Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Osthole: Synthesis, Structural Modifications, and Biological Properties

Author(s): Zili Ren, Min Lv and Hui Xu*

Volume 22, Issue 16, 2022

Published on: 11 April, 2022

Page: [2124 - 2137] Pages: 14

DOI: 10.2174/1389557522666220214101231

Price: $65

Abstract

Osthole, a naturally occurring coumarin-type compound, is isolated from the Chinese herbal medicine Cnidium monnieri (L.) and exhibits a broad range of biological properties. In this review, the total synthesis and structural modifications of osthole and its analogs are described. Additionally, the progress on bioactivities of osthole and its analogs has been outlined since 2016. Moreover, the structure-activity relationships and mechanisms of action of osthole and its derivatives are discussed. These can provide references for future design, development, and application of osthole and its analogs as drugs or pesticides in the fields of medicine and agriculture.

Keywords: Osthole, biological activity, total synthesis, structural modification, structure-activity relationship, mechanisms of action.

Graphical Abstract

[1]
Guilet, D.; Séraphin, D.; Rondeau, D.; Richomme, P.; Bruneton, J. Cytotoxic coumarins from Calophyllum dispar. Phytochemistry, 2001, 58(4), 571-575.
[http://dx.doi.org/10.1016/S0031-9422(01)00285-0] [PMID: 11576600]
[2]
Chen, Y.H.; Guo, D.S.; Lu, M.H.; Yue, J.Y.; Liu, Y.; Shang, C.M.; An, D.R.; Zhao, M.M. Inhibitory effect of osthole from Cnidium monnieri on Tobacco Mosaic Virus (TMV) infection in Nicotiana glutinosa. Molecules, 2019, 25(1), 65.
[http://dx.doi.org/10.3390/molecules25010065] [PMID: 31878172]
[3]
Ashrafizadeh, M.; Mohammadinejad, R.; Samarghandian, S.; Yaribeygi, H.; Johnston, T.P.; Sahebkar, A. Anti-tumor effects of osthole in different malignant tissues: A review of molecular mechanisms. Anticancer. Agents Med. Chem., 2020, 20(8), 918-931.
[http://dx.doi.org/10.2174/1871520620666200228110704] [PMID: 32108003]
[4]
Nakamura, T.; Kodama, N.; Arai, Y.; Kumamoto, T.; Higuchi, Y.; Chaichantipyuth, C.; Ishikawa, T.; Ueno, K.; Yano, S. Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant Clausena guillauminii on the inflammation mediators, iNOS, TNF- α , and COX-2 expression in mouse macrophage RAW 264.7. J. Nat. Med., 2009, 63(1), 21-27.
[http://dx.doi.org/10.1007/s11418-008-0277-5] [PMID: 18636311]
[5]
Tang, D.Z.; Hou, W.; Zhou, Q.; Zhang, M.; Holz, J.; Sheu, T.J.; Li, T.F.; Cheng, S.D.; Shi, Q.; Harris, S.E.; Chen, D.; Wang, Y.J. Osthole stimulates osteoblast differentiation and bone formation by activation of β-catenin-BMP signaling. J. Bone Miner. Res., 2010, 25(6), 1234-1245.
[http://dx.doi.org/10.1002/jbmr.21] [PMID: 20200936]
[6]
Okamoto, T.; Kobayashi, T.; Yoshida, S. Synthetic derivatives of osthole for the prevention of hepatitis. Med. Chem., 2007, 3(1), 35-44.
[http://dx.doi.org/10.2174/157340607779317607] [PMID: 17266622]
[7]
Liu, M.; Liu, Y.; Hua, X.; Wu, C.; Zhou, S.; Wang, B.; Li, Z. Synthesis of osthole derivatives with Grignard reagents and their larvicidal activities on mosquitoes. Chin. J. Chem., 2015, 33, 1353-1358.
[http://dx.doi.org/10.1002/cjoc.201500620]
[8]
Zhang, Z.R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid. Based Complement. Alternat. Med., 2015, 2015, 919616.
[http://dx.doi.org/10.1155/2015/919616] [PMID: 26246843]
[9]
Jiang, G.; Liu, J.; Ren, B.; Tang, Y.; Owusu, L.; Li, M.; Zhang, J.; Liu, L.; Li, W. Anti-tumor effects of osthole on ovarian cancer cells in vitro. J. Ethnopharmacol., 2016, 193, 368-376.
[http://dx.doi.org/10.1016/j.jep.2016.08.045] [PMID: 27566206]
[10]
Liang, J.; Zhou, J.; Xu, Y.; Huang, X.; Wang, X.; Huang, W.; Li, H. Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis. Eur. J. Pharmacol., 2020, 874, 172990.
[http://dx.doi.org/10.1016/j.ejphar.2020.172990] [PMID: 32057718]
[11]
Chen, W.; Li, J.; Sun, Z.; Wu, C.; Ma, J.; Wang, J.; Liu, S.; Han, X. Comparative pharmacokinetics of six coumarins in normal and breast cancer bone-metastatic mice after oral administration of Wenshen Zhuanggu Formula. J. Ethnopharmacol., 2018, 224, 36-44.
[http://dx.doi.org/10.1016/j.jep.2018.05.031] [PMID: 29803570]
[12]
Le Zou, T.; Wang, H.F.; Ren, T.; Shao, Z.Y.; Yuan, R.Y.; Gao, Y.; Zhang, Y.J.; Wang, X.A.; Liu, Y.B. Osthole inhibits the progression of human gallbladder cancer cells through JAK/STAT3 signal pathway both in vitro and in vivo. Anticancer Drugs, 2019, 30(10), 1022-1030.
[http://dx.doi.org/10.1097/CAD.0000000000000812] [PMID: 31283543]
[13]
Zhu, X.; Li, Z.; Li, T.; Long, F.; Lv, Y.; Liu, L.; Liu, X.; Zhan, Q. Osthole inhibits the PI3K/AKT signaling pathway via activation of PTEN and induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma. Biomed. Pharmacother., 2018, 102, 502-509.
[http://dx.doi.org/10.1016/j.biopha.2018.03.106] [PMID: 29579711]
[14]
Yang, J.; Zhu, X.J.; Jin, M.Z.; Cao, Z.W.; Ren, Y.Y.; Gu, Z.W. Osthole induces cell cycle arrest and apoptosis in head and neck squamous cell carcinoma by suppressing the PI3K/AKT signaling pathway. Chem. Biol. Interact., 2020, 316, 108934.
[http://dx.doi.org/10.1016/j.cbi.2019.108934] [PMID: 31870840]
[15]
Liu, L.; Mao, J.; Wang, Q.; Zhang, Z.; Wu, G.; Tang, Q.; Zhao, B.; Li, L.; Li, Q. In vitro anticancer activities of osthole against renal cell carcinoma cells. Biomed. Pharmacother., 2017, 94, 1020-1027.
[http://dx.doi.org/10.1016/j.biopha.2017.07.155] [PMID: 28810525]
[16]
Wang, L.; Yang, L.; Lu, Y.; Chen, Y.; Liu, T.; Peng, Y.; Zhou, Y.; Cao, Y.; Bi, Z.; Liu, T.; Liu, Z.; Shan, H. Osthole induces cell cycle arrest and inhibits migration and invasion via PTEN/Akt pathways in osteosarcoma. Cell. Physiol. Biochem., 2016, 38(6), 2173-2182.
[http://dx.doi.org/10.1159/000445573] [PMID: 27185245]
[17]
Lin, Z.K.; Liu, J.; Jiang, G.Q.; Tan, G.; Gong, P.; Luo, H.F.; Li, H.M.; Du, J.; Ning, Z.; Xin, Y.; Wang, Z.Y. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol. Rep., 2017, 37(3), 1611-1618.
[http://dx.doi.org/10.3892/or.2017.5403] [PMID: 28184928]
[18]
Liu, P.Y.; Chang, D.C.; Lo, Y.S.; Hsi, Y.T.; Lin, C.C.; Chuang, Y.C.; Lin, S.H.; Hsieh, M.J.; Chen, M.K. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. Environ. Toxicol., 2018, 33(4), 446-453.
[http://dx.doi.org/10.1002/tox.22530] [PMID: 29319219]
[19]
Jarząb, A.; Łuszczki, J.; Guz, M.; Skalicka-Woźniak, K.; Hałasa, M.; Smok-Kalwat, J.; Polberg, K.; Stepulak, A. Combination of osthole and cisplatin against rhabdomyosarcoma TE671 cells yielded additive pharmacologic interaction by means of isobolographic analysis. Anticancer Res., 2018, 38(1), 205-210.
[http://dx.doi.org/10.21873/anticanres.12209] [PMID: 29277774]
[20]
Yang, Y.; Ren, F.; Tian, Z.; Song, W.; Cheng, B.; Feng, Z. Osthole synergizes with HER2 inhibitor, trastuzumab in HER2-overexpressed N87 gastric cancer by inducing apoptosis and inhibition of AKT-MAPK pathway. Front. Pharmacol., 2018, 9, 1392.
[http://dx.doi.org/10.3389/fphar.2018.01392] [PMID: 30538636]
[21]
Chu, Q.; Zhu, Y.; Cao, T.; Zhang, Y.; Chang, Z.; Liu, Y.; Lu, J.; Zhang, Y. Studies on the neuroprotection of osthole on glutamate-induced apoptotic cells and an Alzheimer’s disease mouse model via modulation oxidative stress. Appl. Biochem. Biotechnol., 2020, 190(2), 634-644.
[http://dx.doi.org/10.1007/s12010-019-03101-2] [PMID: 31407160]
[22]
Li, S.; Yan, Y.; Jiao, Y.; Gao, Z.; Xia, Y.; Kong, L.; Yao, Y.; Tao, Z.; Song, J.; Yan, Y.; Zhang, G.; Yang, J. Neuroprotective effect of osthole on neuron synapses in an Alzheimer’s disease cell model via upregulation of microRNA-9. J. Mol. Neurosci., 2016, 60(1), 71-81.
[http://dx.doi.org/10.1007/s12031-016-0793-9] [PMID: 27394443]
[23]
Yan, Y.; Kong, L.; Xia, Y.; Liang, W.; Wang, L.; Song, J.; Yao, Y.; Lin, Y.; Yang, J. Osthole promotes endogenous neural stem cell proliferation and improved neurological function through Notch signaling pathway in mice acute mechanical brain injury. Brain Behav. Immun., 2018, 67, 118-129.
[http://dx.doi.org/10.1016/j.bbi.2017.08.011] [PMID: 28823624]
[24]
Baek, S.C.; Kang, M.G.; Park, J.E.; Lee, J.P.; Lee, H.; Ryu, H.W.; Park, C.M.; Park, D.; Cho, M.L.; Oh, S.R.; Kim, H. Osthenol, a prenylated coumarin, as a monoamine oxidase A inhibitor with high selectivity. Bioorg. Med. Chem. Lett., 2019, 29(6), 839-843.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.016] [PMID: 30686752]
[25]
Zhang, Z.R.; Leung, W.N.; Li, G.; Kong, S.K.; Lu, X.; Wong, Y.M.; Chan, C.W. Osthole enhances osteogenesis in osteoblasts by elevating transcription factor osterix via cAMP/CREB signaling in vitro and in vivo. Nutrients, 2017, 9(6), 588.
[http://dx.doi.org/10.3390/nu9060588] [PMID: 28629115]
[26]
Hu, H.; Chen, M.; Dai, G.; Du, G.; Wang, X.; He, J.; Zhao, Y.; Han, D.; Cao, Y.; Zheng, Y.; Ding, D. An inhibitory role of osthole in rat MSCs osteogenic differentiation and proliferation via wnt/β-Catenin and Erk1/2-MAPK pathways. Cell. Physiol. Biochem., 2016, 38(6), 2375-2388.
[http://dx.doi.org/10.1159/000445590] [PMID: 27300751]
[27]
Guan, J.; Wei, X.; Qu, S.; Lv, T.; Fu, Q.; Yuan, Y. Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway. Biochem. Cell Biol., 2017, 95(4), 459-467.
[http://dx.doi.org/10.1139/bcb-2016-0233] [PMID: 28257582]
[28]
Zhou, W.B.; Zhang, X.X.; Cai, Y.; Sun, W.; Li, H. Osthole prevents tamoxifen-induced liver injury in mice. Acta Pharmacol. Sin., 2019, 40(5), 608-619.
[http://dx.doi.org/10.1038/s41401-018-0171-y] [PMID: 30315252]
[29]
Cai, Y.; Sun, W.; Zhang, X.X.; Lin, Y.D.; Chen, H.; Li, H. Osthole prevents acetaminophen-induced liver injury in mice. Acta Pharmacol. Sin., 2018, 39(1), 74-84.
[http://dx.doi.org/10.1038/aps.2017.129] [PMID: 29022574]
[30]
Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol., 2018, 56(1), 18-24.
[http://dx.doi.org/10.1080/13880209.2017.1414857] [PMID: 29233045]
[31]
Figueroa, M.; Rivero-Cruz, I.; Rivero-Cruz, B.; Bye, R.; Navarrete, A.; Mata, R. Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. multifida. J. Ethnopharmacol., 2007, 113(1), 125-131.
[http://dx.doi.org/10.1016/j.jep.2007.05.015] [PMID: 17582715]
[32]
Karakaya, S.; Şimşek, D.; Özbek, H.; Güvenalp, Z.; Altanlar, N.; Cavit, C.; Kiliç, C.S. Antimicrobial activities of extracts and isolated coumarins from the roots of four Ferulago species growing in Turkey. Iran. J. Pharm. Res., 2019, 18(3), 1516-1529.
[http://dx.doi.org/10.22037/ijpr.2019.1100718] [PMID: 32641960]
[33]
Kandhasamy, S.; Perumal, S.; Madhan, B.; Umamaheswari, N.; Banday, J.A.; Perumal, P.T.; Santhanakrishnan, V.P. Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing. ACS Appl. Mater. Interfaces, 2017, 9(10), 8556-8568.
[http://dx.doi.org/10.1021/acsami.6b16488] [PMID: 28221758]
[34]
Ni, J.; Ren, Q.; Luo, J.; Chen, Z.; Xu, X.; Guo, J.; Tan, Y.; Liu, W.; Qu, Z.; Wu, Z.; Wang, J.; Li, Y.; Guan, G.; Luo, J.; Yin, H.; Liu, G. Ultrasound-assisted extraction extracts from Stemona japonica (Blume) Miq. and Cnidium monnieri (L.) Cuss. could be used as potential Rhipicephalus sanguineus control agents. Exp. Parasitol., 2020, 217, 107955.
[http://dx.doi.org/10.1016/j.exppara.2020.107955] [PMID: 32649953]
[35]
Kordulewska, N.K.; Kostyra, E.; Chwała, B.; Moszyńska, M.; Cieślińska, A.; Fiedorowicz, E.; Jarmołowska, B. A novel concept of immunological and allergy interactions in autism spectrum disorders: Molecular, anti-inflammatory effect of osthole. Int. Immunopharmacol., 2019, 72, 1-11.
[http://dx.doi.org/10.1016/j.intimp.2019.01.058] [PMID: 30953868]
[36]
Bao, Y.; Meng, X.; Liu, F.; Wang, F.; Yang, J.; Wang, H.; Xie, G. Protective effects of osthole against inflammation induced by lipopolysaccharide in BV2 cells. Mol. Med. Rep., 2018, 17(3), 4561-4566.
[http://dx.doi.org/10.3892/mmr.2018.8447] [PMID: 29344655]
[37]
Fan, H.; Gao, Z.; Ji, K.; Li, X.; Wu, J.; Liu, Y.; Wang, X.; Liang, H.; Liu, Y.; Li, X.; Liu, P.; Chen, D.; Zhao, F. The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-κB and MAPK/p38 pathways. Phytomedicine, 2019, 58, 152864.
[http://dx.doi.org/10.1016/j.phymed.2019.152864] [PMID: 30878874]
[38]
Khairy, H.; Saleh, H.; Badr, A.M.; Marie, M.S. Therapeutic efficacy of osthole against dinitrobenzene sulphonic acid induced-colitis in rats. Biomed. Pharmacother., 2018, 100, 42-51.
[http://dx.doi.org/10.1016/j.biopha.2018.01.104] [PMID: 29421581]
[39]
Sun, W.; Cai, Y.; Zhang, X.X.; Chen, H.; Lin, Y.D.; Li, H. Osthole pretreatment alle via tes TNBS-induced colitis in mice via both cAMP/PKA-dependent and independent pathways. Acta Pharmacol. Sin., 2017, 38(8), 1120-1128.
[http://dx.doi.org/10.1038/aps.2017.71] [PMID: 28603288]
[40]
Singh, G.; Bhatti, R.; Mannan, R.; Singh, D.; Kesavan, A.; Singh, P. Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice. Inflammopharmacology, 2019, 27(5), 949-960.
[http://dx.doi.org/10.1007/s10787-018-0486-9] [PMID: 29736690]
[41]
Chu, S.S.; Cao, J.; Liu, Q.Z.; Du, S.S.; Deng, Z.W.; Liu, Z.L. Chemical composition and insecticidal activity of Heracleum moellendorffii Hance essential oil Chemija, 2012, 23, 108-112.
[42]
Xia, C.X.; Li, S.Q.; Cai, W.L.; Yan, X.; Zhang, H.Y. Insecticidal activity of osthole powder and its effect on enzyme activity of Sitophilus zeamais Chin. Bull. Entomol., 2009, 46, 740-744.
[43]
Wang, Z.; Kim, J.R.; Wang, M.; Shu, S.; Ahn, Y.J. Larvicidal activity of Cnidium monnieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Manag. Sci., 2012, 68(7), 1041-1047.
[http://dx.doi.org/10.1002/ps.3265] [PMID: 22389164]
[44]
Yang, N.N.; Shi, H.; Yu, G.; Wang, C.M.; Zhu, C.; Yang, Y.; Yuan, X.L.; Tang, M.; Wang, Z.L.; Gegen, T.; He, Q.; Tang, K.; Lan, L.; Wu, G.Y.; Tang, Z.X. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity. Sci. Rep., 2016, 6, 25657.
[http://dx.doi.org/10.1038/srep25657] [PMID: 27160770]
[45]
He, H.; Zhang, Y.; Zhao, D.; Jiang, J.; Xie, B.; Ma, L.; Liu, X.; Yu, C. Osthole inhibited the activity of CYP2C9 in human liver microsomes and influenced indomethacin pharmacokinetics in rats. Xenobiotica, 2020, 50(8), 939-946.
[http://dx.doi.org/10.1080/00498254.2020.1734882] [PMID: 32238050]
[46]
Yue, Y.; Li, Y.Q.; Fu, S.; Wu, Y.T.; Zhu, L.; Hua, L.; Lv, J.Y.; Li, Y.L.; Yang, D.L. Osthole inhibits cell proliferation by regulating the TGF-β1/Smad/p38 signaling pathways in pulmonary arterial smooth muscle cells. Biomed. Pharmacother., 2020, 121, 109640.
[http://dx.doi.org/10.1016/j.biopha.2019.109640] [PMID: 31810114]
[47]
Liu, G.L.; Hao, B.; Liu, S.P.; Wang, G.X. Synthesis and anthelmintic activity of osthol analogs against Dactylogyrus intermedius in goldfish. Eur. J. Med. Chem., 2012, 54, 582-590.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.009] [PMID: 22749191]
[48]
Konrádová, D.; Kozubíková, H.; Doležal, K.; Pospíšil, J. Microwave-assisted synthesis of phenylpropanoids and coumarins: Total synthesis of osthol. Eur. J. Org. Chem., 2017, 2017, 5204-5213.
[http://dx.doi.org/10.1002/ejoc.201701021]
[49]
Schmidt, B.; Riemer, M. Synthesis of allyl- and prenylcoumarins via microwave-promoted tandem Claisen rearrangement/Wittig olefination. Synthesis, 2016, 48, 141-149.
[http://dx.doi.org/10.1055/s-0035-1560501]
[50]
Gulías, M.; Marcos-Atanes, D.; Mascareñas, J.L.; Font, M. Practical, large-scale preparation of benzoxepines and coumarins through rhodium(III)-catalyzed C–H activation/annulation reactions. Org. Process Res. Dev., 2019, 23, 1669-1673.
[http://dx.doi.org/10.1021/acs.oprd.9b00191]
[51]
Yin, Q.; Yan, H.; Zhang, Y.; Wang, Y.; Zhang, G.; He, Y.; Zhang, W. Palladium-catalyzed synthesis of 8-allyl or 8-prenylcoumarins by using organotin reagents as multicoupling nucleophiles. Appl. Organomet. Chem., 2013, 27, 85-88.
[http://dx.doi.org/10.1002/aoc.2944]
[52]
Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F.F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V.A. Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angew. Chem. Int. Ed., 2003, 42(36), 4302-4320.
[http://dx.doi.org/10.1002/anie.200300579] [PMID: 14502700]
[53]
Zhang, M.; Zhang, R.; Wang, J.; Yu, X.; Zhang, Y.; Wang, Q.; Zhang, W. Microwave-promoted synthesis of novel fused osthole analogues. Chin. J. Chem., 2016, 34, 1344-1352.
[http://dx.doi.org/10.1002/cjoc.201600489]
[54]
Zhang, M.Z.; Zhang, R.R.; Wang, J.Q.; Yu, X.; Zhang, Y.L.; Wang, Q.Q.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of novel fused osthole derivatives. Eur. J. Med. Chem., 2016, 124, 10-16.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.012] [PMID: 27565553]
[55]
Zhang, S.G.; Liang, C.G.; Sun, Y.Q.; Teng, P.; Wang, J.Q.; Zhang, W.H. Design, synthesis and antifungal activities of novel pyrrole- and pyrazole-substituted coumarin derivatives. Mol. Divers., 2019, 23(4), 915-925.
[http://dx.doi.org/10.1007/s11030-019-09920-z] [PMID: 30694410]
[56]
You, L.; An, R.; Wang, X.; Li, Y. Discovery of novel osthole derivatives as potential anti-breast cancer treatment. Bioorg. Med. Chem. Lett., 2010, 20(24), 7426-7428.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.027] [PMID: 21051232]
[57]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Lee, S.S.; Hsu, F.L.; Lu, Y.L.; Hung, M.F.; Chang, C.I. Synthesis of N -hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase. ChemMedChem, 2010, 5(4), 598-607.
[http://dx.doi.org/10.1002/cmdc.200900494] [PMID: 20209563]
[58]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Yu, C.C.; Yang, C.Y.; Guh, J.H.; Lin, Y.C.; Kuo, C.I.; Yang, P.; Chang, C.I. Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4042-4049.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.002] [PMID: 21712146]
[59]
Yang, H.Y.; Hsu, Y.F.; Chiu, P.T.; Ho, S.J.; Wang, C.H.; Chi, C.C.; Huang, Y.H.; Lee, C.F.; Li, Y.S.; Ou, G.; Hsu, M.J. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: Targeting vascular endothelial growth factor receptor signaling and angiogenesis. PLoS One, 2013, 8(11), e81592.
[http://dx.doi.org/10.1371/journal.pone.0081592] [PMID: 24312323]
[60]
Pai, J.T.; Hsu, C.Y.; Hua, K.T.; Yu, S.Y.; Huang, C.Y.; Chen, C.N.; Liao, C.H.; Weng, M.S. NBM-T-BBX-OS01, semisynthesized from osthole, induced G1 growth arrest through HDAC6 inhibition in lung cancer cells. Molecules, 2015, 20(5), 8000-8019.
[http://dx.doi.org/10.3390/molecules20058000] [PMID: 25946558]
[61]
Li, S.; Lv, M.; Sun, Z.; Hao, M.; Xu, H. Optimization of osthole in the lactone ring: Structural elucidation, pesticidal activities, and control efficiency of osthole ester derivatives. J. Agric. Food Chem., 2021, 69(23), 6465-6474.
[http://dx.doi.org/10.1021/acs.jafc.1c01434] [PMID: 34077224]
[62]
Ren, Z.; Lv, M.; Li, T.; Hao, M.; Li, S.; Xu, H. Construction of oxime ester derivatives of osthole from Cnidium monnieri , and evaluation of their agricultural activities and control efficiency. Pest Manag. Sci., 2020, 76(11), 3560-3567.
[http://dx.doi.org/10.1002/ps.6056] [PMID: 32815273]
[63]
Zhang, L.; Wu, Y.; Yang, G.; Gan, H.; Sang, D.; Zhou, J.; Su, L.; Wang, R.; Ma, L. Design, synthesis and biological evaluation of novel osthole-based derivatives as potential neuroprotective agents. Bioorg. Med. Chem. Lett., 2020, 30(24), 127633.
[http://dx.doi.org/10.1016/j.bmcl.2020.127633] [PMID: 33132198]
[64]
Farooq, S.; Alharthi, F.A.; Alsalme, A.; Hussain, A.; Dar, B.A.; Hamid, A.; Koul, S. Dihydropyrimidinones: Efficient one-pot green synthesis using Montmorillonite-KSF and evaluation of their cytotoxic activity. RSC Advances, 2020, 10, 42221.
[http://dx.doi.org/10.1039/D0RA09072G]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy