, Maharjan S, et al. Dual stimuli-responsive ursolic acid-embedded nanophytoliposome for targeted antitumor therapy. Int J Pharm 2020; 582 ,119330
[http://dx.doi.org/10.1016/j.ijpharm.2020.119330] [PMID: 32298743]
[75]
Nahire R, Hossain R, Patel R, et al. pH-triggered echogenicity and contents release from liposomes. Mol Pharm 2014; 11(11): 4059-68.
[http://dx.doi.org/10.1021/mp500186a] [PMID: 25271780]
[76]
Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009; 71(3): 431-44.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.026] [PMID: 18977297]
[77]
McCarley RL. Redox-responsive delivery systems. Annu Rev Anal Chem (Palo Alto, Calif) 2012; 5(1): 391-411.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143157] [PMID: 22708903]
[78]
Fu H, Shi K, Hu G, et al. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J Pharm Sci 2015; 104(3): 1160-73.
[http://dx.doi.org/10.1002/jps.24291] [PMID: 25449709]
[79]
Du Y, Wang Z, Wang T, et al. Improved antitumor activity of novel redox-responsive paclitaxel-encapsulated liposomes based on disulfide phosphatidylcholine. Mol Pharm 2020; 17(1): 262-73.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00988] [PMID: 31747284]
[80]
Chen H, Fan X, Zhao Y, et al. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrating delivery of survivin-shRNA into breast tumor. ACS Appl Mater Interfaces 2020; 12(19): 22074-87.
[http://dx.doi.org/10.1021/acsami.9b22440] [PMID: 32083833]
[81]
Chi Y, Yin X, Sun K, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release 2017; 261: 113-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.027] [PMID: 28666726]
[82]
Feng S, Wu Z-X, Zhao Z, et al. Engineering of bone-and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. ACS Appl Mater Interfaces 2019; 11(7): 7357-68.
[http://dx.doi.org/10.1021/acsami.8b18820] [PMID: 30682240]
[83]
Song M, Liang Y, Li K, et al. Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. J Drug Deliv Sci Technol 2019; 53 ,101179
[http://dx.doi.org/10.1016/j.jddst.2019.101179]
[84]
Sun Q, Kang Z, Xue L, et al. A collaborative assembly strategy for tumor-targeted siRNA delivery. J Am Chem Soc 2015; 137(18): 6000-10.
[http://dx.doi.org/10.1021/jacs.5b01435] [PMID: 25869911]
[85]
Aytar BS, Muller JPE, Golan S, et al. Chemical oxidation of a redox-active, ferrocene-containing cationic lipid: Influence on interactions with DNA and characterization in the context of cell transfection. J Colloid Interface Sci 2012; 387(1): 56-64.
[http://dx.doi.org/10.1016/j.jcis.2012.07.083] [PMID: 22980739]
[86]
Wang H, Sun M, Li D, Yang X, Han C, Pan W. Redox sensitive PEG controlled octaarginine and targeting peptide co-modified nanostructured lipid carriers for enhanced tumour penetrating and targeting in vitro and in vivo. Artif Cells Nanomed Biotechnol 2018; 46(2): 313-22.
[http://dx.doi.org/10.1080/21691401.2017.1307214] [PMID: 28362124]
[87]
Bremer C, Tung C-H, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001; 7(6): 743-8.
[http://dx.doi.org/10.1038/89126] [PMID: 11385514]
[88]
Arias JL. Drug targeting strategies in cancer treatment: An overview. Mini Rev Med Chem 2011; 11(1): 1-17.
[http://dx.doi.org/10.2174/138955711793564024] [PMID: 21235512]
[89]
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3): 161-74.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[90]
Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep 2009; 21(5): 1323-33.
[PMID: 19360311]
[91]
Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012; 6(4): 3491-8.
[http://dx.doi.org/10.1021/nn300524f] [PMID: 22409425]
[92]
Kulkarni PS, Haldar MK, Nahire RR, et al. Mmp-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm 2014; 11(7): 2390-9.
[http://dx.doi.org/10.1021/mp500108p] [PMID: 24827725]
[93]
Xu P, Meng Q, Sun H, et al. Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer. Biomaterials 2015; 64: 10-20.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.017] [PMID: 26106797]
[94]
Banerjee J, Hanson AJ, Gadam B, et al. Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjug Chem 2009; 20(7): 1332-9.
[http://dx.doi.org/10.1021/bc9000646] [PMID: 19601658]
[95]
Abe T, Sakamoto K, Kamohara H, Hirano Y, Kuwahara N, Ogawa M. Group II phospholipase A2 is increased in peritoneal and pleural effusions in patients with various types of cancer. Int J Cancer 1997; 74(3): 245-50.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970620)74:3<245:AID-IJC2>3.0.CO;2-Z] [PMID: 9221799]
[96]
Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jørgensen K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J Med Chem 2004; 47(7): 1694-703.
[http://dx.doi.org/10.1021/jm031029r] [PMID: 15027860]
[97]
Mock JN, Costyn LJ, Wilding SL, Arnold RD, Cummings BS. Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol 2013; 5(1): 172-82.
[http://dx.doi.org/10.1039/c2ib20108a] [PMID: 22890797]
[98]
Lee S, Song SJ, Lee J, Ha TH, Choi JS. Cathepsin B-responsive liposomes for controlled anticancer drug delivery in HEP g2 cells. Pharmaceutics 2020; 12(9): 876.
[http://dx.doi.org/10.3390/pharmaceutics12090876] [PMID: 32937915]
[99]
Pak CC, Ali S, Janoff AS, Meers P. Triggerable liposomal fusion by enzyme cleavage of a novel peptide-lipid conjugate. Biochim Biophys Acta 1998; 1372(1): 13-27.
[http://dx.doi.org/10.1016/S0005-2736(98)00041-8] [PMID: 9651469]
[100]
Chandrawati R, Odermatt PD, Chong S-F, Price AD, Städler B, Caruso F. Triggered cargo release by encapsulated enzymatic catalysis in capsosomes. Nano Lett 2011; 11(11): 4958-63.
[http://dx.doi.org/10.1021/nl202906j] [PMID: 21992226]
[101]
Jo S-M, Lee HY, Kim J-C. Glucose-sensitivity of liposomes incorporating conjugates of glucose oxidase and poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate). Int J Biol Macromol 2009; 45(4): 421-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.06.008] [PMID: 19549540]
[102]
Nieva JL, Goñi FM, Alonso A. Liposome fusion catalytically induced by phospholipase C. Biochemistry 1989; 28(18): 7364-7.
[http://dx.doi.org/10.1021/bi00444a032] [PMID: 2819074]
[103]
Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release 2013; 169(1-2): 112-25.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.036] [PMID: 23583706]
[104]
Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 2008; 97(11): 4696-740.
[http://dx.doi.org/10.1002/jps.21358] [PMID: 18351638]
[105]
Li L, ten Hagen TLM, Haeri A, et al. A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J Control Release 2014; 174: 202-8.
[http://dx.doi.org/10.1016/j.jconrel.2013.11.012] [PMID: 24269966]
[106]
Casadó A, Sagristá ML, Mora M. Formulation and in vitro characterization of thermosensitive liposomes for the delivery of irinotecan. J Pharm Sci 2014; 103(10): 3127-38.
[http://dx.doi.org/10.1002/jps.24097] [PMID: 25091422]
[107]
Pereira GI, Aparecida DJ, Chaves MAL, et al. Thermosensitive nanosystems associated with hyperthermia for cancer treatment. Pharmaceuticals (Basel) 2019; 12(4): 171.
[http://dx.doi.org/10.3390/ph12040171] [PMID: 31775273]
[108]
Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3(8): 487-97.
[http://dx.doi.org/10.1016/S1470-2045(02)00818-5] [PMID: 12147435]
[109]
Huang SK, Stauffer PR, Hong K, et al. Liposomes and hyperthermia in mice: Increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 1994; 54(8): 2186-91.
[PMID: 8174126]
[110]
Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res 2000; 60(16): 4440-5.
[PMID: 10969790]
[111]
Weinstein JN, Magin RL, Yatvin MB, Zaharko DS. Liposomes and local hyperthermia: Selective delivery of methotrexate to heated tumors. Science 1979; 204(4389): 188-91.
[http://dx.doi.org/10.1126/science.432641] [PMID: 432641]
[112]
Unezaki S, Maruyama K, Takahashi N, et al. Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 1994; 11(8): 1180-5.
[http://dx.doi.org/10.1023/A:1018949218380] [PMID: 7971721]
[113]
Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res 2000; 60(5): 1197-201.
[PMID: 10728674]
[114]
Lindner LH, Eichhorn ME, Eibl H, et al. Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 2004; 10(6): 2168-78.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0035] [PMID: 15041738]
[115]
Han HD, Shin BC, Choi HS. Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): Drug release behavior and stability in the presence of serum. Eur J Pharm Biopharm 2006; 62(1): 110-6.
[http://dx.doi.org/10.1016/j.ejpb.2005.07.006] [PMID: 16183268]
[116]
Kono K, Ozawa T, Yoshida T, et al. Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 2010; 31(27): 7096-105.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.045] [PMID: 20580431]
[117]
Zeng C, Yu F, Yang Y, et al. Preparation and evaluation of oxaliplatin thermosensitive liposomes with rapid release and high stability. PLoS One 2016; 11(7) ,e0158517
[http://dx.doi.org/10.1371/journal.pone.0158517] [PMID: 27415823]
[118]
Tagami T, May JP, Ernsting MJ, Li S-D. A thermosensitive liposome prepared with a Cu2+ gradient demonstrates improved pharmacokinetics, drug delivery and antitumor efficacy. J Control Release 2012; 161(1): 142-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.023] [PMID: 22504351]
[119]
Lu T, Ten Hagen TLM. Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines content release kinetics. J Control Release 2017; 247: 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.030] [PMID: 28042084]
[120]
Alavizadeh SH, Gheybi F, Nikpoor AR, Badiee A, Golmohammadzadeh S, Jaafari MR. Therapeutic efficacy of cisplatin thermosensitive liposomes upon mild hyperthermia in C26 tumor bearing BALB/c mice. Mol Pharm 2017; 14(3): 712-21.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01006] [PMID: 28135098]
[121]
Hayashi H, Kono K, Takagishi T. Temperature sensitization of liposomes using copolymers of N-isopropylacrylamide. Bioconjug Chem 1999; 10(3): 412-8.
[http://dx.doi.org/10.1021/bc980111b] [PMID: 10346872]
[122]
Kopeček J, Kopecková P, Minko T, Lu Z. HPMA copolymer-anticancer drug conjugates: Design, activity, and mechanism of action. Eur J Pharm Biopharm 2000; 50(1): 61-81.
[http://dx.doi.org/10.1016/S0939-6411(00)00075-8] [PMID: 10840193]
[123]
Paasonen L, Romberg B, Storm G, Yliperttula M, Urtti A, Hennink WE. Temperature-sensitive poly (N- (2-hydroxypropyl) methacrylamide mono/dilactate)-coated liposomes for triggered contents release. Bioconjug Chem 2007; 18(6): 2131-6.
[http://dx.doi.org/10.1021/bc700245p] [PMID: 17963354]
[124]
Kono K, Murakami T, Yoshida T, et al. Temperature sensitization of liposomes by use of thermosensitive block copolymers synthesized by living cationic polymerization: Effect of copolymer chain length. Bioconjug Chem 2005; 16(6): 1367-74.
[http://dx.doi.org/10.1021/bc050004z] [PMID: 16287232]
[125]
Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater 2018; 9(1): 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[126]
Chandaroy P, Sen A, Hui SW. Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release 2001; 76(1-2): 27-37.
[http://dx.doi.org/10.1016/S0168-3659(01)00429-1] [PMID: 11532310]
[127]
Tagami T, Kubota M, Ozeki T. Effective remote loading of doxorubicin into DPPC/poloxamer 188 hybrid liposome to retain thermosensitive property and the assessment of carrier-based acute cytotoxicity for pulmonary administration. J Pharm Sci 2015; 104(11): 3824-32.
[http://dx.doi.org/10.1002/jps.24593] [PMID: 26228287]
[128]
Guo F, Yu M, Wang J, Tan F, Li N. Smart IR780 theranostic nanocarrier for tumor-specific therapy: Hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl Mater Interfaces 2015; 7(37): 20556-67.
[http://dx.doi.org/10.1021/acsami.5b06552] [PMID: 26322900]
[129]
Alawak M, Abu Dayyih A, Mahmoud G, et al. ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. Eur J Pharm Biopharm 2021; 158: 390-400.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.012] [PMID: 33338603]
[130]
Lyon PC, Gray MD, Mannaris C, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol 2018; 19(8): 1027-39.
[http://dx.doi.org/10.1016/S1470-2045(18)30332-2] [PMID: 30001990]
[131]
Anilkumar TS, Shalumon KT, Chen J-P. Applications of magnetic liposomes in cancer therapies. Curr Pharm Des 2019; 25(13): 1490-504.
[http://dx.doi.org/10.2174/1389203720666190521114936] [PMID: 31109270]
[132]
Redolfi Riva E, Sinibaldi E, Grillone AF, et al. Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy. Nanomaterials (Basel) 2020; 10(11): 2104.
[http://dx.doi.org/10.3390/nano10112104] [PMID: 33114052]
[133]
Jose G, Lu Y-J, Chen H-A, et al. Hyaluronic acid modified bubble-generating magnetic liposomes for targeted delivery of doxorubicin. J Magn Magn Mater 2019; 474: 355-64.
[http://dx.doi.org/10.1016/j.jmmm.2018.11.019]
[134]
Anilkumar TS, Lu Y-J, Chen H-A, Hsu H-L, Jose G, Chen J-P. Dual targeted magnetic photosensitive liposomes for photothermal/photodynamic tumor therapy. J Magn Magn Mater 2019; 473: 241-52.
[http://dx.doi.org/10.1016/j.jmmm.2018.10.020]
[135]
Pradhan P, Giri J, Rieken F, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 2010; 142(1): 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[136]
Thébault CJ, Ramniceanu G, Boumati S, et al. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J Control Release 2020; 322: 137-48.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.003] [PMID: 32145266]
[137]
Chen W, Goldys EM, Deng W. Light-induced liposomes for cancer therapeutics. Prog Lipid Res 2020; 79 ,101052
[http://dx.doi.org/10.1016/j.plipres.2020.101052] [PMID: 32679153]
[138]
Xiang J, Tong X, Shi F, Yan Q, Yu B, Zhao Y. Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity. J Mater Chem B Mater Biol Med 2018; 6(21): 3531-40.
[http://dx.doi.org/10.1039/C8TB00651B] [PMID: 32254448]
[139]
Li Q, Li W, Di H, et al. A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system. J Control Release 2018; 277: 114-25.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.001] [PMID: 29408424]
[140]
Pramanik SK, Losada-Pérez PR, et al. Physicochemical characterizations of functional hybrid liposomal nanocarriers formed using photo-sensitive lipids. Sci Rep 2017; 7(1): 1-9.
[http://dx.doi.org/10.1038/srep46257] [PMID: 28127051]
[141]
Meerovich I, Nichols MG, Dash AK. Low-intensity light-induced drug release from a dual delivery system comprising of a drug loaded liposome and a photosensitive conjugate. J Drug Target 2020; 28(6): 655-67.
[http://dx.doi.org/10.1080/1061186X.2019.1710838] [PMID: 31886709]
[142]
Yang Y, Wang L, Cao H, et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation-induced emission. Nano Lett 2019; 19(3): 1821-6.
[http://dx.doi.org/10.1021/acs.nanolett.8b04875] [PMID: 30768274]
[143]
Feng Q, Wang J, Song H, et al. Uptake and light-induced cytotoxicity of hyaluronic acid-grafted liposomes containing porphyrin in tumor cells. J Drug Deliv Sci Technol 2018; 47: 137-43.
[http://dx.doi.org/10.1016/j.jddst.2018.06.024]
[144]
He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc Chem Res 2019; 52(9): 2445-61.
[http://dx.doi.org/10.1021/acs.accounts.9b00228] [PMID: 31424909]
[145]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3) ,e10143
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy